vit-4-veggies-2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0636
  • Accuracy: 0.9870
  • Precision: 0.9875
  • Recall: 0.9870
  • F1: 0.9870
  • Confusion Matrix: [[62, 0, 4, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 410, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 356, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 123, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 13, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1, 11, 0, 1], [0, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]]
  • Cohen Kappa: 0.9830
  • Matthews Corrcoef: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Confusion Matrix Cohen Kappa Matthews Corrcoef
0.2225 0.6211 100 0.2418 0.9510 0.9485 0.9510 0.9472 [[59, 0, 7, 0, 0, 0, 0, 0, 0, 0], [0, 276, 3, 0, 0, 0, 0, 0, 0, 0], [1, 0, 399, 8, 2, 0, 0, 0, 0, 0], [0, 0, 8, 345, 6, 0, 0, 0, 0, 0], [0, 0, 0, 0, 124, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 6, 0, 3], [0, 0, 0, 0, 0, 0, 13, 0, 0, 2], [0, 0, 0, 0, 0, 0, 0, 3, 0, 11], [2, 0, 0, 0, 0, 0, 0, 2, 3, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 20]] 0.9362 0.9364
0.106 1.2422 200 0.1557 0.9694 0.9684 0.9694 0.9675 [[60, 0, 6, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 406, 2, 0, 0, 0, 0, 0, 0], [0, 0, 7, 351, 1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 122, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 6, 1, 2], [0, 0, 0, 0, 0, 0, 14, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 8, 2, 4], [1, 0, 0, 0, 0, 1, 0, 1, 6, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9601 0.9602
0.1198 1.8634 300 0.1496 0.9640 0.9679 0.9640 0.9624 [[60, 0, 6, 0, 0, 0, 0, 0, 0, 0], [0, 266, 13, 0, 0, 0, 0, 0, 0, 0], [0, 0, 406, 4, 0, 0, 0, 0, 0, 0], [0, 0, 7, 352, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 124, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 8, 0, 1], [0, 0, 0, 0, 0, 0, 14, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 9, 0, 4], [0, 0, 0, 0, 0, 0, 0, 1, 8, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9530 0.9533
0.0901 2.4845 400 0.1208 0.9686 0.9709 0.9686 0.9665 [[63, 0, 3, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [8, 1, 401, 0, 0, 0, 0, 0, 0, 0], [0, 0, 11, 348, 0, 0, 0, 0, 0, 0], [0, 0, 0, 3, 121, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 6, 0, 2], [0, 0, 0, 0, 0, 0, 14, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 9, 0, 4], [0, 0, 0, 0, 0, 0, 0, 0, 9, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 20]] 0.9591 0.9592
0.0133 3.1056 500 0.0862 0.9801 0.9820 0.9801 0.9797 [[61, 0, 5, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 408, 1, 0, 0, 0, 0, 0, 0], [0, 0, 4, 355, 0, 0, 0, 0, 0, 0], [0, 0, 0, 3, 121, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 4, 0, 6, 0, 0], [0, 0, 0, 0, 0, 0, 14, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 11, 0, 2], [0, 0, 0, 0, 0, 0, 0, 1, 8, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9740 0.9741
0.0078 3.7267 600 0.0498 0.9908 0.9915 0.9908 0.9906 [[63, 0, 3, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 410, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 356, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 124, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 6, 0, 4, 0, 0], [0, 0, 0, 0, 0, 0, 14, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 13, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 9, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 20]] 0.9880 0.9881
0.0045 4.3478 700 0.0532 0.9877 0.9879 0.9877 0.9877 [[62, 0, 4, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 409, 1, 0, 0, 0, 0, 0, 0], [0, 0, 2, 357, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 122, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 14, 0, 0, 1], [0, 0, 0, 0, 0, 1, 1, 11, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0, 8, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9840 0.9840
0.0039 4.9689 800 0.0547 0.9877 0.9885 0.9877 0.9878 [[63, 0, 3, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 410, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 356, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 123, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 13, 0, 0, 2], [0, 0, 0, 0, 0, 1, 0, 11, 0, 2], [0, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9840 0.9841
0.0032 5.5901 900 0.0767 0.9862 0.9868 0.9862 0.9862 [[61, 0, 5, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 408, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 357, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 123, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 13, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1, 12, 0, 0], [0, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9820 0.9821
0.0021 6.2112 1000 0.0678 0.9862 0.9867 0.9862 0.9862 [[62, 0, 4, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 409, 1, 0, 0, 0, 0, 0, 0], [0, 0, 3, 356, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 123, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 13, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1, 11, 0, 1], [0, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9820 0.9821
0.0017 6.8323 1100 0.0617 0.9877 0.9882 0.9877 0.9877 [[62, 0, 4, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 410, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 357, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 123, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 13, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1, 11, 0, 1], [0, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9840 0.9841
0.0012 7.4534 1200 0.0636 0.9870 0.9875 0.9870 0.9870 [[62, 0, 4, 0, 0, 0, 0, 0, 0, 0], [0, 279, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 410, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 356, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 123, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 9, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 13, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1, 11, 0, 1], [0, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 19]] 0.9830 0.9831

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for darthraider/vit-4-veggies-2

Finetuned
(2473)
this model

Evaluation results