File size: 12,666 Bytes
27e526d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
license:
  - apache-2.0   # licenses vary per upstream Major TOM datasets (S2/S1/DEM/embeddings)
language:
  - en
tags:
  - remote-sensing
  - earth-observation
  - sentinel-2
  - sentinel-1
  - dem
  - embeddings
  - multimodal
  - deep-learning
  - taco
pretty_name: Major TOM Core-Combo
viewer: false
---

<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 260px; margin: auto; background-color: #f9f9f9;">
  

![Dataset Image](assets/taco.png)

<b><p>This dataset follows the TACO specification.</p></b>

</div>

<br>

# Major TOM Core-Combo (TACO)

![Dataset Image](assets/major_logo.png)

A **TACO-formatted** multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.



## Description

### Dataset

This dataset packages co-registered patches drawn from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM defines a **geographical indexing grid** and a **metadata structure** to merge multi-source EO dataβ€”ideal for large-scale pretraining, representation learning, and multimodal fusion.

**What each sample contains:**
- **S2 L2A (10 m)** β€” 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
- **S1 RTC (10 m)** β€” backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
- **DEM (30 m β†’ 10 m)** β€” Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
- **Embeddings (optional)** β€” one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
- **Metadata** β€” acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.

The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).



### Sensors used

- **Sentinel-2 MSI (L2A/L1C)** β€” optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
- **Sentinel-1 RTC** β€” SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
- **Copernicus DEM 30** β€” global 30 m elevation resampled to 10 m for alignment.
- **Embeddings** β€” model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).


## Creators

- ESA Ξ¦-lab & collaborators


## Original datasets

See the official **Major TOM** organization for coverage, counts and updates:

- **Major TOM organization overview (Hugging Face)**
- **Core datasets**: Core-S2L2A, Core-S2L1C, Core-S1RTC, Core-DEM  
- **Embedding releases**: Core-S2L1C-SSL4EO, Core-S1RTC-SSL4EO, Core-S2RGB-DINOv2, Core-S2RGB-SigLIP, Core-S2L1C-DeCUR, Core-S1RTC-DeCUR, Core-S2L2A-MMEarth, Core-AlphaEarth-Embeddings  
- **Spec & paper**: β€œMajor TOM: Expandable Datasets for Earth Observation” (arXiv) and the IGARSS 2024 citation (see Publications)

> Note: sizes/coverage and licenses are inherited from upstream. Always consult the upstream dataset cards.


## TACO dataset

**Construction**  
- **Grid & tiling**: adopt Major TOM’s global grid; fixed-size **512 Γ— 512 px @ 10 m** (~5.12 km) windows keyed by grid cell.  
- **Temporal pairing**: select closest-in-time S1/S2 acquisitions per cell (configurable), preferring **clear-sky** S2 for optical stacks.  
- **Embeddings**: if enabled, fetch and store per-patch embedding vectors (Parquet/NPY sidecar) indexed by the tortilla.  
- **Lineage metadata**: upstream identifiers/commits, acquisition timestamps, processing levels, and provenance.

**Default patch geometry**  
- **Spatial extent**: 5160 m Γ— 5160 m  
- **S2 tensor (bands)**: 13 (B1–B12 incl. B10) β†’ **512 Γ— 512 Γ— 13**  
- **S1 tensor (VV/VH)**: 2 (plus optional angle) β†’ **512 Γ— 512 Γ— 2–3**  
- **DEM tensor**: 1 (or +slope/aspect) β†’ **512 Γ— 512 Γ— 1–3**  
- **Embeddings**: 1..N vectors stored as sidecars (per-patch, not per-pixel)


### Spectral Bands (S2 MSI)

We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:

