Datasets:
ArXiv:
License:
| # Copyright (c) 2021 The President and Fellows of Harvard College | |
| # Copyright (c) 2025 The NequIP Developers | |
| # Copyright (c) 2025 ByteDance Ltd. and/or its affiliates | |
| # SPDX-License-Identifier: MIT | |
| # | |
| # This file has been modified by ByteDance Ltd. and/or its affiliates on 2025-09-01. | |
| # | |
| # Original file was released under MIT, with the full license text | |
| # available at https://github.com/mir-group/nequip/blob/main/LICENSE. | |
| # | |
| # This modified file is released under the same license. | |
| import warnings | |
| from typing import Sequence, Optional, Callable, Any | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from e3nn import o3 | |
| from e3nn.util.jit import compile_mode | |
| from nequip.nn import GraphModuleMixin | |
| from nequip.nn.utils import with_edge_vectors_ | |
| from nequip.data import AtomicDataDict | |
| from nequip.nn import ( | |
| SequentialGraphNetwork, | |
| ConvNetLayer, | |
| ApplyFactor, | |
| ) | |
| from nequip.nn.embedding import ( | |
| EdgeLengthNormalizer, | |
| BesselEdgeLengthEncoding, | |
| PolynomialCutoff, | |
| NodeTypeEmbed, | |
| ) | |
| from modules import AuxdensityHeadForNequip | |
| class SphericalHarmonicEdgeAttrs(GraphModuleMixin, torch.nn.Module): | |
| """Construct edge attrs as spherical harmonic projections of edge vectors. | |
| Parameters follow ``e3nn.o3.spherical_harmonics``. | |
| Args: | |
| irreps_edge_sh (int, str, or o3.Irreps): if int, will be treated as lmax for o3.Irreps.spherical_harmonics(lmax) | |
| edge_sh_normalization (str): the normalization scheme to use | |
| edge_sh_normalize (bool, default: True): whether to normalize the spherical harmonics | |
| out_field (str, default: AtomicDataDict.EDGE_ATTRS_KEY: data/irreps field | |
| """ | |
| out_field: str | |
| def __init__( | |
| self, | |
| irreps_edge_sh: int | str | o3.Irreps, | |
| component_order: str = 'e3nn', | |
| edge_sh_normalization: str = "component", | |
| edge_sh_normalize: bool = True, | |
| irreps_in=None, | |
| out_field: str = AtomicDataDict.EDGE_ATTRS_KEY, | |
| ): | |
| super().__init__() | |
| self.out_field = out_field | |
| if isinstance(irreps_edge_sh, int): | |
| self.irreps_edge_sh = o3.Irreps.spherical_harmonics(irreps_edge_sh) | |
| else: | |
| self.irreps_edge_sh = o3.Irreps(irreps_edge_sh) | |
| self._init_irreps( | |
| irreps_in=irreps_in, | |
| irreps_out={out_field: self.irreps_edge_sh}, | |
| ) | |
| self.sh = o3.SphericalHarmonics( | |
| self.irreps_edge_sh, edge_sh_normalize, edge_sh_normalization | |
| ) | |
| # i.e. `model_dtype` | |
| self._output_dtype = torch.get_default_dtype() | |
| assert component_order in ['e3nn', 'std'], "component_order must be 'e3nn' or 'std'" | |
| self.component_order = component_order | |
| def forward(self, data: AtomicDataDict.Type) -> AtomicDataDict.Type: | |
| data = with_edge_vectors_(data, with_lengths=False) | |
| edge_vec = data[AtomicDataDict.EDGE_VECTORS_KEY] | |
| if self.component_order == 'std': | |
| edge_vec = edge_vec[:, [1, 2, 0]] | |
| edge_sh = self.sh(edge_vec) | |
| data[self.out_field] = edge_sh.to(self._output_dtype) | |
| return data | |
| class NequipArch(nn.Module): | |
