File size: 7,711 Bytes
27e526d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
description = """
## Description

### Dataset

A TACO-formatted multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.

This dataset assembles co-registered patches from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM provides a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.

**What each sample contains:**
- **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
- **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
- **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
- **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
- **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.

The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).

### Sensors used

- **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
- **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
- **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
- **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).

### Spectral Bands (S2 MSI)

We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:

| idx | Band | Name                      | Central λ | Nominal Res. | Notes |
|:---:|:----:|---------------------------|:---------:|:------------:|------|
|  0  | B1   | Coastal Aerosol           | 443 nm    | 60 m         | resampled to 10 m |
|  1  | B2   | Blue                      | 492 nm    | 10 m         |        |
|  2  | B3   | Green                     | 560 nm    | 10 m         |        |
|  3  | B4   | Red                       | 665 nm    | 10 m         |        |
|  4  | B5   | Red Edge 1                | 704 nm    | 20 m         | resampled to 10 m |
|  5  | B6   | Red Edge 2                | 740 nm    | 20 m         | resampled to 10 m |
|  6  | B7   | Red Edge 3                | 783 nm    | 20 m         | resampled to 10 m |
|  7  | B8   | NIR (Broad)               | 833 nm    | 10 m         |        |
|  8  | B8A  | NIR (Narrow)              | 865 nm    | 20 m         | resampled to 10 m |
|  9  | B9   | Water Vapour              | 945 nm    | 60 m         | resampled to 10 m |
| 10  | B10  | Cirrus (WV 1375 nm)       | 1375 nm   | 60 m         | optional for ML |
| 11  | B11  | SWIR 1                    | 1610 nm   | 20 m         | resampled to 10 m |
| 12  | B12  | SWIR 2                    | 2200 nm   | 20 m         | resampled to 10 m |
"""

bibtex_1 = """
@article{MajorTOM2024,
  author  = {Francis, Alistair and Czerkawski, Mikolaj},
  title   = {Major TOM: Expandable Datasets for Earth Observation},
  journal = {arXiv preprint arXiv:2402.12095},
  year    = {2024},
  doi     = {10.1109/IGARSS53475.2024.10640760}
}
"""


bibtex_2 = """
@article{czerkawski2024global,
  title   = {Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space},
  author  = {Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J. and others},
  journal = {arXiv preprint arXiv:2412.05600},
  year    = {2024},
  doi     = {10.48550/arXiv.2412.05600}
}
"""

# Create a collection object with metadata for the dataset
collection_object = tacotoolbox.datamodel.Collection(
    id="majortom-core-combo",
    title="Major TOM Core-Combo (TACO)",
    dataset_version="1.0.0",
    description=description,
    licenses=["refer-to-upstream"],
    extent={
        "spatial": [[-180.0, -90.0, 180.0, 90.0]],  # global coverage (land-focused per upstream)
        "temporal": [["2014-01-01T00:00:00Z", "2025-09-09T00:00:00Z"]]
    },
    providers=[
        {
            "name": "ESA Φ-lab / Major TOM (Hugging Face)",
            "roles": ["producer", "publisher"],
            "links": [
                {"href": "https://huggingface.co/Major-TOM", "rel": "source", "type": "text/html"}
            ],
        },
        {
            "name": "TACO Foundation",
            "roles": ["curator"],
            "links": [
                {"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}
            ],
        }
    ],
    keywords=["remote-sensing", "earth-observation", "multimodal", "deep-learning",
              "sentinel-2", "sentinel-1", "dem", "embeddings", "taco"],
    task="multimodal-learning",
    curators=[
        {
            "name": "Julio Contreras",
            "organization": "Image & Signal Processing",
            "email": ["[email protected]"],
            "links": [{"href": "https://juliocontrerash.github.io/", "rel": "homepage", "type": "text/html"}],
        },
        {
            "name": "TACO Foundation",
            "organization": "TACO",
            "links": [{"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}],
        }
    ],
    split_strategy="all-train",
    discuss_link={
        "href": "https://huggingface.co/Major-TOM",
        "rel": "discussion",
        "type": "text/html"
    },
    raw_link={
        "href": "https://huggingface.co/Major-TOM",
        "rel": "source",
        "type": "text/html"
    },
    # Optional domain-specific metadata (mirrors your README sections)
    optical_data={"sensor": "sentinel2msi"},
    radar_data={"sensor": "sentinel1-rtc"},
    elevation_data={"sensor": "cop-dem30"},
    embeddings={
        "families": ["SSL4EO", "DINOv2", "SigLIP", "DeCUR", "MMEarth", "AlphaEarth"],
        "storage": "per-patch vectors (Parquet/NPY sidecars)"
    },
    taco_spec={
        "grid": "Major TOM global grid",
        "patch_size_px": [512, 512],
        "resolution_m": 10,
        "spatial_extent_m": [5160, 5160],
        "assets": {
            "S2_L2A": "GeoTIFF, 13 bands (B1–B12 incl. B10) @10m",
            "S1_RTC": "GeoTIFF, 2–3 bands (VV, VH, optional angle) @10m",
            "DEM":    "GeoTIFF, 1–3 bands (elevation, optional slope/aspect) @10m",
            "EMB":    "Optional per-patch embeddings (Parquet/NPY)"
        }
    },
    labels={
        "label_classes": [],
        "label_description": "No labeled classes. Designed for representation learning and multimodal tasks."
    },
    scientific={
        "doi": "to-be-assigned",
        "citation": "Please cite the Major TOM paper(s) and the IGARSS 2024 proceeding.",
        "summary": "Major TOM Core-Combo reorganizes upstream Major TOM sources (S2/S1/DEM and embeddings) into aligned TACO tortillas for fast, consistent access.",
        "publications": [
            {"doi": "10.48550/arXiv.2402.12095", "citation": bibtex_1, "summary": "arXiv paper introducing the Major TOM framework."},
            {"doi": "10.48550/arXiv.2412.05600", "citation": bibtex_2, "summary": "arXiv on global/dense embeddings aligned to Major TOM grid."}
        ]
    }
)