Datasets:
peptide
stringlengths 8
15
| label
float64 0
1
| HLA
stringclasses 161
values | HLA_sequence
stringclasses 152
values |
|---|---|---|---|
AAAAFEAAL
| 0.527533
|
HLA-C14:02
|
YSAGYREKYRQTDVSNLYLWFDSYTWAERAYTWY
|
AAAAFEAAL
| 0.522653
|
HLA-B48:01
|
YYSEYREISTNTYESNLYLSYNYYSLAVLAYEWY
|
AAAAMFAGE
| 0.01
|
HLA-B53:01
|
YYATYRNIFTNTYENIAYIRYDSYTWAVLAYLWY
|
AAAANTTAL
| 0.407702
|
HLA-C14:02
|
YSAGYREKYRQTDVSNLYLWFDSYTWAERAYTWY
|
AAAANTTAL
| 0.313449
|
HLA-C05:01
|
YYAGYREKYRQTDVNKLYLRYNFYTWAERAYTWY
|
AAAANTTAL
| 1
|
HLA-C03:03
|
YYAGYREKYRQTDVSNLYIRYDYYTWAELAYLWY
|
AAAANTTAL
| 0.563901
|
HLA-B07:02
|
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
|
AAAAPYAGW
| 0.695046
|
HLA-B58:01
|
YYATYGENMASTYENIAYIRYDSYTWAVLAYLWY
|
AAAARSTSP
| 0.01
|
HLA-B57:03
|
YYAMYGENMASTYENIAYIVYNYYTWAVLAYLWY
|
AAAATCALV
| 0.752211
|
HLA-A02:02
|
YFAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY
|
AAAATCALV
| 0.796413
|
HLA-A02:03
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY
|
AAAATCALV
| 0.656779
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAATCALV
| 0.770337
|
HLA-A02:06
|
YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAATCALV
| 0.772714
|
HLA-A68:02
|
YYAMYRNNVAQTDVDTLYIRYHYYTWAVWAYTWY
|
AAAATSAGTR
| 0.253411
|
HLA-A11:01
|
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
|
AAADFAHAE
| 0.04416
|
HLA-B44:03
|
YYTKYREISTNTYENTAYIRYDDYTWAVLAYLSY
|
AAAEVAGAL
| 0
|
HLA-B35:01
|
YYATYRNIFTNTYESNLYIRYDSYTWAVLAYLWY
|
AAAEVAGAL
| 0.194283
|
HLA-B07:02
|
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
|
AAAEVAGAL
| 0.001205
|
HLA-B44:03
|
YYTKYREISTNTYENTAYIRYDDYTWAVLAYLSY
|
AAAFPGLA
| 0.01
|
HLA-B81:01
|
YYSEYRNIYAQTDESNLYLSYNYYSLAVLAYEWY
|
AAAFVNQHL
| 0.212499
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAFVNQHLC
| 0
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAGSTTSV
| 0.084687
|
HLA-B07:02
|
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
|
AAAGTALAT
| 0.01
|
HLA-A23:01
|
YSAMYEEKVAHTDENIAYLMFHYYTWAVLAYTGY
|
AAAGTALAT
| 0.01
|
HLA-A24:02
|
YSAMYEEKVAHTDENIAYLMFHYYTWAVQAYTGY
|
AAAIVGQDGS
| 0.01
|
HLA-A02:50
|
YFAMYGEKVAHTHVDTLYIRYHYYTWAVWAYTWY
|
AAAKAAAAV
| 0.740346
|
HLA-A02:02
|
YFAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY
|
AAAKAAAAV
| 0.54141
|
HLA-A02:03
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY
|
AAAKAAAAV
| 0.449853
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAKAAAAV
| 0.641444
|
HLA-A02:05
|
YYAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY
|
AAAKAAAAV
| 0.639678
|
HLA-A02:06
|
YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAKAAAAV
| 0.550817
|
HLA-A68:02
|
YYAMYRNNVAQTDVDTLYIRYHYYTWAVWAYTWY
|
AAAKTPVIV
| 0.302386
|
HLA-A02:02
|
YFAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY
|
AAAKTPVIV
| 0.32917
|
HLA-A02:03
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY
|
AAAKTPVIV
| 0.033761
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAKTPVIV
| 0
|
HLA-A02:06
|
YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAKTPVIV
| 0.29658
|
HLA-A68:02
|
YYAMYRNNVAQTDVDTLYIRYHYYTWAVWAYTWY
|
AAAKTPVIVV
| 0.168935
|
HLA-A02:02
|
YFAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY
|
AAAKTPVIVV
| 0.323046
|
HLA-A02:03
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY
