Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
condition
imagewidth (px)
256
256
lat
float64
30.3
30.4
lon
float64
-81.72
-81.59
heading
float64
0.01
360
elevation
float64
0.53
25.4
panoid
stringlengths
22
22
theta
int64
60
300
phi
int64
15
15
fov
int64
75
75
30.334505
-81.668389
14.496242
8.799092
e0nCLqydvIErOCouRNriug
60
15
75
30.334505
-81.668389
14.496242
8.799092
e0nCLqydvIErOCouRNriug
120
15
75
30.334505
-81.668389
14.496242
8.799092
e0nCLqydvIErOCouRNriug
240
15
75
30.334505
-81.668389
14.496242
8.799092
e0nCLqydvIErOCouRNriug
300
15
75
30.334616
-81.668356
15.451297
8.921848
m0k51T39N3EPDdsvF-aX6A
60
15
75
30.334616
-81.668356
15.451297
8.921848
m0k51T39N3EPDdsvF-aX6A
120
15
75
30.334616
-81.668356
15.451297
8.921848
m0k51T39N3EPDdsvF-aX6A
240
15
75
30.334616
-81.668356
15.451297
8.921848
m0k51T39N3EPDdsvF-aX6A
300
15
75
30.334701
-81.668323
20.608524
8.706914
94CRl_8eg45vAylst_c13A
60
15
75
30.334701
-81.668323
20.608524
8.706914
94CRl_8eg45vAylst_c13A
120
15
75
30.334701
-81.668323
20.608524
8.706914
94CRl_8eg45vAylst_c13A
240
15
75
30.334701
-81.668323
20.608524
8.706914
94CRl_8eg45vAylst_c13A
300
15
75
30.334795
-81.668237
99.007332
8.888272
mAKUONuCElJcswI8mJW0PA
60
15
75
30.334795
-81.668237
99.007332
8.888272
mAKUONuCElJcswI8mJW0PA
120
15
75
30.334795
-81.668237
99.007332
8.888272
mAKUONuCElJcswI8mJW0PA
240
15
75
30.334795
-81.668237
99.007332
8.888272
mAKUONuCElJcswI8mJW0PA
300
15
75
30.334781
-81.668137
99.717064
8.882215
Tf6yL1jW9G-zuO0BbL2TgQ
60
15
75
30.334781
-81.668137
99.717064
8.882215
Tf6yL1jW9G-zuO0BbL2TgQ
120
15
75
30.334781
-81.668137
99.717064
8.882215
Tf6yL1jW9G-zuO0BbL2TgQ
240
15
75
30.334781
-81.668137
99.717064
8.882215
Tf6yL1jW9G-zuO0BbL2TgQ
300
15
75
30.334767
-81.668039
99.283562
8.866211
JkxH7g65OVqPAGjG6f3GwA
60
15
75
30.334767
-81.668039
99.283562
8.866211
JkxH7g65OVqPAGjG6f3GwA
120
15
75
30.334767
-81.668039
99.283562
8.866211
JkxH7g65OVqPAGjG6f3GwA
240
15
75
30.334767
-81.668039
99.283562
8.866211
JkxH7g65OVqPAGjG6f3GwA
300
15
75
30.334829
-81.668087
104.597115
9.092307
E_Zb67mx_F1OSevZJhJB8w
60
15
75
30.334829
-81.668087
104.597115
9.092307
E_Zb67mx_F1OSevZJhJB8w
120
15
75
30.334829
-81.668087
104.597115
9.092307
E_Zb67mx_F1OSevZJhJB8w
240
15
75
30.334829
-81.668087
104.597115
9.092307
E_Zb67mx_F1OSevZJhJB8w
300
15
75
30.334959
-81.667667
11.554299
9.006894
Zto9W2WLGHFxIngpfLVFqA
60
15
75
30.334959
-81.667667
11.554299
9.006894
Zto9W2WLGHFxIngpfLVFqA
120
15
75
30.334959
-81.667667
11.554299
9.006894
Zto9W2WLGHFxIngpfLVFqA
240
15
75
30.334959
-81.667667
11.554299
9.006894
Zto9W2WLGHFxIngpfLVFqA
300
15
75
30.335049
-81.667644
13.579197
9.074103
D0G2og6Mgj-AWk9lv8xk4A
60
15
75
30.335049
-81.667644
13.579197
9.074103
D0G2og6Mgj-AWk9lv8xk4A
120
15
75
30.335049
-81.667644
13.579197
9.074103
D0G2og6Mgj-AWk9lv8xk4A
240
15
75
30.335049
-81.667644
13.579197
9.074103
D0G2og6Mgj-AWk9lv8xk4A
300
15
75
30.334866
-81.66769
17.971193
9.032441
cFFHv22cYzYJQfx4igDNCg
60
15
75
30.334866
-81.66769
17.971193
9.032441
cFFHv22cYzYJQfx4igDNCg
120
15
75
30.334866
-81.66769
17.971193
9.032441
cFFHv22cYzYJQfx4igDNCg
240
15
75
30.334866
-81.66769
17.971193
9.032441
cFFHv22cYzYJQfx4igDNCg
300
15
75
30.3348
-81.667952
103.87529
9.090689
uY61y2uMG0oP9TWs71gIfQ
60
15
75
30.3348
-81.667952
103.87529
9.090689
uY61y2uMG0oP9TWs71gIfQ
120
15
75
30.3348
-81.667952
103.87529
9.090689
uY61y2uMG0oP9TWs71gIfQ
240
15
75
30.3348
-81.667952
103.87529
9.090689
uY61y2uMG0oP9TWs71gIfQ
300
15
75
30.334772
-81.667835
105.5383
9.12265
p1yKU00OblL0OFElC4fx8A
60
15
75
30.334772
-81.667835
105.5383
9.12265
p1yKU00OblL0OFElC4fx8A
120
15
75
30.334772
-81.667835
105.5383
9.12265
p1yKU00OblL0OFElC4fx8A
240
15
75
30.334772
-81.667835
105.5383
9.12265
p1yKU00OblL0OFElC4fx8A
300
15
75
30.334759
-81.667778
105.481796
9.11888
