ICT
imagewidth (px) 512
512
| LDCT_Low
imagewidth (px) 512
512
| LDCT_Mid
imagewidth (px) 512
512
| LDCT_High
imagewidth (px) 512
512
| LACT_Low
imagewidth (px) 512
512
| LACT_Mid
imagewidth (px) 512
512
| LACT_High
imagewidth (px) 512
512
| SVCT_Low
imagewidth (px) 512
512
| SVCT_Mid
imagewidth (px) 512
512
| SVCT_High
imagewidth (px) 512
512
|
|---|---|---|---|---|---|---|---|---|---|
SimNICT: Simulated Non-Ideal measurement CT Dataset
SimNICT is the first comprehensive dataset for training universal non-ideal measurement CT (NICT) enhancement models, containing simulated low-dose, limited-angle, and sparse-view CT from different body regions. We release the SimNICT Dataset (823 GB, 8 datasets) for comprehensive NICT research, and provide SimNICT-AMOS-Sample (78 MB) for quick exploration and prototyping.
💡 Recommendation: Start with SimNICT-AMOS-Sample Dataset for initial exploration and prototyping, then download specific datasets from the SimNICT Dataset based on your research needs.
Part 1: SimNICT Dataset
| Dataset | Volumes | Body Regions | License | Download Link |
|---|---|---|---|---|
| AMOS | 500 | Abdomen | CC BY 4.0 | simnict-amos |
| COVID-19-NY-SBU | 459 | Chest | CC BY 4.0 | simnict-covid-19-ny-sbu |
| CT Images in COVID-19 | 771 | Chest | CC BY 4.0 | simnict-ct-images-in-covid-19 |
| CT_COLONOGRAPHY | 1,730 | Abdomen | CC BY 4.0 | simnict-ct-colonography |
| LNDb | 294 | Chest | CC BY-NC-ND 4.0 | simnict-lndb |
| LUNA | 888 | Chest | CC BY 4.0 | simnict-luna |
| MELA | 1,100 | Chest | CC BY 4.0 | simnict-mela |
| STOIC | 2,000 | Chest | CC BY-NC 4.0 | simnict-stoic |
| AutoPET | 1,014 | Whole-body | NIH Controlled Data Access Policy | - |
| HECKTOR22 | 882 | Head, neck | Custom Research License | - |
Note: AutoPET and HECKTOR22 datasets are not publicly available due to licensing restrictions.
Dataset Overview
The SimNICT dataset is a large-scale medical imaging dataset containing:
- 📊 9,513 CT volumes from 10 medical imaging datasets (2 out of 10 datasets are not open-source due to licensing restrictions)
- 🔬 3 NICT types: Low-dose CT (LDCT), Sparse-view CT (SVCT), Limited-angle CT (LACT)
- ⚙️ Randomized parameters:
- SVCT: Views randomly sampled from 15-360 range
- LACT: Angular range randomly sampled from 75°-270°
- LDCT: Dose levels randomly sampled from 5%-75% range
- 💾 Total size: ~823 GB
- 📁 File format: NIfTI (.nii.gz), 16-bit, gzip compressed
Data Release Strategy
The SimNICT dataset provides preprocessed ICT data with NICT simulation code:
1. 🔍 Preprocessed ICT Data
The preprocessed ICT data of SimNICT dataset is hosted on Internet Archive, ensuring stable access for the global research community. You can download data through the dataset table above or execute batch download scripts below:
# Download batch download script
wget https://huggingface.co/datasets/YutingHe-list/SimNICT/blob/main/simnict_download.py
# Download all datasets (~823 GB)
python simnict_download.py --all --output_dir ./data
# Download specific datasets
python simnict_download.py --datasets AMOS LUNA --output_dir ./data
2. ⚙️ NICT Simulation Code
After downloading preprocessed ICT data, generate NICT data with the following simulation code to construct complete SimNICT dataset:
# Download simulation code
wget https://huggingface.co/datasets/YutingHe-list/SimNICT/blob/main/simnict_generator.py
# Configure paths and run
python simnict_generator.py
The simulation code uses advanced physics-based modeling with ODL (Operator Discretization Library) and ASTRA Toolbox for accurate CT reconstruction simulation.
Part 2: SimNICT-AMOS-Sample
SimNICT-AMOS-Sample is a preview subset of SimNICT dataset for quick exploration and prototyping.
Sample Dataset Specifications
- 📂 Source: Selected from AMOS dataset (part of SimNICT)
- 📊 Content: 55 CT volumes (44 train + 11 test)
- 🔬 Coverage: 3 NICT types × 3 fixed severity levels (different from SimNICT dataset's randomized parameters)
- 💾 Size: ~78 MB (1000× smaller than SimNICT dataset)
- 🚀 Format: Preprocessed and optimized for Hugging Face platform
Quick Start with Sample Dataset
from datasets import load_dataset
# Load the preview sample dataset
dataset = load_dataset("YutingHe-list/SimNICT")
sample = dataset["train_previews"][0]
# Access different NICT simulations
ict_image = sample["ICT"] # Ground truth
ldct_low = sample["LDCT_Low"] # Low-dose simulation
svct_mid = sample["SVCT_Mid"] # Sparse-view simulation
lact_high = sample["LACT_High"] # Limited-angle simulation
NICT Simulation Parameters (Sample Dataset Only)
| Type | Low | Mid | High |
|---|---|---|---|
| LDCT | I₀=1×10⁵ | I₀=1×10⁴ | I₀=1×10³ |
| SVCT | 120 views | 60 views | 30 views |
| LACT | 120° range | 90° range | 60° range |
Citation
@article{liu2024imaging,
title={Imaging foundation model for universal enhancement of non-ideal measurement ct},
author={Liu, Yuxin and Ge, Rongjun and He, Yuting and Wu, Zhan and Yang, Shangwen and Gao, Yuan and You, Chenyu and Wang, Ge and Chen, Yang and Li, Shuo},
journal={arXiv preprint arXiv:2410.01591},
year={2024}
}
Links
For questions or collaborations, contact via the arXiv paper. Contributions welcome!
- Downloads last month
- 264