| def __init__( | |
| self, | |
| r_max: float, | |
| type_names: Sequence[str], | |
| # convnet params | |
| radial_mlp_depth: Sequence[int], | |
| radial_mlp_width: Sequence[int], | |
| feature_irreps_hidden: Sequence[str | o3.Irreps], | |
| # irreps and dims | |
| irreps_edge_sh: int | str | o3.Irreps, | |
| type_embed_num_features: int, | |
| # edge length encoding | |
| per_edge_type_cutoff: Optional[dict[str, float | dict[str, float]]] = None, | |
| num_bessels: int = 8, | |
| bessel_trainable: bool = False, | |
| polynomial_cutoff_p: int = 6, | |
| # edge sum normalization | |
| avg_num_neighbors: Optional[float] = None, | |
| # == things that generally shouldn't be changed == | |
| # convnet | |
| convnet_resnet: bool = False, | |
| convnet_nonlinearity_type: str = "gate", | |
| convnet_nonlinearity_scalars: dict[int, Callable] = {"e": "silu", "o": "tanh"}, | |
| convnet_nonlinearity_gates: dict[int, Callable] = {"e": "silu", "o": "tanh"}, | |
| task_head_specs: dict[str, Any] = {}, | |
| auxbasis: str = "def2-universal-jfit", | |
| ): | |
| super().__init__() | |
| self.type_names = type_names | |
| # === sanity checks and warnings === | |
| assert all(tn.isalnum() for tn in type_names), ( | |
| "`type_names` must contain only alphanumeric characters" | |
| ) | |
| # require every convnet layer to be specified explicitly in a list | |
| # infer num_layers from the list size | |
| assert ( | |
| len(radial_mlp_depth) == len(radial_mlp_width) == len(feature_irreps_hidden) | |
| ), ( | |
| f"radial_mlp_depth: {radial_mlp_depth}, radial_mlp_width: {radial_mlp_width}, feature_irreps_hidden: {feature_irreps_hidden} should all have the same length" | |
| ) | |
| num_layers = len(radial_mlp_depth) | |
| if avg_num_neighbors is None: | |
| warnings.warn( | |
| "Found `avg_num_neighbors=None` -- it is recommended to set `avg_num_neighbors` for normalization and better numerics during training." | |
| ) | |
| # === encode and embed features === | |
| # == edge tensor embedding == | |
| spharm = SphericalHarmonicEdgeAttrs( | |
| irreps_edge_sh=irreps_edge_sh, | |
| component_order="std", | |
| ) | |
| # == edge scalar embedding == | |
| edge_norm = EdgeLengthNormalizer( | |
| r_max=r_max, | |
| type_names=type_names, | |
| per_edge_type_cutoff=per_edge_type_cutoff, | |
| irreps_in=spharm.irreps_out, | |
| ) | |
| bessel_encode = BesselEdgeLengthEncoding( | |
| num_bessels=num_bessels, | |
| trainable=bessel_trainable, | |
| cutoff=PolynomialCutoff(polynomial_cutoff_p), | |
| edge_invariant_field=AtomicDataDict.EDGE_EMBEDDING_KEY, | |
| irreps_in=edge_norm.irreps_out, | |
| ) | |
| # for backwards compatibility of NequIP's bessel encoding | |
| factor = ApplyFactor( | |
| in_field=AtomicDataDict.EDGE_EMBEDDING_KEY, | |
| factor=(2 * math.pi) / (r_max * r_max), | |
| irreps_in=bessel_encode.irreps_out, | |
| ) | |
| # == node scalar embedding == | |
| type_embed = NodeTypeEmbed( | |
| type_names=type_names, | |
| num_features=type_embed_num_features, | |
| irreps_in=factor.irreps_out, | |
| ) | |
| modules = { | |
| "spharm": spharm, | |
| "edge_norm": edge_norm, | |
| "bessel_encode": bessel_encode, | |
| "factor": factor, | |
| "type_embed": type_embed, | |
