File size: 8,958 Bytes
7c75574 ff0a66f 7c75574 9df35ed 7c75574 9df35ed 7c75574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
license: cc-by-4.0
task_categories:
- translation
- automatic-speech-recognition
language:
- it
- en
multilinguality:
- multilingual
pretty_name: FAMA-data
tags:
- speech
- speech-to-text
- open-source
- speech translation
- ST
- ASR
- audio
- text
size_categories:
- 100K<n<1M
configs:
- config_name: en
data_files:
- split: train_commonvoice
path: train_commonvoice_en-it.tsv
- split: train_covost2
path: train_covost2_en-it.tsv
- split: train_fleurs
path: train_fleurs_en-it.tsv
- split: train_librilight_large
path: train_librilightlarge_en-it.tsv
- split: train_librilight_medium
path: train_librilightmedium_en-it.tsv
- split: train_librilight_small
path: train_librilightsmall_en-it.tsv
- split: train_librispeech
path: train_librispeech_en-it.tsv
- split: train_mls
path: train_mls_en-it.tsv
- split: train_voxpopuli
path: train_voxpopuli_en-it.tsv
- split: train_voxpopuliasr
path: train_voxpopuliasr_en-it.tsv
- split: train_youtubecommons
path: train_youtubecommons_en-it.tsv
- config_name: it
data_files:
- split: train_commonvoice
path: train_commonvoice_it-en.tsv
- split: train_covost2
path: train_covost2_it-en.tsv
- split: train_fleurs
path: train_fleurs_it-en.tsv
- split: train_mls
path: train_mls_it-en.tsv
- split: train_voxpopuli
path: train_voxpopuli_it-en.tsv
- split: train_voxpopuliasr
path: train_voxpopuliasr_it-en.tsv
- split: train_youtubecommons
path: train_youtubecommons_it-en.tsv
---
<img src="https://huggingface.co/FBK-MT/fama-small/resolve/main/FAMA.png" align="center" width="100%">
### Dataset Description, Collection, and Source
The FAMA training data is the collection of English and Italian datasets for automatic speech recognition (ASR) and speech translation (ST)
used to train the [FAMA models family](https://huggingface.co/collections/FBK-MT/fama-683425df3fb2b3171e0cdc9e).
The ASR section of FAMA is derived from the [MOSEL data collection](https://github.com/hlt-mt/mosel), including the automatic
transcripts obtained with Whisper and available in the [HuggingFace MOSEL Dataset](https://huggingface.co/datasets/FBK-MT/mosel).
The ASR is further augmented with automatically transcribed speech from the
[YouTube-Commons dataset](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
The ST section is composed of gold-labeled ST datasets and the automatic translations of the ASR datasets with
[MADALAD-400 3B-MT](https://huggingface.co/google/madlad400-3b-mt).
The complete list of datasets for both tasks are reported in the [Dataset Statistics](#dataset-statistics).
- **Curated by:** Sara Papi, Marco Gaido, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
- **Funded by:** FAIR, Meetween, and CINECA
- **Shared by:** Fondazione Bruno Kessler
### License
- CC-BY-4.0
### Dataset Sources
- **MOSEL Collection:** [MOSEL GitHub](https://github.com/hlt-mt/mosel)
- **MOSEL Pseudolabels:** [MOSEL HuggingFace](https://huggingface.co/datasets/FBK-MT/mosel)
- **YouTube-Commons:** [YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons)
- **Paper:** [FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian](https://huggingface.co/papers/2505.22759)
## Dataset Structure
### Data Config
The dataset is split into multiple tsv files corresponding to the dataset name and the source and target languages,
either Italian (it) and English (en), containing both the ASR transcript and translation in the other language.
### Data Field
`id`: unique id of the segment (text, e.g.: "5NTUCHeZuds_0")
`audio`: filename (text, e.g. "5NTUCHeZuds.wav")
`offset`: start of the segment, in seconds (float, e.g. "0.020")
`duration`: duration of the segments, in seconds (float, e.g. "5.946")
`speaker`: id of the speaker (text, e.g. "000")
`src_lang`: id of the source language (ISO 639-1 code, e.g. "it", "en")
`src_text`: recognized text (text, e.g. "Grazie a tutti.")
`tgt_lang`: id of the source language (ISO 639-1 code, e.g. "it", "en")
`tgt_text`: translated text (text, e.g. "Thank you all.")
