fama-data / scripts /segment-ytc.py
spapi's picture
Add segment-ytc.py script
e5933f1 verified
raw
history blame
10.5 kB
import argparse
from dataclasses import dataclass
from multiprocessing import cpu_count
from pathlib import Path
import numpy as np
import torch
import yaml
from torch.utils.data import DataLoader
from tqdm import tqdm
from constants import HIDDEN_SIZE, TARGET_SAMPLE_RATE
from data import FixedSegmentationDatasetNoTarget, segm_collate_fn
from eval import infer
from models import SegmentationFrameClassifer, prepare_wav2vec
import os
@dataclass
class Segment:
start: float
end: float
probs: np.array
decimal: int = 4
@property
def duration(self):
return float(round((self.end - self.start) / TARGET_SAMPLE_RATE, self.decimal))
@property
def offset(self):
return float(round(self.start / TARGET_SAMPLE_RATE, self.decimal))
@property
def offset_plus_duration(self):
return round(self.offset + self.duration, self.decimal)
def trim(sgm: Segment, threshold: float) -> Segment:
"""reduces the segment to between the first and last points that are above the threshold
Args:
sgm (Segment): a segment
threshold (float): probability threshold
Returns:
Segment: new reduced segment
"""
included_indices = np.where(sgm.probs >= threshold)[0]
# return empty segment
if not len(included_indices):
return Segment(sgm.start, sgm.start, np.empty([0]))
i = included_indices[0]
j = included_indices[-1] + 1
sgm = Segment(sgm.start + i, sgm.start + j, sgm.probs[i:j])
return sgm
def split_and_trim(
sgm: Segment, split_idx: int, threshold: float
) -> tuple[Segment, Segment]:
"""splits the input segment at the split_idx and then trims and returns the two resulting segments
Args:
sgm (Segment): input segment
split_idx (int): index to split the input segment
threshold (float): probability threshold
Returns:
tuple[Segment, Segment]: the two resulting segments
"""
probs_a = sgm.probs[:split_idx]
sgm_a = Segment(sgm.start, sgm.start + len(probs_a), probs_a)
probs_b = sgm.probs[split_idx + 1 :]
sgm_b = Segment(sgm_a.end + 1, sgm.end, probs_b)
sgm_a = trim(sgm_a, threshold)
sgm_b = trim(sgm_b, threshold)
return sgm_a, sgm_b
def pdac(
probs: np.array,
max_segment_length: float,
min_segment_length: float,
threshold: float,
not_strict: bool
) -> list[Segment]:
"""applies the probabilistic Divide-and-Conquer algorithm to split an audio
into segments satisfying the max-segment-length and min-segment-length conditions
Args:
probs (np.array): the binary frame-level probabilities
output by the segmentation-frame-classifier
max_segment_length (float): the maximum length of a segment
min_segment_length (float): the minimum length of a segment
threshold (float): probability threshold
not_strict (bool): whether segments longer than max are allowed
Returns:
list[Segment]: resulting segmentation
"""
segments = []
sgm = Segment(0, len(probs), probs)
sgm = trim(sgm, threshold)
def recusrive_split(sgm):
if sgm.duration < max_segment_length:
segments.append(sgm)
else:
j = 0
sorted_indices = np.argsort(sgm.probs)
while j < len(sorted_indices):
split_idx = sorted_indices[j]
split_prob = sgm.probs[split_idx]
if not_strict and split_prob > threshold:
segments.append(sgm)
break
sgm_a, sgm_b = split_and_trim(sgm, split_idx, threshold)
if (
sgm_a.duration > min_segment_length
and sgm_b.duration > min_segment_length
):
recusrive_split(sgm_a)
recusrive_split(sgm_b)
break
j += 1
else:
if not_strict:
segments.append(sgm)
else:
if sgm_a.duration > min_segment_length:
recusrive_split(sgm_a)
if sgm_b.duration > min_segment_length:
recusrive_split(sgm_b)
recusrive_split(sgm)
return segments
def update_yaml_content(
yaml_content: list[dict], segments: list[Segment], wav_name: str
) -> list[dict]:
"""extends the yaml content with the segmentation of this wav file
Args:
yaml_content (list[dict]): segmentation in yaml format
segments (list[Segment]): resulting segmentation from pdac
wav_name (str): name of the wav file
Returns:
list[dict]: extended segmentation in yaml format
"""
for sgm in segments:
yaml_content.append(
{
"duration": sgm.duration,
"offset": sgm.offset,
"rW": 0,
"uW": 0,
"speaker_id": "NA",
"wav": wav_name,
}
)
return yaml_content