| } | |
| prev_irreps_out = type_embed.irreps_out | |
| # === convnet layers === | |
| for layer_i in range(num_layers): | |
| current_convnet = ConvNetLayer( | |
| irreps_in=prev_irreps_out, | |
| feature_irreps_hidden=feature_irreps_hidden[layer_i], | |
| convolution_kwargs={ | |
| "radial_mlp_depth": radial_mlp_depth[layer_i], | |
| "radial_mlp_width": radial_mlp_width[layer_i], | |
| "avg_num_neighbors": avg_num_neighbors, | |
| # to ensure isolated atom limit | |
| "use_sc": layer_i != 0, | |
| }, | |
| resnet=(layer_i != 0) and convnet_resnet, | |
| nonlinearity_type=convnet_nonlinearity_type, | |
| nonlinearity_scalars=convnet_nonlinearity_scalars, | |
| nonlinearity_gates=convnet_nonlinearity_gates, | |
| ) | |
| prev_irreps_out = current_convnet.irreps_out | |
| modules.update({f"layer{layer_i}_convnet": current_convnet}) | |
| # === assemble in SequentialGraphNetwork === | |
| self.backbone = SequentialGraphNetwork(modules) | |
| # === readout === | |
| self.backbone_irreps_out = prev_irreps_out | |
| self.task_head = SequentialGraphNetwork( | |
| { | |
| "auxdensity_atom_readout": AuxdensityHeadForNequip( | |
| type_names=self.type_names, | |
| auxbasis=auxbasis, | |
| field=AtomicDataDict.NODE_FEATURES_KEY, | |
| out_field="output:auxdensity", | |
| biases=True, | |
| irreps_in=self.backbone_irreps_out, | |
| ), | |
| } | |
| ) | |
| def convert_inputs(self, inputs): | |
| ret = inputs.copy() | |
| ret.update( | |
| { | |
| AtomicDataDict.ATOM_TYPE_KEY: inputs["z"], | |
| AtomicDataDict.POSITIONS_KEY: inputs["pos"], | |
| AtomicDataDict.EDGE_INDEX_KEY: inputs["edge_index"], | |
| } | |
| ) | |
| return ret | |
| def forward(self, data): | |
| data = self.convert_inputs(data) | |
| data = self.backbone(data) | |
| data = self.task_head(data) | |
| return data | |
| def nequip_simple_builder( | |
| num_layers: int = 4, | |
| l_max: int = 1, | |
| parity: bool = True, | |
| num_features: int = 32, | |
| radial_mlp_depth: int = 2, | |
| radial_mlp_width: int = 64, | |
| **kwargs, | |
| ) -> nn.Module: | |
| irreps_edge_sh = repr( | |
| o3.Irreps.spherical_harmonics(lmax=l_max, p=-1 if parity else 1) | |
| ) | |
| feature_irreps_hidden = repr( | |
| o3.Irreps( | |
| [ | |
| (num_features, (l, p)) | |
| for p in ((1, -1) if parity else (1,)) | |
| for l in range(l_max + 1) | |
| ] | |
| ) | |
| ) | |
| feature_irreps_hidden_list = [feature_irreps_hidden] * (num_layers - 1) | |
| radial_mlp_depth_list = [radial_mlp_depth] * num_layers | |
| radial_mlp_width_list = [radial_mlp_width] * num_layers | |
| feature_irreps_hidden_list += [feature_irreps_hidden] | |
| model = NequipArch( | |
| irreps_edge_sh=irreps_edge_sh, | |
| type_embed_num_features=num_features, | |
| feature_irreps_hidden=feature_irreps_hidden_list, | |
| radial_mlp_depth=radial_mlp_depth_list, | |
| radial_mlp_width=radial_mlp_width_list, | |
| **kwargs, | |
| ) | |
| return model | |
| if __name__ == "__main__": | |
| model = nequip_simple_builder(r_max=5.0, type_names=["H", "C", "N", "O", "F", "P", "S"]) | |
| from dataset import SCFBenchDataset | |
| dataset = SCFBenchDataset("dataset/main", parts_to_load=["base", "auxdensity.denfit"]) | |
| print(model(dataset[0])['output:auxdensity']) | |