Datasets:
File size: 12,666 Bytes
27e526d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
license:
- apache-2.0 # licenses vary per upstream Major TOM datasets (S2/S1/DEM/embeddings)
language:
- en
tags:
- remote-sensing
- earth-observation
- sentinel-2
- sentinel-1
- dem
- embeddings
- multimodal
- deep-learning
- taco
pretty_name: Major TOM Core-Combo
viewer: false
---
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 260px; margin: auto; background-color: #f9f9f9;">

<b><p>This dataset follows the TACO specification.</p></b>
</div>
<br>
# Major TOM Core-Combo (TACO)

A **TACO-formatted** multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
## Description
### Dataset
This dataset packages co-registered patches drawn from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM defines a **geographical indexing grid** and a **metadata structure** to merge multi-source EO dataβideal for large-scale pretraining, representation learning, and multimodal fusion.
**What each sample contains:**
- **S2 L2A (10 m)** β 13 MSI bands (B1βB12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
- **S1 RTC (10 m)** β backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
- **DEM (30 m β 10 m)** β Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
- **Embeddings (optional)** β one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
- **Metadata** β acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
### Sensors used
- **Sentinel-2 MSI (L2A/L1C)** β optical multispectral, 13 bands (443β2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
- **Sentinel-1 RTC** β SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
- **Copernicus DEM 30** β global 30 m elevation resampled to 10 m for alignment.
- **Embeddings** β model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
## Creators
- ESA Ξ¦-lab & collaborators
## Original datasets
See the official **Major TOM** organization for coverage, counts and updates:
- **Major TOM organization overview (Hugging Face)**
- **Core datasets**: Core-S2L2A, Core-S2L1C, Core-S1RTC, Core-DEM
- **Embedding releases**: Core-S2L1C-SSL4EO, Core-S1RTC-SSL4EO, Core-S2RGB-DINOv2, Core-S2RGB-SigLIP, Core-S2L1C-DeCUR, Core-S1RTC-DeCUR, Core-S2L2A-MMEarth, Core-AlphaEarth-Embeddings
- **Spec & paper**: βMajor TOM: Expandable Datasets for Earth Observationβ (arXiv) and the IGARSS 2024 citation (see Publications)
> Note: sizes/coverage and licenses are inherited from upstream. Always consult the upstream dataset cards.
## TACO dataset
**Construction**
- **Grid & tiling**: adopt Major TOMβs global grid; fixed-size **512 Γ 512 px @ 10 m** (~5.12 km) windows keyed by grid cell.
- **Temporal pairing**: select closest-in-time S1/S2 acquisitions per cell (configurable), preferring **clear-sky** S2 for optical stacks.
- **Embeddings**: if enabled, fetch and store per-patch embedding vectors (Parquet/NPY sidecar) indexed by the tortilla.
- **Lineage metadata**: upstream identifiers/commits, acquisition timestamps, processing levels, and provenance.
**Default patch geometry**
- **Spatial extent**: 5160 m Γ 5160 m
- **S2 tensor (bands)**: 13 (B1βB12 incl. B10) β **512 Γ 512 Γ 13**
- **S1 tensor (VV/VH)**: 2 (plus optional angle) β **512 Γ 512 Γ 2β3**
- **DEM tensor**: 1 (or +slope/aspect) β **512 Γ 512 Γ 1β3**
- **Embeddings**: 1..N vectors stored as sidecars (per-patch, not per-pixel)
### Spectral Bands (S2 MSI)
We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
| idx | Band | Name | Central Ξ» | Nominal Res. | Notes |
|:---:|:----:|---------------------------|:---------:|:------------:|------|
| 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
| 1 | B2 | Blue | 492 nm | 10 m | |
| 2 | B3 | Green | 560 nm | 10 m | |
| 3 | B4 | Red | 665 nm | 10 m | |
| 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
| 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
| 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
| 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
| 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
| 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
| 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
| 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
| 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
---
## π Reproducible Example
```python
import tacoreader
import rasterio as rio
import numpy as np
import matplotlib.pyplot as plt
# Load the dataset (replace with the final registry name when published)
ds = tacoreader.load("tacofoundation:majortom-core-combo")
# Read a sample
i = 0
row = ds.read(i)
row_id = ds.iloc[i]["tortilla:id"]
s2_path = row.read("S2_L2A") # GeoTIFF
s1_path = row.read("S1_RTC") # GeoTIFF
dem_path = row.read("DEM") # GeoTIFF
# emb_path = row.read("EMB") # Optional embeddings (Parquet/NPY)
with rio.open(s2_path) as s2, rio.open(s1_path) as s1, rio.open(dem_path) as dem:
# Simple S2 RGB (B4,B3,B2)
rgb = np.stack([s2.read(4), s2.read(3), s2.read(2)], axis=0)
rgb = np.transpose(rgb, (1,2,0))
rgb_norm = np.clip(rgb / 2000.0, 0, 1)
vv = s1.read(1)
dem_elev = dem.read(1)
fig, ax = plt.subplots(1,3, figsize=(13,4.2))
ax[0].imshow(rgb_norm); ax[0].set_title(f"S2 RGB β {row_id}"); ax[0].axis("off")
ax[1].imshow(vv); ax[1].set_title("S1 VV"); ax[1].axis("off")
ax[2].imshow(dem_elev); ax[2].set_title("DEM"); ax[2].axis("off")
plt.tight_layout(); plt.show()
```
<center>
<img src="assets/majortom_combo_example.png" alt="example" width="100%"/>
</center>
## π°οΈ Sensor Information
Sources in this dataset: **sentinel2msi**, **sentinel1-rtc**, **cop-dem30**, and **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth).
