url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.89B
1.93B
| node_id
stringlengths 18
19
| number
int64 6.23k
6.28k
| title
stringlengths 16
140
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | body
stringlengths 10
6.69k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 1
value | draft
bool 2
classes | pull_request
dict | is_pull_request
bool 2
classes |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6284
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6284/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6284/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6284/events
|
https://github.com/huggingface/datasets/issues/6284
| 1,929,551,712
|
I_kwDODunzps5zAp9g
| 6,284
|
Add Belebele multiple-choice machine reading comprehension (MRC) dataset
|
{
"login": "rajveer43",
"id": 64583161,
"node_id": "MDQ6VXNlcjY0NTgzMTYx",
"avatar_url": "https://avatars.githubusercontent.com/u/64583161?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/rajveer43",
"html_url": "https://github.com/rajveer43",
"followers_url": "https://api.github.com/users/rajveer43/followers",
"following_url": "https://api.github.com/users/rajveer43/following{/other_user}",
"gists_url": "https://api.github.com/users/rajveer43/gists{/gist_id}",
"starred_url": "https://api.github.com/users/rajveer43/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rajveer43/subscriptions",
"organizations_url": "https://api.github.com/users/rajveer43/orgs",
"repos_url": "https://api.github.com/users/rajveer43/repos",
"events_url": "https://api.github.com/users/rajveer43/events{/privacy}",
"received_events_url": "https://api.github.com/users/rajveer43/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false
| null |
[] | null |
[] | 2023-10-06T06:58:03
| 2023-10-06T06:58:03
| null |
NONE
| null |
### Feature request
Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. This dataset enables the evaluation of mono- and multi-lingual models in high-, medium-, and low-resource languages. Each question has four multiple-choice answers and is linked to a short passage from the [FLORES-200](https://github.com/facebookresearch/flores/tree/main/flores200) dataset. The human annotation procedure was carefully curated to create questions that discriminate between different levels of generalizable language comprehension and is reinforced by extensive quality checks. While all questions directly relate to the passage, the English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. Belebele opens up new avenues for evaluating and analyzing the multilingual abilities of language models and NLP systems.
Please refer to paper for more details, [The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants](https://arxiv.org/abs/2308.16884).
## Composition
- 900 questions per language variant
- 488 distinct passages, there are 1-2 associated questions for each.
- For each question, there is 4 multiple-choice answers, exactly 1 of which is correct.
- 122 language/language variants (including English).
- 900 x 122 = 109,800 total questions.
### Motivation
official repo https://github.com/facebookresearch/belebele
### Your contribution
-
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6284/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6284/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6283