`ASR`: True/False - indicates whether the sample has been used for ASR training
`ST`: True/False - indicates whether the sample has been used for ST training
## Dataset Statistics
The full list of FAMA training datasets, together with the number of hours for each language/language pair and
the type of labels (A for automatic and G for gold labels) is reported below for both ASR and ST tasks.
### Automatic Speech Recognition (ASR)
| Dataset | English (h) | Italian (h) | Label |
|--------|--------|--------|-------|
| CommonVoice v18 | 1,746 | 250 | G |
| CoVoST2 | 420 | 28 | G |
| FLEURS | 7 | 9 | G |
| LibriSpeech | 358 | - | G |
| MOSEL | 66,301 | 21,775 | A |
| MLS | 44,600 | 247 | G |
| VoxPopuli-ASR | 519 | 74 | G |
| YouTube-Commons | 14,200 | 1,828 | A |
| **TOTAL** | 128,152 | 24,211 | G+A |
### Speech Translation (ST)
| Dataset | English (h) | Italian (h) | Label |
|--------|--------|--------|-------|
| CommonVoice v18 | 1,746 | 250 | A |
| CoVoST2 | 420 | 28 | A |
| LibriSpeech | 358 | - | A |
| MOSEL | 66,301 | 21,775 | A |
| MLS | 44,600 | 247 | A |
| VoxPopuli-ASR | 519 | 74 | A |
| YouTube-Commons | 14,200 | 1,828 | A |
| *TOTAL (A)* | 128,144 | 24,202 | A |
| *FILTERED (A)* | 123,777 | 23,445 | A |
| CoVoST2 | 420 | 28 | G |
| FLEURS | 7 | 9 | G |
| **TOTAL** | 124,204 | 23,482 | G+A |
## Dataset Creation
To reproduce the MOSEL-derived datasets (all but YouTube-Commons), please refer to the
[MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository and to the
[MOSEL data card on HuggingFace](https://huggingface.co/datasets/FBK-MT/mosel).
To download and process YouTube-Commons, please refer to the
[dedicated YouTube-Commons README](https://huggingface.co/datasets/FBK-MT/fama-data/blob/main/scripts/YouTube-Commons-README.md).
The code used to produce all translations with [MADALAD-400 3B-MT](https://huggingface.co/google/madlad400-3b-mt) is the following:
```python
import os
import sys
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
modelname = "google/madlad400-3b-mt"
batch_size = {$BATCH_SIZE}
tlang = {$LANGUAGE}
class BatchedMT:
def __init__(self, tokenizer, model):
self.buffer_lines = []
self.model = model
if torch.cuda.is_available():
self.model = self.model.cuda()
self.tokenizer = tokenizer
def process_line(self, line):
self.buffer_lines.append(line.strip())
if len(self.buffer_lines) >= BATCHSIZE:
self.print_translations()
self.buffer_lines = []
def print_translations(self):
outs = self._do_translate()
for s in outs:
print(s)
def _do_translate(self):
tokens = self.tokenizer(self.buffer_lines, return_tensors="pt", padding=True)
if torch.cuda.is_available():
tokens = {k: v.cuda() for k, v in tokens.items()}
translated = self.model.generate(**tokens, max_new_tokens=512)
return [self.tokenizer.decode(t, skip_special_tokens=True) for t in translated]
def close(self):
if len(self.buffer_lines) > 0:
self.print_translations()
self.buffer_lines = []
mt = BatchedMT(
AutoTokenizer.from_pretrained(modelname),
AutoModelForSeq2SeqLM.from_pretrained(modelname))
for input_line in sys.stdin:
mt.process_line("<2" + tlang + "> " + input_line)
mt.close()
```
where the input text is passad as stdin, `{$BATCH_SIZE}` is the batch size supported on your machine
and `{$LANGUAGE}` is either `en` for Italian to English translation and `it` for English to Italian translation.
The script used for filtering the ST datasets is
[`filter_tsv_based_on_ratio`](https://huggingface.co/datasets/FBK-MT/fama-data/blob/main/scripts/filter_tsv_based_on_ratio.py) and
available in the `scripts` folder of this repository.
For English speech datasets, we set `--threshold-min 0.75` and `--threshold-max 1.45`
while, for the Italian speech datasets, `--threshold-min 0.65` and `--threshold-max 1.35`.
## Citation
```
@misc{papi2025fama,
title={FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian},
author={Sara Papi and Marco Gaido and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabih and Matteo Negri},
year={2025}
}
```
## Dataset Card Contact
[@spapi](https://huggingface.co/spapi) |