## π― Tasks
General-purpose: **self-supervised pretraining**, **representation learning**, **multimodal fusion**, **semantic segmentation**, **change detection**, **classification**, **retrieval**.
## π Original Data Repositories (Upstream)
* Major TOM organization [page](https://huggingface.co/Major-TOM).
## π¬ Discussion
Use the Major TOM org discussions/Spaces and the **satellite-image-deep-learning Discord** (Major TOM channels) to coordinate contributions and combinations.
## π Split Strategy
All train.
## π Scientific Publications
### Publication 01
* **arXiv**: *Major TOM: Expandable Datasets for Earth Observation* (Francis & Czerkawski, 2024).
**BibTeX**:
```bibtex
@article{MajorTOM2024,
author = {Francis, Alistair and Czerkawski, Mikolaj},
title = {Major TOM: Expandable Datasets for Earth Observation},
journal = {arXiv preprint arXiv:2402.12095},
year = {2024},
doi = {10.1109/IGARSS53475.2024.10640760}
}
```
### Publication 02
* **arXiv (2024)**: *Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space*.
```bibtex
@article{czerkawski2024global,
title={Global and dense embeddings of earth: Major tom floating in the latent space},
author={Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J{\"A} and others},
journal={arXiv preprint arXiv:2412.05600},
year={2024},
doi= {10.48550/arXiv.2412.05600}
}
```
## π€ Data Providers
| **Name** | **Role** | **URL** |
| :---------------------------- | :--------------------- | :------------------------------------------------------------------- |
| ESA Ξ¦-lab | producer / coordinator | [https://philab.esa.int/](https://philab.esa.int/) |
| Major TOM (HF) | publisher (org) | [https://huggingface.co/Major-TOM](https://huggingface.co/Major-TOM) |
| CloudFerro (embeddings infra) | collaborator | [https://cloudferro.com/](https://cloudferro.com/) |
---
## π§βπ¬ Curators
| **Name** | **Organization** | **URL** |
| :-------------- | :------------------------ | :------------------------------------------------------------------------------------------------- |
| Julio Contreras | Image & Signal Processing | [https://juliocontrerash.github.io/](https://juliocontrerash.github.io/) |
| TACO Foundation | Curation (TACO format) | [https://huggingface.co/datasets/tacofoundation/](https://huggingface.co/datasets/tacofoundation/) |
---
## π Official Image Datasets (from Major TOM)
| Dataset | Modality | Number of Patches | Sensing Type | Comments |
| ---------- | ------------------- | ----------------- | --------------------- | --------------- |
| Core-S2L2A | Sentinel-2 Level 2A | 2,245,886 | Multi-Spectral | Global (β23 TB) |
| Core-S2L1C | Sentinel-2 Level 1C | 2,245,886 | Multi-Spectral | Global (β23 TB) |
| Core-S1RTC | Sentinel-1 RTC | 1,469,955 | SAR | Global (β16 TB) |
| Core-DEM | Copernicus DEM 30 | 1,837,843 | Digital Surface Model | Global (β1 TB) |
---
## π Official Embedding Datasets (from Major TOM)
| Dataset | Modality | # Embeddings | Sensing Type | Source Dataset | Source Model | Size |
| -------------------------- | -------------------- | -------------- | -------------- | -------------- | --------------------- | -------- |
| Core-S2L1C-SSL4EO | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DINO | 252.9 GB |
| Core-S1RTC-SSL4EO | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-MOCO | 332.5 GB |
| Core-S2RGB-DINOv2 | Sentinel-2 L2A (RGB) | 56,147,150 | True Colour | Core-S2L2A | DINOv2 | 223.1 GB |
| Core-S2RGB-SigLIP | Sentinel-2 L2A (RGB) | 20,212,974 | True Colour | Core-S2L2A | SigLIP-SO400M-384 | 41.3 GB |
| Core-S2L1C-DeCUR | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DeCUR | 252.9 GB |
| Core-S1RTC-DeCUR | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-DeCUR | 332.5 GB |
| Core-S2L2A-MMEarth | Sentinel-2 L2A (MSI) | 39,727,477,454 | Multi-Spectral | Core-S2L2A | MMEarth | 5080 GB |
| Core-AlphaEarth-Embeddings | Multimodal | 71,276,453,136 | Multiple | AlphaEarth | AlphaEarth | 6070 GB |
---
**Key sources for facts & tables:** Major TOM org page with official tables and IGARSS citation (org card), the arXiv paper describing the framework and grid, specific upstream dataset cards (Core-S2L2A / Core-S1RTC / Core-DEM), the AlphaEarth subset card, and ESA Ξ¦-labβs post on embedding expansions. ([huggingface.co][1], [arxiv.org][2], [philab.esa.int][3])
[1]: https://huggingface.co/Major-TOM "Major-TOM (Major TOM)"
[2]: https://arxiv.org/abs/2402.12095 "Major TOM: Expandable Datasets for Earth Observation"
[3]: https://philab.esa.int/new-ai-powered-insights-with-the-latest-major-tom-embeddings/ "New AI-powered insights with the latest Major TOM embeddings"
|