Df49XnLQhjxKSo4f56ABWQ
60
15
75
30.334759
-81.667778
105.481796
9.11888
Df49XnLQhjxKSo4f56ABWQ
120
15
75
30.334759
-81.667778
105.481796
9.11888
Df49XnLQhjxKSo4f56ABWQ
240
15
75
30.334759
-81.667778
105.481796
9.11888
Df49XnLQhjxKSo4f56ABWQ
300
15
75
30.334733
-81.667668
105.049774
9.13542
S8tLx0EG29ZlfThkBGaOIQ
60
15
75
30.334733
-81.667668
105.049774
9.13542
S8tLx0EG29ZlfThkBGaOIQ
120
15
75
30.334733
-81.667668
105.049774
9.13542
S8tLx0EG29ZlfThkBGaOIQ
240
15
75
30.334733
-81.667668
105.049774
9.13542
S8tLx0EG29ZlfThkBGaOIQ
300
15
75
30.334709
-81.667562
104.322144
9.105482
p3RDMMt6HADBwPS9LLll7Q
60
15
75
30.334709
-81.667562
104.322144
9.105482
p3RDMMt6HADBwPS9LLll7Q
120
15
75
30.334709
-81.667562
104.322144
9.105482
p3RDMMt6HADBwPS9LLll7Q
240
15
75
30.334709
-81.667562
104.322144
9.105482
p3RDMMt6HADBwPS9LLll7Q
300
15
75
30.334755
-81.667944
97.500938
8.898569
s0Sv1E2dvEPfV3bPq-9QyQ
60
15
75
30.334755
-81.667944
97.500938
8.898569
s0Sv1E2dvEPfV3bPq-9QyQ
120
15
75
30.334755
-81.667944
97.500938
8.898569
s0Sv1E2dvEPfV3bPq-9QyQ
240
15
75
30.334755
-81.667944
97.500938
8.898569
s0Sv1E2dvEPfV3bPq-9QyQ
300
15
75
30.334148
-81.668486
12.356924
9.084014
mMt4k8U-0yV1L8seCbW5FQ
60
15
75
30.334148
-81.668486
12.356924
9.084014
mMt4k8U-0yV1L8seCbW5FQ
120
15
75
30.334148
-81.668486
12.356924
9.084014
mMt4k8U-0yV1L8seCbW5FQ
240
15
75
30.334148
-81.668486
12.356924
9.084014
mMt4k8U-0yV1L8seCbW5FQ
300
15
75
30.334241
-81.668461
12.580074
8.994805
b4s9Qz7nheBHc1oZdFdh9g
60
15
75
30.334241
-81.668461
12.580074
8.994805
b4s9Qz7nheBHc1oZdFdh9g
120
15
75
30.334241
-81.668461
12.580074
8.994805
b4s9Qz7nheBHc1oZdFdh9g
240
15
75
30.334241
-81.668461
12.580074
8.994805
b4s9Qz7nheBHc1oZdFdh9g
300
15
75
30.33433
-81.668438
12.946828
8.923968
2d6nEtB-KTR3aWyRufyRPw
60
15
75
30.33433
-81.668438
12.946828
8.923968
2d6nEtB-KTR3aWyRufyRPw
120
15
75
30.33433
-81.668438
12.946828
8.923968
2d6nEtB-KTR3aWyRufyRPw
240
15
75
30.33433
-81.668438
12.946828
8.923968
2d6nEtB-KTR3aWyRufyRPw
300
15
75
30.334418
-81.668414
14.564838
8.849733
nVgLe2V-0-sAytjsPL8ivQ
60
15
75
30.334418
-81.668414
14.564838
8.849733
nVgLe2V-0-sAytjsPL8ivQ
120
15
75
30.334418
-81.668414
14.564838
8.849733
nVgLe2V-0-sAytjsPL8ivQ
240
15
75
30.334418
-81.668414
14.564838
8.849733
nVgLe2V-0-sAytjsPL8ivQ
300
15
75
30.33558
-81.668197
101.809647
9.651047
QaR5AF929a8sbUSFdbG1Sw
60
15
75
30.33558
-81.668197
101.809647
9.651047
QaR5AF929a8sbUSFdbG1Sw
120
15
75
30.33558
-81.668197
101.809647
9.651047
QaR5AF929a8sbUSFdbG1Sw
240
15
75
30.33558
-81.668197
101.809647
9.651047
QaR5AF929a8sbUSFdbG1Sw
300
15
75
30.335744
-81.668454
311.739777
9.699336
EHV2bjlkqT9zAPHOzSUVWg
60
15
75
30.335744
-81.668454
311.739777
9.699336
EHV2bjlkqT9zAPHOzSUVWg
120
15
75
30.335744
-81.668454
311.739777
9.699336
EHV2bjlkqT9zAPHOzSUVWg
240
15
75
30.335744
-81.668454
311.739777
9.699336
EHV2bjlkqT9zAPHOzSUVWg
300
15
75
30.335687
-81.668375
306.591522
9.693312
g1KprChL4XWnFQ8r0ujjOQ
60
15
75
30.335687
-81.668375
306.591522
9.693312
g1KprChL4XWnFQ8r0ujjOQ
120
15
75
30.335687
-81.668375
306.591522
9.693312
g1KprChL4XWnFQ8r0ujjOQ
240
15
75
30.335687
-81.668375
306.591522
9.693312
g1KprChL4XWnFQ8r0ujjOQ
300
15
75
30.335606
-81.668297
108.169281
9.674384
NnyYYkkCms7087lKStqYog
60
15
75
30.335606
-81.668297
108.169281
9.674384
NnyYYkkCms7087lKStqYog
120
15
75
30.335606
-81.668297
108.169281
9.674384
NnyYYkkCms7087lKStqYog
240
15
75
30.335606
-81.668297
108.169281
9.674384
NnyYYkkCms7087lKStqYog
300
15
75
30.335458
-81.668191
308.971436
9.392718
Sm3DvVuR9paN_ZFLcQafNQ
60
15
75
30.335458
-81.668191
308.971436
9.392718
Sm3DvVuR9paN_ZFLcQafNQ
120
15
75
30.335458
-81.668191
308.971436
9.392718
Sm3DvVuR9paN_ZFLcQafNQ
240
15
75
30.335458
-81.668191
308.971436
9.392718
Sm3DvVuR9paN_ZFLcQafNQ
300
15
75
End of preview. Expand in Data Studio