| idx | Band | Name                      | Central Ξ» | Nominal Res. | Notes |
|:---:|:----:|---------------------------|:---------:|:------------:|------|
|  0  | B1   | Coastal Aerosol           | 443 nm    | 60 m         | resampled to 10 m |
|  1  | B2   | Blue                      | 492 nm    | 10 m         |        |
|  2  | B3   | Green                     | 560 nm    | 10 m         |        |
|  3  | B4   | Red                       | 665 nm    | 10 m         |        |
|  4  | B5   | Red Edge 1                | 704 nm    | 20 m         | resampled to 10 m |
|  5  | B6   | Red Edge 2                | 740 nm    | 20 m         | resampled to 10 m |
|  6  | B7   | Red Edge 3                | 783 nm    | 20 m         | resampled to 10 m |
|  7  | B8   | NIR (Broad)               | 833 nm    | 10 m         |        |
|  8  | B8A  | NIR (Narrow)              | 865 nm    | 20 m         | resampled to 10 m |
|  9  | B9   | Water Vapour              | 945 nm    | 60 m         | resampled to 10 m |
| 10  | B10  | Cirrus (WV 1375 nm)       | 1375 nm   | 60 m         | optional for ML |
| 11  | B11  | SWIR 1                    | 1610 nm   | 20 m         | resampled to 10 m |
| 12  | B12  | SWIR 2                    | 2200 nm   | 20 m         | resampled to 10 m |

---

## πŸ”„ Reproducible Example

```python
import tacoreader
import rasterio as rio
import numpy as np
import matplotlib.pyplot as plt

# Load the dataset (replace with the final registry name when published)
ds = tacoreader.load("tacofoundation:majortom-core-combo")

# Read a sample
i = 0
row = ds.read(i)
row_id = ds.iloc[i]["tortilla:id"]

s2_path = row.read("S2_L2A")      # GeoTIFF
s1_path = row.read("S1_RTC")      # GeoTIFF
dem_path = row.read("DEM")        # GeoTIFF
# emb_path = row.read("EMB")      # Optional embeddings (Parquet/NPY)

with rio.open(s2_path) as s2, rio.open(s1_path) as s1, rio.open(dem_path) as dem:
    # Simple S2 RGB (B4,B3,B2)
    rgb = np.stack([s2.read(4), s2.read(3), s2.read(2)], axis=0)
    rgb = np.transpose(rgb, (1,2,0))
    rgb_norm = np.clip(rgb / 2000.0, 0, 1)

    vv = s1.read(1)
    dem_elev = dem.read(1)

fig, ax = plt.subplots(1,3, figsize=(13,4.2))
ax[0].imshow(rgb_norm); ax[0].set_title(f"S2 RGB β€” {row_id}"); ax[0].axis("off")
ax[1].imshow(vv);       ax[1].set_title("S1 VV"); ax[1].axis("off")
ax[2].imshow(dem_elev); ax[2].set_title("DEM");   ax[2].axis("off")
plt.tight_layout(); plt.show()
```

<center>
  <img src="assets/majortom_combo_example.png" alt="example" width="100%"/>
</center>

## πŸ›°οΈ Sensor Information

Sources in this dataset: **sentinel2msi**, **sentinel1-rtc**, **cop-dem30**, and **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth).

## 🎯 Tasks

General-purpose: **self-supervised pretraining**, **representation learning**, **multimodal fusion**, **semantic segmentation**, **change detection**, **classification**, **retrieval**.

## πŸ“‚ Original Data Repositories (Upstream)

* Major TOM organization [page](https://huggingface.co/Major-TOM).

## πŸ’¬ Discussion

Use the Major TOM org discussions/Spaces and the **satellite-image-deep-learning Discord** (Major TOM channels) to coordinate contributions and combinations.

## πŸ”€ Split Strategy

All train.

## πŸ“š Scientific Publications

### Publication 01

* **arXiv**: *Major TOM: Expandable Datasets for Earth Observation* (Francis & Czerkawski, 2024).
  **BibTeX**:

```bibtex
@article{MajorTOM2024,
author  = {Francis, Alistair and Czerkawski, Mikolaj},
title   = {Major TOM: Expandable Datasets for Earth Observation},
journal = {arXiv preprint arXiv:2402.12095},
year    = {2024},
doi     = {10.1109/IGARSS53475.2024.10640760}
}
```


### Publication 02

* **arXiv (2024)**: *Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space*.


```bibtex
    @article{czerkawski2024global,
    title={Global and dense embeddings of earth: Major tom floating in the latent space},
    author={Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J{\"A} and others},
    journal={arXiv preprint arXiv:2412.05600},
    year={2024},
    doi= {10.48550/arXiv.2412.05600}
    }
    
```


