Datasets:
license: cc0-1.0
tags:
- security
- cybersecurity
- cve
- cisa
- kev
- nvd
- parquet
- rag
- public-domain
pretty_name: CVE-KEV Snapshot (2025-10-29)
viewer: true
configs:
- config_name: preview
data_files:
- split: train
path: parquet/preview.parquet
- config_name: cve
data_files:
- split: train
path: parquet/cve.parquet
- config_name: nvd_meta
data_files:
- split: train
path: parquet/nvd_meta.parquet
- config_name: kev
data_files:
- split: train
path: parquet/kev.parquet
- config_name: edges
data_files:
- split: train
path: parquet/edges.parquet
- config_name: rag_meta
data_files:
- split: train
path: rag/meta.parquet
- config_name: rag_mapping
data_files:
- split: train
path: rag/mapping.parquet
CVE-KEV Snapshot (one-time, offline bundle)
This bundle lets you rank likely exploited CVEs and cite official sources without any APIs or accounts, fully offline. It’s a one-time snapshot of the last 90 days of NVD, aligned with CISA KEV for immediate focus on likely exploited CVEs. Query-ready Parquet tables and an optional small RAG pack let you rank by severity, pivot by CWE, and fetch references for briefings. Every row includes provenance; validation metrics and an integrity manifest are included. The compiled dataset is dedicated to the public domain (CC0).
Quick start (60 seconds)
- Open
demo/OVX_quickstart.html(no network) ordemo/OVX_quickstart.ipynb. - Or run this DuckDB query for top KEV CVEs by severity:
SELECT c.cve_id, m.cvss_v3_score, k.date_added
FROM read_parquet('parquet/kev.parquet') k
JOIN read_parquet('parquet/cve.parquet') c USING (cve_id)
LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id)
ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC
LIMIT 20;
Snapshot as of (UTC): 2025-10-29T13:51:37Z NVD window (days): 90
Accuracy at a glance
- Total CVE rows: 12307
- Total KEV rows: 28
- Artifacts: Validation Report · Integrity Check · Build Manifest
- KEV is window‑aligned; within‑window coverage = 1.0 by design. See
docs/VALIDATION.jsonforkev_rows_total_fetched,kev_rows_within_window,kev_rows_filtered_out, andkev_within_window_over_global_ratio.
- KEV is window‑aligned; within‑window coverage = 1.0 by design. See
What this is
A single, immutable dataset combining:
- CVE records (IDs, summaries) with CVSS and CWE from NVD (public domain)
- KEV flags from CISA (CC0)
- Provenance on every row and edge (source, source_url, retrieved_at, source_record_hash)
- A tiny RAG pack (embeddings + FAISS index) built only from PD/CC0 text
Who this is for
- Security ML teams: feature prototyping (KEV=true, CVSS, CWE signals)
- RAG/QA prototypers: grounded retrieval with official citations
- Analysts: local, verifiable artifact (no APIs/accounts)
What you can do quickly (offline)
- Rank KEV CVEs by severity; pivot by CWE categories
- Retrieve references for a CVE (official NVD/KEV links)
- Trial RAG with a tiny index (if the embedding model is cached locally)
- Inspect validation metrics and per-row provenance
Files
- parquet/: cve.parquet, nvd_meta.parquet, kev.parquet, edges.parquet, preview.parquet (~1000 CVEs; see preview criteria)
- rag/: index.faiss, meta.parquet, mapping.parquet, vectors.npy (optional)
- docs/: LICENSES.md, LICENCE.md (CC0 legal code), NOTICE.md, INTEGRITY.txt, VALIDATION.json (if enabled), BUILD_MANIFEST.json
- demo/: OVX_quickstart.ipynb (offline quickstart)
Validation and integrity
VALIDATION.json includes: counts, cvss_v3_presence_ratio, cwe_presence_ratio, kev_cve_coverage_ratio, kev_cve_coverage_ratio_within_window, kev_rows_total_fetched, kev_rows_within_window, kev_within_window_over_global_ratio, rejected_cve_count, url_shape_failures, http_head_failures_hard, http_head_failures_flaky, dead_reference_links, duplicate_edges_dropped, snapshot_as_of
URL checks (if present in this snapshot’s validation step) were executed conservatively with a single worker to reduce flakiness and rate limiting.
INTEGRITY.txt: SHA-256 list of all files in this bundle. Verify locally:
- macOS:
shasum -a 256 -c docs/INTEGRITY.txt - Linux:
sha256sum -c docs/INTEGRITY.txt
- macOS:
Build metadata: see
docs/BUILD_MANIFEST.jsonfor snapshot parameters (timestamp, NVD window, tool/version info, internal commit/config). Provided for transparency; the build system is not included.
RAG constraints
- Texts are PD/CC0-only (NVD short descriptions, KEV notes)
- meta.parquet: normalize=true, metric="IP", pinned model_name="BAAI/bge-small-en-v1.5" and dimension=384
- Retrieval requires the model to be present in local cache; no downloads
- If
rag/mapping.parquetis present, it maps FAISSrow_index→cve_idwith columns:row_index(int32),cve_id(string)
Preview parquet
parquet/preview.parquetis a convenience subset for quick inspection.- Selection: first 1000 rows by
cve_idordering fromparquet/cve.parquet. - Columns:
cve_id,summary,published_date,modified_date(when available); otherwise falls back to a best-effort subset.
Non-affiliation and license
- Not affiliated with NIST/NVD, CISA/KEV, or FIRST/EPSS
- NVD non-endorsement: "This product uses data from the NVD API but is not endorsed or certified by the NVD."
