dictionaries from parent dir
#405
by
madhavanvenkatesh
- opened
- geneformer/mtl/collators.py +13 -10
geneformer/mtl/collators.py
CHANGED
|
@@ -1,18 +1,24 @@
|
|
| 1 |
# imports
|
| 2 |
import torch
|
|
|
|
| 3 |
from ..collator_for_classification import DataCollatorForGeneClassification
|
| 4 |
-
from
|
| 5 |
|
| 6 |
-
"""
|
| 7 |
-
Geneformer collator for multi-task cell classification.
|
| 8 |
-
"""
|
| 9 |
|
| 10 |
class DataCollatorForMultitaskCellClassification(DataCollatorForGeneClassification):
|
| 11 |
class_type = "cell"
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def __init__(self, *args, **kwargs) -> None:
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def _prepare_batch(self, features):
|
| 18 |
# Process inputs as usual
|
|
@@ -29,7 +35,6 @@ class DataCollatorForMultitaskCellClassification(DataCollatorForGeneClassificati
|
|
| 29 |
if "label" in features[0]:
|
| 30 |
# Initialize labels dictionary for all tasks
|
| 31 |
labels = {task: [] for task in features[0]["label"].keys()}
|
| 32 |
-
|
| 33 |
# Populate labels for each task
|
| 34 |
for feature in features:
|
| 35 |
for task, label in feature["label"].items():
|
|
@@ -57,7 +62,6 @@ class DataCollatorForMultitaskCellClassification(DataCollatorForGeneClassificati
|
|
| 57 |
|
| 58 |
def __call__(self, features):
|
| 59 |
batch = self._prepare_batch(features)
|
| 60 |
-
|
| 61 |
for k, v in batch.items():
|
| 62 |
if torch.is_tensor(v):
|
| 63 |
batch[k] = v.clone().detach()
|
|
@@ -69,5 +73,4 @@ class DataCollatorForMultitaskCellClassification(DataCollatorForGeneClassificati
|
|
| 69 |
}
|
| 70 |
else:
|
| 71 |
batch[k] = torch.tensor(v, dtype=torch.int64)
|
| 72 |
-
|
| 73 |
-
return batch
|
|
|
|
| 1 |
# imports
|
| 2 |
import torch
|
| 3 |
+
import pickle
|
| 4 |
from ..collator_for_classification import DataCollatorForGeneClassification
|
| 5 |
+
from .. import TOKEN_DICTIONARY_FILE
|
| 6 |
|
| 7 |
+
"""Geneformer collator for multi-task cell classification."""
|
|
|
|
|
|
|
| 8 |
|
| 9 |
class DataCollatorForMultitaskCellClassification(DataCollatorForGeneClassification):
|
| 10 |
class_type = "cell"
|
| 11 |
|
| 12 |
+
@staticmethod
|
| 13 |
+
def load_token_dictionary():
|
| 14 |
+
with open(TOKEN_DICTIONARY_FILE, 'rb') as f:
|
| 15 |
+
return pickle.load(f)
|
| 16 |
+
|
| 17 |
def __init__(self, *args, **kwargs) -> None:
|
| 18 |
+
# Load the token dictionary
|
| 19 |
+
token_dictionary = self.load_token_dictionary()
|
| 20 |
+
# Use the loaded token dictionary
|
| 21 |
+
super().__init__(token_dictionary=token_dictionary, *args, **kwargs)
|
| 22 |
|
| 23 |
def _prepare_batch(self, features):
|
| 24 |
# Process inputs as usual
|
|
|
|
| 35 |
if "label" in features[0]:
|
| 36 |
# Initialize labels dictionary for all tasks
|
| 37 |
labels = {task: [] for task in features[0]["label"].keys()}
|
|
|
|
| 38 |
# Populate labels for each task
|
| 39 |
for feature in features:
|
| 40 |
for task, label in feature["label"].items():
|
|
|
|
| 62 |
|
| 63 |
def __call__(self, features):
|
| 64 |
batch = self._prepare_batch(features)
|
|
|
|
| 65 |
for k, v in batch.items():
|
| 66 |
if torch.is_tensor(v):
|
| 67 |
batch[k] = v.clone().detach()
|
|
|
|
| 73 |
}
|
| 74 |
else:
|
| 75 |
batch[k] = torch.tensor(v, dtype=torch.int64)
|
| 76 |
+
return batch
|
|
|