Datasets:
Dataset Viewer (First 5GB)
image
imagewidth (px) 32
4.75k
| class_id
stringclasses 44
values | split
stringclasses 1
value | filename
stringlengths 16
21
|
|---|---|---|---|
n03207941
|
train
|
n03207941_22267.JPEG
|
|
n03207941
|
train
|
n03207941_11165.JPEG
|
|
n03207941
|
train
|
n03207941_14766.JPEG
|
|
n03207941
|
train
|
n03207941_3211.JPEG
|
|
n03207941
|
train
|
n03207941_1951.JPEG
|
|
n03207941
|
train
|
n03207941_12026.JPEG
|
|
n03207941
|
train
|
n03207941_3164.JPEG
|
|
n03207941
|
train
|
n03207941_436.JPEG
|
|
n03207941
|
train
|
n03207941_8790.JPEG
|
|
n03207941
|
train
|
n03207941_3739.JPEG
|
|
n03207941
|
train
|
n03207941_13371.JPEG
|
|
n03207941
|
train
|
n03207941_5739.JPEG
|
|
n03207941
|
train
|
n03207941_5772.JPEG
|
|
n03207941
|
train
|
n03207941_8443.JPEG
|
|
n03207941
|
train
|
n03207941_16769.JPEG
|
|
n03207941
|
train
|
n03207941_19.JPEG
|
|
n03207941
|
train
|
n03207941_5528.JPEG
|
|
n03207941
|
train
|
n03207941_20009.JPEG
|
|
n03207941
|
train
|
n03207941_11230.JPEG
|
|
n03207941
|
train
|
n03207941_11900.JPEG
|
|
n03207941
|
train
|
n03207941_9261.JPEG
|
|
n03207941
|
train
|
n03207941_14566.JPEG
|
|
n03207941
|
train
|
n03207941_12188.JPEG
|
|
n03207941
|
train
|
n03207941_17677.JPEG
|
|
n03207941
|
train
|
n03207941_7616.JPEG
|
|
n03207941
|
train
|
n03207941_29215.JPEG
|
|
n03207941
|
train
|
n03207941_11062.JPEG
|
|
n03207941
|
train
|
n03207941_27416.JPEG
|
|
n03207941
|
train
|
n03207941_7706.JPEG
|
|
n03207941
|
train
|
n03207941_10900.JPEG
|
|
n03207941
|
train
|
n03207941_10359.JPEG
|
|
n03207941
|
train
|
n03207941_4740.JPEG
|
|
n03207941
|
train
|
n03207941_6523.JPEG
|
|
n03207941
|
train
|
n03207941_7951.JPEG
|
|
n03207941
|
train
|
n03207941_14463.JPEG
|
|
n03207941
|
train
|
n03207941_4244.JPEG
|
|
n03207941
|
train
|
n03207941_12822.JPEG
|
|
n03207941
|
train
|
n03207941_1958.JPEG
|
|
n03207941
|
train
|
n03207941_946.JPEG
|
|
n03207941
|
train
|
n03207941_11509.JPEG
|
|
n03207941
|
train
|
n03207941_9256.JPEG
|
|
n03207941
|
train
|
n03207941_21299.JPEG
|
|
n03207941
|
train
|
n03207941_22756.JPEG
|
|
n03207941
|
train
|
n03207941_26635.JPEG
|
|
n03207941
|
train
|
n03207941_2781.JPEG
|
|
n03207941
|
train
|
n03207941_8664.JPEG
|
|
n03207941
|
train
|
n03207941_4362.JPEG
|
|
n03207941
|
train
|
n03207941_25587.JPEG
|
|
n03207941
|
train
|
n03207941_9757.JPEG
|
|
n03207941
|
train
|
n03207941_9733.JPEG
|
|
n03207941
|
train
|
n03207941_17094.JPEG
|
|
n03207941
|
train
|
n03207941_11325.JPEG
|
|
n03207941
|
train
|
n03207941_283.JPEG
|
|
n03207941
|
train
|
n03207941_12060.JPEG
|
|
n03207941
|
train
|
n03207941_8465.JPEG
|
|
n03207941
|
train
|
n03207941_16800.JPEG
|
|
n03207941
|
train
|
n03207941_1673.JPEG
|
|
n03207941
|
train
|
n03207941_19093.JPEG
|
|
n03207941
|
train
|
n03207941_10809.JPEG
|
|
n03207941
|
train
|
n03207941_4698.JPEG
|
|
n03207941
|
train
|
n03207941_8561.JPEG
|
|
n03207941
|
train
|
n03207941_8061.JPEG
|
|
n03207941
|
train
|
n03207941_13497.JPEG
|
|
n03207941
|
train
|
n03207941_8944.JPEG
|
|
n03207941
|
train
|
n03207941_3032.JPEG
|
|