Satellite to GroundScape - Large-scale Consistent Ground View Generation from Satellite Views

๐ŸŒ Homepage | ๐Ÿ“– arXiv

Introduction

Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.

Description

The Sat2GroundScape contains 99,825 pairs of satellite-ground data in perspective format. Including:

  • condition: [256x256x3] satellite rgb texture, rendered from ground-level camera.
  • lat, lon: latitude, longtitude of the ground image.
  • elevation: elevation (meters) of the ground image
  • heading: the heading (degrees) of the ground image in panaroma format.
  • pano_id: used for downloading corresponding GT ground-view image in panaroma format.
  • theta,phi,fov: used for cropping out the perspective image from the panaroma image with theta,phi for cropping center, fov for cropping range.

Downloading Ground-view panaroma image

Each GT ground-view image is associated with a unique ID, pano_id. Please refer to https://github.com/robolyst/streetview for downloading the original ground-view image (512x1024x3).

from streetview import get_streetview
image = get_streetview(
    pano_id="z80QZ1_QgCbYwj7RrmlS0Q",
    api_key=GOOGLE_MAPS_API_KEY,
)
image.save("image.jpg", "jpeg")

Panaroma to Perspective

Given theta, phi, fov, we can crop the perspective image from the panaroma image. Please refer to https://github.com/fuenwang/Equirec2Perspec.

import os
import cv2 
import Equirec2Perspec as E2P 

if __name__ == '__main__':
    equ = E2P.Equirectangular('src/image.jpg')    # Load equirectangular image
    
    #
    # FOV unit is degree 
    # theta is z-axis angle(right direction is positive, left direction is negative)
    # phi is y-axis angle(up direction positive, down direction negative)
    # height and width is output image dimension 
    #
    img = equ.GetPerspective(60, 0, 0, 720, 1080) # Specify parameters(FOV, theta, phi, height, width)

Citation

BibTex:

@article{xu2025satellite,
  title={Satellite to GroundScape--Large-scale Consistent Ground View Generation from Satellite Views},
  author={Xu, Ningli and Qin, Rongjun},
  journal={arXiv preprint arXiv:2504.15786},
  year={2025}
}
Downloads last month
23