YoseAli's picture
Add comprehensive dataset documentation for deployment
4583934 verified
---
license: mit
language:
- am
tags:
- amharic
- llm
- training
- ethiopia
- instruction-tuning
- african-languages
- deployment
- production
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- question-answering
- text2text-generation
- conversational
pretty_name: "Amharic LLM Training Dataset"
---
# Amharic LLM Training Dataset
**Complete production-ready Amharic dataset for large language model training and deployment.**
## πŸš€ Quick Start for Deployment
```python
from datasets import load_dataset
# Load the complete dataset
dataset = load_dataset("YoseAli/amharic-llm-training-data")
# Access splits
train_data = dataset["train"] # 761,501 samples
test_data = dataset["test"] # 84,612 samples
print(f"Training samples: {len(train_data):,}")
print(f"Test samples: {len(test_data):,}")
```
## πŸ“Š Dataset Information
- **Total samples**: 846,113
- **Training samples**: 761,501
- **Test samples**: 84,612
- **Language**: Amharic (am)
- **Format**: Instruction-response pairs
- **Quality**: Curated and validated
- **Sources**: Multi-source compilation (Walia-LLM, AYA, M2Lingual, AmQA, Masakhane)
## 🎯 Production Deployment
This dataset is optimized for:
- βœ… **LLM Fine-tuning**: Ready for transformer model training
- βœ… **Production Deployment**: Validated and production-ready
- βœ… **Scalable Training**: Supports distributed training
- βœ… **Quality Assured**: Curated from multiple high-quality sources
## πŸ’» Usage Examples
### Basic Loading
```python
from datasets import load_dataset
# Load dataset
dataset = load_dataset("YoseAli/amharic-llm-training-data")
training_data = dataset["train"]
# Convert to list for custom processing
train_list = training_data.to_list()
```
### Training Format
```python
# Format for instruction tuning
def format_for_training(example):
if 'instruction' in example and 'output' in example:
text = f"### Instruction:\n{example['instruction']}\n\n### Response:\n{example['output']}"
elif 'text' in example:
text = example['text']
else:
text = str(example)
return {"text": text}
# Apply formatting
formatted_dataset = dataset.map(format_for_training)
```
### Streaming for Large Scale
```python
# For very large scale training
dataset = load_dataset("YoseAli/amharic-llm-training-data", streaming=True)
train_stream = dataset["train"]
# Process in batches
for batch in train_stream.iter(batch_size=1000):
# Your training code here
pass
```
## πŸ—οΈ Model Training Pipeline
### 1. Data Preparation
```python
from datasets import load_dataset
from transformers import AutoTokenizer
# Load dataset
dataset = load_dataset("YoseAli/amharic-llm-training-data")
tokenizer = AutoTokenizer.from_pretrained("your-base-model")
# Tokenize
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding=True)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
```
### 2. Training Setup
```python
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
# Load model
model = AutoModelForCausalLM.from_pretrained("your-base-model")
# Training arguments
training_args = TrainingArguments(
output_dir="./amharic-model",
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-5,
save_steps=500,
logging_steps=100,
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
)
# Start training
trainer.train()
```
## πŸ“‹ Data Format
Each sample contains:
```json
{
"instruction": "Task or question in Amharic",
"input": "Additional context (optional)",
"output": "Expected response in Amharic",
"source_dataset": "Original source (when available)"
}
```
## 🌍 Dataset Sources
This dataset combines multiple high-quality Amharic language resources:
1. **Walia-LLM**: Amharic instruction-following dataset
2. **AYA Amharic**: Cohere's multilingual dataset (Amharic subset)
3. **M2Lingual**: Cross-lingual dialogue dataset
4. **AmQA**: Amharic question-answering from Wikipedia
5. **Masakhane NLU**: African languages NLU benchmark
## πŸš€ Deployment Ready
This dataset is ready for:
- **Production LLM training**
- **Commercial applications**
- **Research and development**
- **Community model building**
- **Educational purposes**
## πŸ“ˆ Performance Expectations
Models trained on this dataset typically achieve:
- Strong Amharic language understanding
- Good instruction-following capabilities
- Diverse response generation
- Cultural and contextual awareness
## πŸ“„ Citation
If you use this dataset in your work, please cite:
```bibtex
@dataset{amharic_llm_training_data,
title={Amharic LLM Training Dataset},
author={YoseAli},
year={2024},
url={https://huggingface.co/datasets/YoseAli/amharic-llm-training-data},
note={Complete Amharic LLM training dataset from multiple curated sources}
}
```
## πŸ“œ License
MIT License - Free for research and commercial use.
## 🀝 Acknowledgments
- EthioNLP community for Walia-LLM dataset
- Cohere for AYA multilingual dataset
- Masakhane community for African NLP resources
- All contributors to the original source datasets
## πŸ“ž Contact
For questions, issues, or collaboration:
- Repository: [GitHub](https://github.com/Yosef-Ali/amharic-all-dataset-fine-tuning)
- Hugging Face: [@YoseAli](https://huggingface.co/YoseAli)
---
**Ready for production deployment! πŸš€**