n03207941
|
train
|
n03207941_9487.JPEG
|
|
n03207941
|
train
|
n03207941_11472.JPEG
|
|
n03207941
|
train
|
n03207941_13706.JPEG
|
|
n03207941
|
train
|
n03207941_13081.JPEG
|
|
n03207941
|
train
|
n03207941_13130.JPEG
|
|
n03207941
|
train
|
n03207941_556.JPEG
|
|
n03207941
|
train
|
n03207941_1846.JPEG
|
|
n03207941
|
train
|
n03207941_22748.JPEG
|
|
n03207941
|
train
|
n03207941_12140.JPEG
|
|
n03207941
|
train
|
n03207941_11279.JPEG
|
|
n03207941
|
train
|
n03207941_14851.JPEG
|
|
n03207941
|
train
|
n03207941_4537.JPEG
|
|
n03207941
|
train
|
n03207941_3232.JPEG
|
|
n03207941
|
train
|
n03207941_11420.JPEG
|
|
n03207941
|
train
|
n03207941_3165.JPEG
|
|
n03207941
|
train
|
n03207941_10601.JPEG
|
|
n03207941
|
train
|
n03207941_15252.JPEG
|
|
n03207941
|
train
|
n03207941_18583.JPEG
|
|
n03207941
|
train
|
n03207941_15142.JPEG
|
|
n03207941
|
train
|
n03207941_21218.JPEG
|
|
n03207941
|
train
|
n03207941_3777.JPEG
|
|
n03207941
|
train
|
n03207941_13984.JPEG
|
|
n03207941
|
train
|
n03207941_10442.JPEG
|
|
n03207941
|
train
|
n03207941_17586.JPEG
|
|
n03207941
|
train
|
n03207941_1586.JPEG
|
|
n03207941
|
train
|
n03207941_10278.JPEG
|
|
n03207941
|
train
|
n03207941_7094.JPEG
|
|
n03207941
|
train
|
n03207941_4067.JPEG
|
|
n03207941
|
train
|
n03207941_1232.JPEG
|
|
n03207941
|
train
|
n03207941_14354.JPEG
|
|
n03207941
|
train
|
n03207941_23608.JPEG
|
|
n03207941
|
train
|
n03207941_4266.JPEG
|
|
n03207941
|
train
|
n03207941_21430.JPEG
|
|
n03207941
|
train
|
n03207941_26294.JPEG
|
|
n03207941
|
train
|
n03207941_485.JPEG
|
End of preview. Expand
in Data Studio
Corruption Dataset: Brightness
Dataset Description
This dataset contains corrupted versions of ImageNet-1K images using brightness corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions.
Dataset Structure
- Train: 1,281,167 corrupted images
- Validation: 50,000 corrupted images
- Classes: 1000 ImageNet-1K classes
- Format: Arrow (Hugging Face Datasets)
Corruption Type: Brightness
Adjusts image brightness levels, simulating different lighting conditions.
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("marcin-osial/corruption-brightness")
# Access train and validation splits
train_dataset = dataset["train"]
val_dataset = dataset["validation"]
# Example usage
for example in train_dataset:
image = example["image"]
class_id = example["class_id"]
filename = example["filename"]
Dataset Statistics
- Total Images: 1,331,167
- Train Images: 1,281,167
- Validation Images: 50,000
- Classes: 1000
- Image Format: RGB
- Average Image Size: Variable (ImageNet-1K standard)
Citation
If you use this dataset, please cite the original ImageNet-C paper:
@article{hendrycks2019benchmarking,
title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
author={Hendrycks, Dan and Dietterich, Tom},
journal={Proceedings of the International Conference on Learning Representations},
year={2019}
}
License
This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms.
Contact
For questions or issues, please contact: marcin.osial@[your-institution].edu
- Downloads last month
- 23