|
AAAKTPVIVV
| 0.011187
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAKTPVIVV
| 0.121997
|
HLA-A02:06
|
YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAKTPVIVV
| 0.208321
|
HLA-A68:02
|
YYAMYRNNVAQTDVDTLYIRYHYYTWAVWAYTWY
|
AAALAGCGS
| 0.01
|
HLA-A02:16
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYEWY
|
AAALLTSSYY
| 0.01
|
HLA-A03:19
|
YFAMYQENVAQTDVDTLYIIFHYYTWAELAYTWY
|
AAALRDAQM
| 0.01
|
HLA-C07:01
|
YDSGYRENYRQADVSNLYLRYDSYTLAALAYTWY
|
AAALTQND
| 0.01
|
HLA-A03:19
|
YFAMYQENVAQTDVDTLYIIFHYYTWAELAYTWY
|
AAAPKPVV
| 0.01
|
HLA-B57:03
|
YYAMYGENMASTYENIAYIVYNYYTWAVLAYLWY
|
AAAQGQAPL
| 0.084687
|
HLA-A80:01
|
YFAMYEENVAHTNANTLYIIYRDYTWARLAYEGY
|
AAAQGQAPL
| 0.084687
|
HLA-A02:11
|
YFAMYGEKVAHIDVDTLYVRYHYYTWAVLAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-A02:03
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-A02:16
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYEWY
|
AAAQGQAPL
| 0.084687
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-A02:19
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVQAYTGY
|
AAAQGQAPL
| 0.084687
|
HLA-A02:12
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVQAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-A03:01
|
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-B18:01
|
YHSTYRNISTNTYESNLYLRYDSYTWAVLAYTWH
|
AAAQGQAPL
| 0.084687
|
HLA-B27:03
|
YHTEHREICAKTDEDTLYLNYHDYTWAVLAYEWY
|
AAAQGQAPL
| 0.43935
|
HLA-C14:02
|
YSAGYREKYRQTDVSNLYLWFDSYTWAERAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-A23:01
|
YSAMYEEKVAHTDENIAYLMFHYYTWAVLAYTGY
|
AAAQGQAPL
| 0.084687
|
HLA-A24:03
|
YSAMYEEKVAHTDENIAYLMFHYYTWAVQAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-A29:02
|
YTAMYLQNVAQTDANTLYIMYRDYTWAVLAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-B57:01
|
YYAMYGENMASTYENIAYIVYDSYTWAVLAYLWY
|
AAAQGQAPL
| 0.084687
|
HLA-A26:01
|
YYAMYRNNVAHTDANTLYIRYQDYTWAEWAYRWY
|
AAAQGQAPL
| 0.084687
|
HLA-A25:01
|
YYAMYRNNVAHTDESIAYIRYQDYTWAEWAYRWY
|
AAAQGQAPL
| 0.084687
|
HLA-A69:01
|
YYAMYRNNVAQTDVDTLYVRYHYYTWAVLAYTWY
|
AAAQGQAPL
| 0.084687
|
HLA-B51:01
|
YYATYRNIFTNTYENIAYWTYNYYTWAELAYLWH
|
AAAQGQAPL
| 0.084687
|
HLA-B39:01
|
YYSEYRNICTNTDESNLYLRYNFYTWAVLTYTWY
|
AAAQGQAPL
| 0.741466
|
HLA-B07:02
|
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
|
AAAQKAALK
| 0.01
|
HLA-A33:01
|
YTAMYRNNVAHIDVDTLYIMYQDYTWAVLAYTWH
|
AAAQKAALK
| 0.01
|
HLA-A66:01
|
YYAMYRNNVAQTDVDTLYIRYQDYTWAEWAYRWY
|
AAAQKPSSTQ
| 0.01
|
HLA-C14:02
|
YSAGYREKYRQTDVSNLYLWFDSYTWAERAYTWY
|
AAARNQLQ
| 0.01
|
HLA-B27:05
|
YHTEYREICAKTDEDTLYLNYHDYTWAVLAYEWY
|
AAASAVVF
| 0.01
|
HLA-B08:01
|
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
|
AAASAVVF
| 0.01
|
HLA-B07:02
|
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
|
AAASSLLYK
| 0
|
HLA-A02:02
|
YFAMYGEKVAHTHVDTLYLRYHYYTWAVWAYTWY
|
AAASSLLYK
| 0.031401
|
HLA-A02:03
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAEWAYTWY
|
AAASSLLYK
| 0
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAASSLLYK
| 0.780368
|
HLA-A03:01
|
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
|
AAASSLLYK
| 0.488861
|
HLA-A31:01
|
YTAMYQENVAHIDVDTLYIMYQDYTWAVLAYTWY
|
AAASSLLYK
| 0.153147
|
HLA-A33:01
|
YTAMYRNNVAHIDVDTLYIMYQDYTWAVLAYTWH
|
