Major-TOM-TACO / collection.py
JulioContrerasH's picture
Upload: Complete folder into assets directory
27e526d verified
description = """
## Description
### Dataset
A TACO-formatted multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
This dataset assembles co-registered patches from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM provides a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.
**What each sample contains:**
- **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
- **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
- **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
- **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
- **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
### Sensors used
- **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
- **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
- **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
- **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
### Spectral Bands (S2 MSI)
We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
| idx | Band | Name | Central λ | Nominal Res. | Notes |
|:---:|:----:|---------------------------|:---------:|:------------:|------|
| 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
| 1 | B2 | Blue | 492 nm | 10 m | |
| 2 | B3 | Green | 560 nm | 10 m | |
| 3 | B4 | Red | 665 nm | 10 m | |
| 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
| 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
| 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
| 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
| 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
| 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
| 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
| 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
| 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
"""
bibtex_1 = """
@article{MajorTOM2024,
author = {Francis, Alistair and Czerkawski, Mikolaj},
title = {Major TOM: Expandable Datasets for Earth Observation},
journal = {arXiv preprint arXiv:2402.12095},
year = {2024},
doi = {10.1109/IGARSS53475.2024.10640760}
}
"""
bibtex_2 = """
@article{czerkawski2024global,
title = {Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space},
author = {Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J. and others},
journal = {arXiv preprint arXiv:2412.05600},
year = {2024},
doi = {10.48550/arXiv.2412.05600}
}
"""
# Create a collection object with metadata for the dataset
collection_object = tacotoolbox.datamodel.Collection(
id="majortom-core-combo",
title="Major TOM Core-Combo (TACO)",
dataset_version="1.0.0",
description=description,
licenses=["refer-to-upstream"],
extent={
"spatial": [[-180.0, -90.0, 180.0, 90.0]], # global coverage (land-focused per upstream)
"temporal": [["2014-01-01T00:00:00Z", "2025-09-09T00:00:00Z"]]
},
providers=[
{
"name": "ESA Φ-lab / Major TOM (Hugging Face)",
"roles": ["producer", "publisher"],
"links": [
{"href": "https://huggingface.co/Major-TOM", "rel": "source", "type": "text/html"}
],
},
{
"name": "TACO Foundation",
"roles": ["curator"],
"links": [
{"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}
],
}
],
keywords=["remote-sensing", "earth-observation", "multimodal", "deep-learning",
"sentinel-2", "sentinel-1", "dem", "embeddings", "taco"],
task="multimodal-learning",
curators=[
{
"name": "Julio Contreras",
"organization": "Image & Signal Processing",
"email": ["[email protected]"],
"links": [{"href": "https://juliocontrerash.github.io/", "rel": "homepage", "type": "text/html"}],
},
{
"name": "TACO Foundation",
"organization": "TACO",
"links": [{"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}],
}
],
split_strategy="all-train",
discuss_link={
"href": "https://huggingface.co/Major-TOM",
"rel": "discussion",
"type": "text/html"
},
raw_link={
"href": "https://huggingface.co/Major-TOM",
"rel": "source",
"type": "text/html"
},
# Optional domain-specific metadata (mirrors your README sections)
optical_data={"sensor": "sentinel2msi"},
radar_data={"sensor": "sentinel1-rtc"},
elevation_data={"sensor": "cop-dem30"},
embeddings={
"families": ["SSL4EO", "DINOv2", "SigLIP", "DeCUR", "MMEarth", "AlphaEarth"],
"storage": "per-patch vectors (Parquet/NPY sidecars)"
},
taco_spec={
"grid": "Major TOM global grid",
"patch_size_px": [512, 512],
"resolution_m": 10,
"spatial_extent_m": [5160, 5160],
"assets": {
"S2_L2A": "GeoTIFF, 13 bands (B1–B12 incl. B10) @10m",
"S1_RTC": "GeoTIFF, 2–3 bands (VV, VH, optional angle) @10m",
"DEM": "GeoTIFF, 1–3 bands (elevation, optional slope/aspect) @10m",
"EMB": "Optional per-patch embeddings (Parquet/NPY)"
}
},
labels={
"label_classes": [],
"label_description": "No labeled classes. Designed for representation learning and multimodal tasks."
},
scientific={
"doi": "to-be-assigned",
"citation": "Please cite the Major TOM paper(s) and the IGARSS 2024 proceeding.",
"summary": "Major TOM Core-Combo reorganizes upstream Major TOM sources (S2/S1/DEM and embeddings) into aligned TACO tortillas for fast, consistent access.",
"publications": [
{"doi": "10.48550/arXiv.2402.12095", "citation": bibtex_1, "summary": "arXiv paper introducing the Major TOM framework."},
{"doi": "10.48550/arXiv.2412.05600", "citation": bibtex_2, "summary": "arXiv on global/dense embeddings aligned to Major TOM grid."}
]
}
)