- Compiled artifact dedicated to the public domain under CC0 1.0 (see docs/LICENCE.md)
- Upstream sources: NVD (public domain), CISA KEV (CC0). Third‑party pages reached via reference URLs are governed by their own terms
Start here
- Open demo/OVX_quickstart.ipynb (no network calls)
- Or open demo/OVX_quickstart.html for a view-only quickstart
- Or query with DuckDB directly:
SELECT c.cve_id, m.cvss_v3_score, k.date_added
FROM read_parquet('parquet/kev.parquet') k
JOIN read_parquet('parquet/cve.parquet') c USING (cve_id)
LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id)
ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC
LIMIT 20;
Top queries to try (DuckDB)
-- Top KEV CVEs by CVSS
SELECT c.cve_id, m.cvss_v3_score, k.date_added
FROM read_parquet('parquet/kev.parquet') k
JOIN read_parquet('parquet/cve.parquet') c USING (cve_id)
LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id)
ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC
LIMIT 20;
-- Count malformed or missing CVSS
SELECT SUM(cvss_v3_score IS NULL) AS missing_cvss_v3, COUNT(*) AS total
FROM read_parquet('parquet/nvd_meta.parquet');
-- Top CWE categories by count
WITH u AS (
SELECT UNNEST(cwe_ids) AS cwe FROM read_parquet('parquet/nvd_meta.parquet')
)
SELECT cwe, COUNT(*) AS cnt
FROM u
GROUP BY cwe
ORDER BY cnt DESC
LIMIT 20;
-- References for a specific CVE
SELECT dst_id AS reference_url
FROM read_parquet('parquet/edges.parquet')
WHERE src_type='cve' AND src_id='CVE-2021-44228' AND edge_type='cve_ref_url'
ORDER BY reference_url;
Validation notes
- Where URL reachability checks were included, they used a single worker by default and domain-specific pacing (e.g., stricter for
vuldb.com). Counts of malformed URLs and network failures are summarized indocs/VALIDATION.json.
Limitations
- Some CVEs may lack CVSS vectors/scores in the NVD window (nulls are expected).
- URL checks are conservative and may still include dead or redirected links; always verify with official sources.
- KEV rows are filtered to the NVD window by design; KEV counts reflect in-window coverage, not global totals.
Scope and KEV alignment
- KEV is filtered to the same NVD window; only KEV CVEs that are also in the NVD window are included. Edges never reference out‑of‑window CVEs.
- Coverage metric naming:
kev_cve_coverage_ratio_within_windowreflects this alignment and is expected to be 1.0 by design. The legacy keykev_cve_coverage_ratiois retained and equals the within-window value. - Global context ratio:
kev_within_window_over_global_ratio = kev_rows_within_window / kev_rows_total_fetched(share of KEV entries that fall into this snapshot’s NVD window).
Schemas (columns and types)
parquet/cve.parquet
- cve_id: string
- summary: string
- description_hash: string
- published_date: timestamp[us, UTC]
- modified_date: timestamp[us, UTC]
- is_rejected: boolean
- source: string
- source_url: string
- retrieved_at: timestamp[us, UTC]
- source_record_hash: string
parquet/nvd_meta.parquet
- cve_id: string
- cvss_v3_score: float64 (nullable)
- cvss_v3_vector: string (nullable)
- cvss_v2_score: float64 (nullable)
- cwe_ids: list
- reference_urls: list
- ref_tags: list
- source: string
- source_url: string
- retrieved_at: timestamp[us, UTC]
- source_record_hash: string
parquet/kev.parquet
- cve_id: string
- date_added: date32[day]
- notes: string (nullable)
- source: string
- source_url: string
- retrieved_at: timestamp[us, UTC]
- source_record_hash: string
parquet/edges.parquet
- src_type: string
- src_id: string
- edge_type: string
- dst_type: string
- dst_id: string
- source: string
- source_url: string
- retrieved_at: timestamp[us, UTC]
rag/meta.parquet
- model_name: string
- dim: int32
- normalize: boolean
- metric: string
- texts_count: int64
Storage and performance notes
- Parquet compression:
snappy(writer default). - Disk footprint: varies by window; see your build output directory sizes to estimate download needs.
Uniqueness rules
- Primary keys:
cve.parquet:cve_idnvd_meta.parquet:cve_idkev.parquet:cve_id
- Edges composite uniqueness:
- Unique on (
src_type,src_id,edge_type,dst_type,dst_id,source) - Duplicates are dropped; see
duplicate_edges_droppedindocs/VALIDATION.json.
- Unique on (
Citation
If you use this snapshot, please cite:
"CVE-KEV Snapshot (2025-10-29T13:51:37Z)", CC0-1.0, https://huggingface.co/datasets/NostromoHub/cve-kev-snapshot-90d-2025-10-29
Usage
- DuckDB
SELECT c.cve_id, m.cvss_v3_score, k.date_added
FROM read_parquet('parquet/kev.parquet') k
JOIN read_parquet('parquet/cve.parquet') c USING (cve_id)
LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id)
ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC
LIMIT 20;
- Python (Pandas)
import pandas as pd
k = pd.read_parquet('parquet/kev.parquet')
c = pd.read_parquet('parquet/cve.parquet')
m = pd.read_parquet('parquet/nvd_meta.parquet')
df = k.merge(c, on='cve_id').merge(m[['cve_id','cvss_v3_score']], on='cve_id', how='left')
print(df.head())
- Python (Polars)
import polars as pl
k = pl.read_parquet('parquet/kev.parquet')
c = pl.read_parquet('parquet/cve.parquet')
m = pl.read_parquet('parquet/nvd_meta.parquet').select('cve_id','cvss_v3_score')
df = k.join(c, on='cve_id').join(m, on='cve_id', how='left')
print(df.head())