def segment(args):
device = (
torch.device(f"cuda:0")
if torch.cuda.device_count() > 0
else torch.device("cpu")
)
checkpoint = torch.load(args.path_to_checkpoint, map_location=device)
# init wav2vec 2.0
wav2vec_model = prepare_wav2vec(
checkpoint["args"].model_name,
checkpoint["args"].wav2vec_keep_layers,
device,
)
# init segmentation frame classifier
sfc_model = SegmentationFrameClassifer(
d_model=HIDDEN_SIZE,
n_transformer_layers=checkpoint["args"].classifier_n_transformer_layers,
).to(device)
sfc_model.load_state_dict(checkpoint["state_dict"])
sfc_model.eval()
yaml_content = []
with open(args.wavs, 'r') as file:
wav_paths = [x.strip() for x in file.readlines()]
#for wav_path in sorted(list(Path(args.path_to_wavs).glob("*.wav"))):
for wav_path in wav_paths:
# initialize a dataset for the fixed segmentation
dataset = FixedSegmentationDatasetNoTarget(wav_path, args.inference_segment_length, args.inference_times)
sgm_frame_probs = None
for inference_iteration in range(args.inference_times):
# create a dataloader for this fixed-length segmentation of the wav file
dataset.fixed_length_segmentation(inference_iteration)
dataloader = DataLoader(
dataset,
batch_size=args.inference_batch_size,
num_workers=min(cpu_count() // 2, 4),
shuffle=False,
drop_last=False,
collate_fn=segm_collate_fn,
)
# get frame segmentation frame probabilities in the output space
probs, _ = infer(
wav2vec_model,
sfc_model,
dataloader,
device,
)
if sgm_frame_probs is None:
sgm_frame_probs = probs.copy()
else:
sgm_frame_probs += probs
sgm_frame_probs /= args.inference_times
segments = pdac(
sgm_frame_probs,
args.dac_max_segment_length,
args.dac_min_segment_length,
args.dac_threshold,
args.not_strict
)
wav_path_name = os.path.basename(wav_path)
for sgm in segments:
print(f"Segmentation:{wav_path_name}\t{sgm.offset}\t{sgm.duration}")
yaml_content = update_yaml_content(yaml_content, segments, wav_path_name)
path_to_segmentation_yaml = Path(args.path_to_segmentation_yaml)
path_to_segmentation_yaml.parent.mkdir(parents=True, exist_ok=True)
with open(path_to_segmentation_yaml, "w") as f:
yaml.dump(yaml_content, f, default_flow_style=True)
print(
f"Saved SHAS segmentation with max={args.dac_max_segment_length} & "
f"min={args.dac_min_segment_length} at {path_to_segmentation_yaml}"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--path_to_segmentation_yaml",
"-yaml",
type=str,
required=True,
help="absolute path to the yaml file to save the generated segmentation",
)
parser.add_argument(
"--path_to_checkpoint",
"-ckpt",
type=str,
required=True,
help="absolute path to the audio-frame-classifier checkpoint",
)
parser.add_argument(
"-wavs",
type=str,
help="absolute path to the directory of the wav audios to be segmented",
)
parser.add_argument(
"--inference_batch_size",
"-bs",
type=int,
default=12,
help="batch size (in examples) of inference with the audio-frame-classifier",
)
parser.add_argument(
"--inference_segment_length",
"-len",
type=int,
default=20,
help="segment length (in seconds) of fixed-length segmentation during inference"
"with audio-frame-classifier",
)
parser.add_argument(
"--inference_times",
"-n",
type=int,
default=1,
help="how many times to apply inference on different fixed-length segmentations"
"of each wav",
)
parser.add_argument(
"--dac_max_segment_length",
"-max",
type=float,
default=20.0,
help="the segmentation algorithm splits until all segments are below this value"
"(in seconds)",
)
parser.add_argument(
"--dac_min_segment_length",
"-min",
type=float,
default=0.2,
help="a split by the algorithm is carried out only if the resulting two segments"
"are above this value (in seconds)",
)
parser.add_argument(
"--dac_threshold",
"-thr",
type=float,
default=0.5,
help="after each split by the algorithm, the resulting segments are trimmed to"
"the first and last points that corresponds to a probability above this value",
)
parser.add_argument(
"--not_strict",
action="store_true",
help="whether segments longer than max are allowed."
"If this argument is used, respecting the classification threshold conditions (p > thr)"
"is more important than the length conditions (len < max)."
)
args = parser.parse_args()
segment(args)