Dataset Viewer (First 5GB)
Auto-converted to Parquet
image
imagewidth (px)
32
4.75k
class_id
stringclasses
44 values
split
stringclasses
1 value
filename
stringlengths
16
21
n03207941
train
n03207941_22267.JPEG
n03207941
train
n03207941_11165.JPEG
n03207941
train
n03207941_14766.JPEG
n03207941
train
n03207941_3211.JPEG
n03207941
train
n03207941_1951.JPEG
n03207941
train
n03207941_12026.JPEG
n03207941
train
n03207941_3164.JPEG
n03207941
train
n03207941_436.JPEG
n03207941
train
n03207941_8790.JPEG
n03207941
train
n03207941_3739.JPEG
n03207941
train
n03207941_13371.JPEG
n03207941
train
n03207941_5739.JPEG
n03207941
train
n03207941_5772.JPEG
n03207941
train
n03207941_8443.JPEG
n03207941
train
n03207941_16769.JPEG
n03207941
train
n03207941_19.JPEG
n03207941
train
n03207941_5528.JPEG
n03207941
train
n03207941_20009.JPEG
n03207941
train
n03207941_11230.JPEG
n03207941
train
n03207941_11900.JPEG
n03207941
train
n03207941_9261.JPEG
n03207941
train
n03207941_14566.JPEG
n03207941
train
n03207941_12188.JPEG
n03207941
train
n03207941_17677.JPEG
n03207941
train
n03207941_7616.JPEG
n03207941
train
n03207941_29215.JPEG
n03207941
train
n03207941_11062.JPEG
n03207941
train
n03207941_27416.JPEG
n03207941
train
n03207941_7706.JPEG
n03207941
train
n03207941_10900.JPEG
n03207941
train
n03207941_10359.JPEG
n03207941
train
n03207941_4740.JPEG
n03207941
train
n03207941_6523.JPEG
n03207941
train
n03207941_7951.JPEG
n03207941
train
n03207941_14463.JPEG
n03207941
train
n03207941_4244.JPEG
n03207941
train
n03207941_12822.JPEG
n03207941
train
n03207941_1958.JPEG
n03207941
train
n03207941_946.JPEG
n03207941
train
n03207941_11509.JPEG
n03207941
train
n03207941_9256.JPEG
n03207941
train
n03207941_21299.JPEG
n03207941
train
n03207941_22756.JPEG
n03207941
train
n03207941_26635.JPEG
n03207941
train
n03207941_2781.JPEG
n03207941
train
n03207941_8664.JPEG
n03207941
train
n03207941_4362.JPEG
n03207941
train
n03207941_25587.JPEG
n03207941
train
n03207941_9757.JPEG
n03207941
train
n03207941_9733.JPEG
n03207941
train
n03207941_17094.JPEG
n03207941
train
n03207941_11325.JPEG
n03207941
train
n03207941_283.JPEG
n03207941
train
n03207941_12060.JPEG
n03207941
train
n03207941_8465.JPEG
n03207941
train
n03207941_16800.JPEG
n03207941
train
n03207941_1673.JPEG
n03207941
train
n03207941_19093.JPEG
n03207941
train
n03207941_10809.JPEG
n03207941
train
n03207941_4698.JPEG
n03207941
train
n03207941_8561.JPEG
n03207941
train
n03207941_8061.JPEG
n03207941
train
n03207941_13497.JPEG
n03207941
train
n03207941_8944.JPEG
n03207941
train
n03207941_3032.JPEG
n03207941
train
n03207941_9487.JPEG
n03207941
train
n03207941_11472.JPEG
n03207941
train
n03207941_13706.JPEG
n03207941
train
n03207941_13081.JPEG
n03207941
train
n03207941_13130.JPEG
n03207941
train
n03207941_556.JPEG
n03207941
train
n03207941_1846.JPEG
n03207941
train
n03207941_22748.JPEG
n03207941
train
n03207941_12140.JPEG
n03207941
train
n03207941_11279.JPEG
n03207941
train
n03207941_14851.JPEG
n03207941
train
n03207941_4537.JPEG
n03207941
train
n03207941_3232.JPEG
n03207941
train
n03207941_11420.JPEG
n03207941
train
n03207941_3165.JPEG
n03207941
train
n03207941_10601.JPEG
n03207941
train
n03207941_15252.JPEG
n03207941
train
n03207941_18583.JPEG
n03207941
train
n03207941_15142.JPEG
n03207941
train
n03207941_21218.JPEG
n03207941
train
n03207941_3777.JPEG
n03207941
train
n03207941_13984.JPEG
n03207941
train
n03207941_10442.JPEG
n03207941
train
n03207941_17586.JPEG
n03207941
train
n03207941_1586.JPEG
n03207941
train
n03207941_10278.JPEG
n03207941
train
n03207941_7094.JPEG
n03207941
train
n03207941_4067.JPEG
n03207941
train
n03207941_1232.JPEG
n03207941
train
n03207941_14354.JPEG
n03207941
train
n03207941_23608.JPEG
n03207941
train
n03207941_4266.JPEG
n03207941
train
n03207941_21430.JPEG
n03207941
train
n03207941_26294.JPEG
n03207941
train
n03207941_485.JPEG
End of preview. Expand in Data Studio

Corruption Dataset: Brightness

Dataset Description

This dataset contains corrupted versions of ImageNet-1K images using brightness corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions.

Dataset Structure

  • Train: 1,281,167 corrupted images
  • Validation: 50,000 corrupted images
  • Classes: 1000 ImageNet-1K classes
  • Format: Arrow (Hugging Face Datasets)

Corruption Type: Brightness

Adjusts image brightness levels, simulating different lighting conditions.

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("marcin-osial/corruption-brightness")

# Access train and validation splits
train_dataset = dataset["train"]
val_dataset = dataset["validation"]

# Example usage
for example in train_dataset:
    image = example["image"]
    class_id = example["class_id"]
    filename = example["filename"]

Dataset Statistics

  • Total Images: 1,331,167
  • Train Images: 1,281,167
  • Validation Images: 50,000
  • Classes: 1000
  • Image Format: RGB
  • Average Image Size: Variable (ImageNet-1K standard)

Citation

If you use this dataset, please cite the original ImageNet-C paper:

@article{hendrycks2019benchmarking,
  title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
  author={Hendrycks, Dan and Dietterich, Tom},
  journal={Proceedings of the International Conference on Learning Representations},
  year={2019}
}

License

This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms.

Contact

For questions or issues, please contact: marcin.osial@[your-institution].edu

Downloads last month
23