AAASSLLYK
| 0.010608
|
HLA-A02:06
|
YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAASSLLYK
| 0.748583
|
HLA-A11:01
|
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
|
AAASSLLYK
| 0.573507
|
HLA-A68:01
|
YYAMYRNNVAQTDVDTLYIMYRDYTWAVWAYTWY
|
AAASSLLYK
| 0
|
HLA-A68:02
|
YYAMYRNNVAQTDVDTLYIRYHYYTWAVWAYTWY
|
AAASSTHRKV
| 0
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAASTAASGSA
| 0.01
|
HLA-A26:02
|
YYAMYRNNVAHTDANTLYIRYQNYTWAEWAYRWY
|
AAATILTS
| 0.01
|
HLA-A02:17
|
YFAMYGEKVAHTHVDTLYLMFHYYTWAVLAYTWY
|
AAATSAGTR
| 0.231444
|
HLA-A11:01
|
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
|
AAATSAGTRR
| 0.341356
|
HLA-A11:01
|
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
|
AAAVAYPEL
| 0.260241
|
HLA-C14:02
|
YSAGYREKYRQTDVSNLYLWFDSYTWAERAYTWY
|
AAAVAYPEL
| 0.084687
|
HLA-C05:01
|
YYAGYREKYRQTDVNKLYLRYNFYTWAERAYTWY
|
AAAVAYPEL
| 0.935937
|
HLA-C03:03
|
YYAGYREKYRQTDVSNLYIRYDYYTWAELAYLWY
|
AAAVAYPEL
| 0.084687
|
HLA-B58:01
|
YYATYGENMASTYENIAYIRYDSYTWAVLAYLWY
|
AAAVAYPEL
| 0.084687
|
HLA-B39:01
|
YYSEYRNICTNTDESNLYLRYNFYTWAVLTYTWY
|
AAAVWIQVRV
| 0.01
|
HLA-B27:03
|
YHTEHREICAKTDEDTLYLNYHDYTWAVLAYEWY
|
AAAWGGSGS
| 0.85125
|
HLA-A30:02
|
YSAMYQENVAHTDENTLYIIYEHYTWARLAYTWY
|
AAAWYLWEV
| 0.329153
|
HLA-A02:17
|
YFAMYGEKVAHTHVDTLYLMFHYYTWAVLAYTWY
|
AAAWYLWEV
| 1
|
HLA-A02:01
|
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAWYLWEV
| 0.88744
|
HLA-A02:06
|
YYAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
|
AAAWYLWEVK
| 0.294767
|
HLA-A32:01
|
YFAMYQENVAHTDESIAYIMYQDYTWAVLAYTWY
|
Modality OOD Dataset
Dataset Description
The Modality OOD dataset tests model generalization across different data modalities in peptide-MHC (pMHC) binding prediction. It contains two complementary datasets representing distinct experimental measurement types:
- BA (Binding Affinity): In vitro binding affinity measurements with continuous values
- EL (Eluted Ligand): Mass spectrometry-based eluted ligand data with binary labels
Key Features
- Modality Shift Testing: Evaluates if models trained on one modality (e.g., BA) can generalize to another (e.g., EL)
- Real-World Relevance: Reflects the practical challenge of applying models across different experimental platforms
- Large Scale: Combined 3.85M samples across 130+ HLA alleles
- Single Allele Format: Each sample has one peptide-HLA pair (no multi-allele)
Biological Significance
Why Two Modalities Matter:
Binding Affinity (BA):
- Measures peptide-MHC binding strength in controlled conditions
- Continuous scale (0 = no binding, 1 = strong binding)
- Reflects thermodynamic stability
- Common in immunoinformatics training data
Eluted Ligand (EL):
- Peptides naturally presented on cell surface MHC molecules
- Binary label (1 = naturally presented, 0 = not presented)
- Reflects cellular processing, TAP transport, and MHC loading
- More biologically relevant but harder to obtain
The Modality Gap: Models trained on BA data often fail on EL data (and vice versa) because:
- BA measures binding only, EL captures the full antigen processing pathway
- Different experimental biases and noise profiles
- Label semantics differ (affinity vs. presentation)
This dataset enables testing cross-modality generalization.