## 🀝 Data Providers

| **Name**                      | **Role**               | **URL**                                                              |
| :---------------------------- | :--------------------- | :------------------------------------------------------------------- |
| ESA Ξ¦-lab                     | producer / coordinator | [https://philab.esa.int/](https://philab.esa.int/)                   |
| Major TOM (HF)                | publisher (org)        | [https://huggingface.co/Major-TOM](https://huggingface.co/Major-TOM) |
| CloudFerro (embeddings infra) | collaborator           | [https://cloudferro.com/](https://cloudferro.com/)                   |

---

## πŸ§‘β€πŸ”¬ Curators

| **Name**        | **Organization**          | **URL**                                                                                            |
| :-------------- | :------------------------ | :------------------------------------------------------------------------------------------------- |
| Julio Contreras | Image & Signal Processing | [https://juliocontrerash.github.io/](https://juliocontrerash.github.io/)                           |
| TACO Foundation | Curation (TACO format)    | [https://huggingface.co/datasets/tacofoundation/](https://huggingface.co/datasets/tacofoundation/) |

---

## 🎞 Official Image Datasets (from Major TOM)

| Dataset    | Modality            | Number of Patches | Sensing Type          | Comments        |
| ---------- | ------------------- | ----------------- | --------------------- | --------------- |
| Core-S2L2A | Sentinel-2 Level 2A | 2,245,886         | Multi-Spectral        | Global (β‰ˆ23 TB) |
| Core-S2L1C | Sentinel-2 Level 1C | 2,245,886         | Multi-Spectral        | Global (β‰ˆ23 TB) |
| Core-S1RTC | Sentinel-1 RTC      | 1,469,955         | SAR                   | Global (β‰ˆ16 TB) |
| Core-DEM   | Copernicus DEM 30   | 1,837,843         | Digital Surface Model | Global (β‰ˆ1 TB)  |

---

## πŸ“Š Official Embedding Datasets (from Major TOM)

| Dataset                    | Modality             | # Embeddings   | Sensing Type   | Source Dataset | Source Model          | Size     |
| -------------------------- | -------------------- | -------------- | -------------- | -------------- | --------------------- | -------- |
| Core-S2L1C-SSL4EO          | Sentinel-2 Level 1C  | 56,147,150     | Multi-Spectral | Core-S2L1C     | SSL4EO-ResNet50-DINO  | 252.9 GB |
| Core-S1RTC-SSL4EO          | Sentinel-1 RTC       | 36,748,875     | SAR            | Core-S1RTC     | SSL4EO-ResNet50-MOCO  | 332.5 GB |
| Core-S2RGB-DINOv2          | Sentinel-2 L2A (RGB) | 56,147,150     | True Colour    | Core-S2L2A     | DINOv2                | 223.1 GB |
| Core-S2RGB-SigLIP          | Sentinel-2 L2A (RGB) | 20,212,974     | True Colour    | Core-S2L2A     | SigLIP-SO400M-384     | 41.3 GB  |
| Core-S2L1C-DeCUR           | Sentinel-2 Level 1C  | 56,147,150     | Multi-Spectral | Core-S2L1C     | SSL4EO-ResNet50-DeCUR | 252.9 GB |
| Core-S1RTC-DeCUR           | Sentinel-1 RTC       | 36,748,875     | SAR            | Core-S1RTC     | SSL4EO-ResNet50-DeCUR | 332.5 GB |
| Core-S2L2A-MMEarth         | Sentinel-2 L2A (MSI) | 39,727,477,454 | Multi-Spectral | Core-S2L2A     | MMEarth               | 5080 GB  |
| Core-AlphaEarth-Embeddings | Multimodal           | 71,276,453,136 | Multiple       | AlphaEarth     | AlphaEarth            | 6070 GB  |

---


**Key sources for facts & tables:** Major TOM org page with official tables and IGARSS citation (org card), the arXiv paper describing the framework and grid, specific upstream dataset cards (Core-S2L2A / Core-S1RTC / Core-DEM), the AlphaEarth subset card, and ESA Ξ¦-lab’s post on embedding expansions. ([huggingface.co][1], [arxiv.org][2], [philab.esa.int][3])

[1]: https://huggingface.co/Major-TOM "Major-TOM (Major TOM)"
[2]: https://arxiv.org/abs/2402.12095 "Major TOM: Expandable Datasets for Earth Observation"
[3]: https://philab.esa.int/new-ai-powered-insights-with-the-latest-major-tom-embeddings/ "New AI-powered insights with the latest Major TOM embeddings"