Dataset Structure
Files
- ba_s.csv: Binding Affinity dataset (single allele)
- el_s.csv: Eluted Ligand dataset (single allele)
Data Format
Both files share the same schema:
| Column | Type | Description | Required |
|---|---|---|---|
| peptide | string | Peptide amino acid sequence (8-15aa) | Yes |
| HLA | string | HLA allele (e.g., HLA-A02:01, HLA-B07:02) | Yes |
| label | float/int | BA: continuous 0-1, EL: binary 0/1 | Yes |
| HLA_sequence | string | HLA pseudo-sequence | Yes |
Dataset Statistics
BA (Binding Affinity)
- Total Samples: 170,470
- Label Type: Continuous (0.0 to 1.0)
- Mean Affinity: 0.2547
- Median Affinity: 0.0847
- Unique HLA Alleles: 111
- Peptide Lengths: 8-14 amino acids (74.3% are 9-mers)
- File Size: 10.61 MB
EL (Eluted Ligand)
- Total Samples: 3,679,405
- Label Type: Binary classification
- Positive Samples: 197,547 (5.4%)
- Negative Samples: 3,481,858 (94.6%)
- Unique HLA Alleles: 130
- Peptide Lengths: 8-15 amino acids (distributed across all lengths)
- File Size: 213.35 MB
Combined Statistics
- Total Samples: 3,849,875
- Unique HLA Coverage: 130+ alleles across HLA-A, B, C
- Modalities: 2 (BA and EL)
- Task Type: Peptide-MHC (PM) binding prediction
Usage
Load with Pandas
from huggingface_hub import hf_hub_download
import pandas as pd
# Download BA dataset
ba_file = hf_hub_download(
repo_id="YYJMAY/modality-ood",
filename="ba_s.csv",
repo_type="dataset"
)
ba_df = pd.read_csv(ba_file)
# Download EL dataset
el_file = hf_hub_download(
repo_id="YYJMAY/modality-ood",
filename="el_s.csv",
repo_type="dataset"
)
el_df = pd.read_csv(el_file)
Use with SPRINT Framework
from sprint.core.dataset_manager import DatasetManager
manager = DatasetManager()
config = {
'hf_repo': 'YYJMAY/modality-ood',
'files': ['ba_s.csv', 'el_s.csv'],
'ba': 'ba_s.csv',
'el': 'el_s.csv'
}
files = manager.get_dataset('modality_ood', config)
ba_file = files['ba']
el_file = files['el']
Example: Cross-Modality Evaluation
import pandas as pd
from your_model import YourModel
# Load data
ba_df = pd.read_csv(ba_file)
el_df = pd.read_csv(el_file)
# Scenario 1: Train on BA, test on EL
model = YourModel()
model.train(ba_df)
el_predictions = model.predict(el_df)
# Scenario 2: Train on EL, test on BA
model = YourModel()
model.train(el_df)
ba_predictions = model.predict(ba_df)
# Evaluate cross-modality generalization
Experimental Design
Recommended Evaluation Scenarios
BA → EL Generalization
- Train on BA (continuous labels)
- Test on EL (binary labels)
- Measures if affinity-based models predict presentation
EL → BA Generalization
- Train on EL (binary labels)
- Test on BA (continuous labels)
- Measures if presentation-based models predict affinity
Mixed Training
- Train on both BA and EL
- Test separately on each
- Measures multi-task learning benefits
Modality-Specific Training
- Train and test on same modality
- Baseline for comparison
Metrics Considerations
- For BA: Use regression metrics (MSE, MAE, Pearson correlation)
- For EL: Use classification metrics (AUC, F1, precision, recall)
- Cross-modal: May need to binarize BA predictions or convert EL to scores
Construction Method
Both datasets were constructed to ensure:
- Single Allele Format: Each sample has exactly one HLA allele
- Quality Control:
- No missing values in required columns
- No duplicate peptide-HLA-label combinations
- Peptide lengths filtered to 8-15 amino acids
- Standardized HLA Format: HLA-A02:01 format (with hyphen prefix)
- Representative Coverage: 130+ HLA alleles across major supertypes
- Balanced Lengths: Both datasets include diverse peptide lengths
Citation
If you use this dataset, please cite:
@dataset{modality_ood_2024,
title={Modality OOD Dataset for Peptide-MHC Binding Prediction},
author={SPRINT Framework Contributors},
year={2024},
url={https://huggingface.co/datasets/YYJMAY/modality-ood}
}
Related Datasets
- Allelic OOD: Tests generalization to rare HLA alleles
- Temporal OOD: Tests generalization to new data over time
Notes
- No CDR3 sequences: These datasets are for PM (Peptide-MHC) tasks only, not PMT (Peptide-MHC-TCR)
- Label semantics differ: BA is continuous affinity, EL is binary presentation
- Experimental platforms differ: BA from in vitro assays, EL from mass spectrometry
- Biological processes differ: BA measures binding only, EL captures full pathway
License
MIT License
Contact
For questions or issues, please open an issue on the dataset repository.
Keywords: peptide-MHC binding, immunology, binding affinity, eluted ligand, modality shift, out-of-distribution, generalization, cross-modal learning
- Downloads last month
- 16