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6283/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6283/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6283/events
|
https://github.com/huggingface/datasets/pull/6283
| 1,928,552,257
|
PR_kwDODunzps5cBlKq
| 6,283
|
Fix `array.values` handling in array cast/embed
|
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006278 / 0.011353 (-0.005075) | 0.003692 / 0.011008 (-0.007316) | 0.080464 / 0.038508 (0.041956) | 0.064751 / 0.023109 (0.041642) | 0.318586 / 0.275898 (0.042688) | 0.351435 / 0.323480 (0.027955) | 0.005044 / 0.007986 (-0.002942) | 0.003034 / 0.004328 (-0.001295) | 0.063710 / 0.004250 (0.059460) | 0.050607 / 0.037052 (0.013555) | 0.318491 / 0.258489 (0.060001) | 0.365688 / 0.293841 (0.071847) | 0.027818 / 0.128546 (-0.100729) | 0.008119 / 0.075646 (-0.067527) | 0.262141 / 0.419271 (-0.157131) | 0.044710 / 0.043533 (0.001177) | 0.318875 / 0.255139 (0.063736) | 0.344559 / 0.283200 (0.061360) | 0.022861 / 0.141683 (-0.118822) | 1.452402 / 1.452155 (0.000247) | 1.502340 / 1.492716 (0.009624) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219355 / 0.018006 (0.201349) | 0.433311 / 0.000490 (0.432822) | 0.006545 / 0.000200 (0.006345) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024538 / 0.037411 (-0.012874) | 0.073346 / 0.014526 (0.058821) | 0.083824 / 0.176557 (-0.092733) | 0.145176 / 0.737135 (-0.591959) | 0.085941 / 0.296338 (-0.210397) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395153 / 0.215209 (0.179944) | 3.944734 / 2.077655 (1.867080) | 1.883910 / 1.504120 (0.379790) | 1.690560 / 1.541195 (0.149365) | 1.775180 / 1.468490 (0.306690) | 0.506873 / 4.584777 (-4.077904) | 3.111095 / 3.745712 (-0.634617) | 2.915358 / 5.269862 (-2.354504) | 1.892886 / 4.565676 (-2.672791) | 0.058690 / 0.424275 (-0.365585) | 0.006550 / 0.007607 (-0.001057) | 0.463372 / 0.226044 (0.237328) | 4.640511 / 2.268929 (2.371583) | 2.321051 / 55.444624 (-53.123573) | 1.986330 / 6.876477 (-4.890147) | 2.160046 / 2.142072 (0.017973) | 0.597833 / 4.805227 (-4.207394) | 0.127946 / 6.500664 (-6.372718) | 0.059709 / 0.075469 (-0.015760) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278966 / 1.841788 (-0.562822) | 17.863102 / 8.074308 (9.788794) | 13.896057 / 10.191392 (3.704665) | 0.147512 / 0.680424 (-0.532912) | 0.016771 / 0.534201 (-0.517430) | 0.335260 / 0.579283 (-0.244024) | 0.383019 / 0.434364 (-0.051345) | 0.384821 / 0.540337 (-0.155516) | 0.550143 / 1.386936 (-0.836793) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006234 / 0.011353 (-0.005118) | 0.003695 / 0.011008 (-0.007313) | 0.062654 / 0.038508 (0.024146) | 0.059397 / 0.023109 (0.036287) | 0.458375 / 0.275898 (0.182477) | 0.488951 / 0.323480 (0.165471) | 0.004971 / 0.007986 (-0.003014) | 0.002914 / 0.004328 (-0.001415) | 0.061184 / 0.004250 (0.056934) | 0.051246 / 0.037052 (0.014194) | 0.458035 / 0.258489 (0.199546) | 0.490838 / 0.293841 (0.196997) | 0.028746 / 0.128546 (-0.099800) | 0.008167 / 0.075646 (-0.067480) | 0.068006 / 0.419271 (-0.351265) | 0.041809 / 0.043533 (-0.001724) | 0.453896 / 0.255139 (0.198757) | 0.477583 / 0.283200 (0.194383) | 0.020906 / 0.141683 (-0.120777) | 1.443275 / 1.452155 (-0.008879) | 1.493431 / 1.492716 (0.000714) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219903 / 0.018006 (0.201896) | 0.410275 / 0.000490 (0.409785) | 0.003919 / 0.000200 (0.003719) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027850 / 0.037411 (-0.009561) | 0.080444 / 0.014526 (0.065918) | 0.089943 / 0.176557 (-0.086614) | 0.145810 / 0.737135 (-0.591326) | 0.090908 / 0.296338 (-0.205430) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.464386 / 0.215209 (0.249177) | 4.633787 / 2.077655 (2.556133) | 2.581658 / 1.504120 (1.077538) | 2.408486 / 1.541195 (0.867291) | 2.460491 / 1.468490 (0.992001) | 0.507512 / 4.584777 (-4.077265) | 3.190363 / 3.745712 (-0.555349) | 2.895581 / 5.269862 (-2.374280) | 1.871506 / 4.565676 (-2.694171) | 0.058469 / 0.424275 (-0.365806) | 0.006526 / 0.007607 (-0.001082) | 0.537641 / 0.226044 (0.311596) | 5.396660 / 2.268929 (3.127731) | 3.027028 / 55.444624 (-52.417596) | 2.703771 / 6.876477 (-4.172705) | 2.865576 / 2.142072 (0.723503) | 0.600103 / 4.805227 (-4.205124) | 0.127109 / 6.500664 (-6.373555) | 0.060985 / 0.075469 (-0.014484) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365030 / 1.841788 (-0.476758) | 17.988218 / 8.074308 (9.913909) | 14.900796 / 10.191392 (4.709404) | 0.158211 / 0.680424 (-0.522213) | 0.018291 / 0.534201 (-0.515910) | 0.337437 / 0.579283 (-0.241846) | 0.383710 / 0.434364 (-0.050654) | 0.392341 / 0.540337 (-0.147997) | 0.561584 / 1.386936 (-0.825352) |\n\n</details>\n</details>\n\n\n",
"CI failures are unrelated"
] | 2023-10-05T15:24:05
| 2023-10-05T15:55:10
| null |
CONTRIBUTOR
| null |
Fix #6280
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6283/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6283/timeline
| null | null | false
|
{
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6283",
"html_url": "https://github.com/huggingface/datasets/pull/6283",
"diff_url": "https://github.com/huggingface/datasets/pull/6283.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6283.patch",
"merged_at": null
}
| true
|
https://api.github.com/repos/huggingface/datasets/issues/6282
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6282/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6282/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6282/events
|
https://github.com/huggingface/datasets/pull/6282
| 1,928,473,630
|
PR_kwDODunzps5cBT5p
| 6,282
|
Drop data_files duplicates
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006934 / 0.011353 (-0.004419) | 0.004097 / 0.011008 (-0.006911) | 0.084662 / 0.038508 (0.046154) | 0.077106 / 0.023109 (0.053996) | 0.355035 / 0.275898 (0.079137) | 0.381466 / 0.323480 (0.057986) | 0.004182 / 0.007986 (-0.003803) | 0.003411 / 0.004328 (-0.000917) | 0.065279 / 0.004250 (0.061029) | 0.058192 / 0.037052 (0.021140) | 0.372363 / 0.258489 (0.113874) | 0.401621 / 0.293841 (0.107780) | 0.031719 / 0.128546 (-0.096827) | 0.008753 / 0.075646 (-0.066893) | 0.287125 / 0.419271 (-0.132146) | 0.052943 / 0.043533 (0.009410) | 0.349680 / 0.255139 (0.094541) | 0.364004 / 0.283200 (0.080805) | 0.026705 / 0.141683 (-0.114977) | 1.472708 / 1.452155 (0.020553) | 1.556559 / 1.492716 (0.063842) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224868 / 0.018006 (0.206862) | 0.458793 / 0.000490 (0.458304) | 0.009434 / 0.000200 (0.009234) | 0.000356 / 0.000054 (0.000301) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029670 / 0.037411 (-0.007741) | 0.086517 / 0.014526 (0.071991) | 0.097342 / 0.176557 (-0.079215) | 0.153722 / 0.737135 (-0.583413) | 0.098465 / 0.296338 (-0.197874) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400739 / 0.215209 (0.185530) | 3.998087 / 2.077655 (1.920432) | 2.025772 / 1.504120 (0.521652) | 1.858679 / 1.541195 (0.317485) | 1.951573 / 1.468490 (0.483083) | 0.483028 / 4.584777 (-4.101749) | 3.554085 / 3.745712 (-0.191627) | 3.306983 / 5.269862 (-1.962879) | 2.087043 / 4.565676 (-2.478633) | 0.057127 / 0.424275 (-0.367148) | 0.007252 / 0.007607 (-0.000355) | 0.480180 / 0.226044 (0.254136) | 4.787183 / 2.268929 (2.518255) | 2.489667 / 55.444624 (-52.954957) | 2.150774 / 6.876477 (-4.725703) | 2.403197 / 2.142072 (0.261124) | 0.581843 / 4.805227 (-4.223384) | 0.134915 / 6.500664 (-6.365749) | 0.061283 / 0.075469 (-0.014186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285700 / 1.841788 (-0.556088) | 19.474093 / 8.074308 (11.399785) | 14.336349 / 10.191392 (4.144957) | 0.170932 / 0.680424 (-0.509492) | 0.018348 / 0.534201 (-0.515853) | 0.391909 / 0.579283 (-0.187374) | 0.414706 / 0.434364 (-0.019658) | 0.458156 / 0.540337 (-0.082182) | 0.656303 / 1.386936 (-0.730633) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006738 / 0.011353 (-0.004615) | 0.004029 / 0.011008 (-0.006979) | 0.064411 / 0.038508 (0.025903) | 0.078225 / 0.023109 (0.055116) | 0.408468 / 0.275898 (0.132569) | 0.445585 / 0.323480 (0.122105) | 0.005490 / 0.007986 (-0.002495) | 0.003419 / 0.004328 (-0.000910) | 0.063966 / 0.004250 (0.059715) | 0.056779 / 0.037052 (0.019727) | 0.415258 / 0.258489 (0.156769) | 0.461258 / 0.293841 (0.167418) | 0.032051 / 0.128546 (-0.096495) | 0.008471 / 0.075646 (-0.067176) | 0.071004 / 0.419271 (-0.348267) | 0.049068 / 0.043533 (0.005536) | 0.409575 / 0.255139 (0.154436) | 0.430748 / 0.283200 (0.147548) | 0.023784 / 0.141683 (-0.117899) | 1.507894 / 1.452155 (0.055739) | 1.586575 / 1.492716 (0.093859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228574 / 0.018006 (0.210568) | 0.451389 / 0.000490 (0.450900) | 0.006312 / 0.000200 (0.006112) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033391 / 0.037411 (-0.004020) | 0.096816 / 0.014526 (0.082290) | 0.107269 / 0.176557 (-0.069288) | 0.159749 / 0.737135 (-0.577387) | 0.108240 / 0.296338 (-0.188098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437643 / 0.215209 (0.222434) | 4.378173 / 2.077655 (2.300518) | 2.367218 / 1.504120 (0.863098) | 2.229493 / 1.541195 (0.688298) | 2.329849 / 1.468490 (0.861359) | 0.494985 / 4.584777 (-4.089792) | 3.578540 / 3.745712 (-0.167172) | 3.338220 / 5.269862 (-1.931642) | 2.092482 / 4.565676 (-2.473194) | 0.058495 / 0.424275 (-0.365780) | 0.007396 / 0.007607 (-0.000211) | 0.511001 / 0.226044 (0.284957) | 5.113497 / 2.268929 (2.844568) | 2.806215 / 55.444624 (-52.638409) | 2.485428 / 6.876477 (-4.391048) | 2.764907 / 2.142072 (0.622835) | 0.598824 / 4.805227 (-4.206404) | 0.134988 / 6.500664 (-6.365676) | 0.061752 / 0.075469 (-0.013717) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365583 / 1.841788 (-0.476205) | 20.270297 / 8.074308 (12.195989) | 15.331673 / 10.191392 (5.140281) | 0.166152 / 0.680424 (-0.514272) | 0.020678 / 0.534201 (-0.513523) | 0.394821 / 0.579283 (-0.184462) | 0.420493 / 0.434364 (-0.013871) | 0.468551 / 0.540337 (-0.071787) | 0.654903 / 1.386936 (-0.732033) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007803 / 0.011353 (-0.003550) | 0.004664 / 0.011008 (-0.006344) | 0.099908 / 0.038508 (0.061400) | 0.090674 / 0.023109 (0.067565) | 0.406009 / 0.275898 (0.130111) | 0.465098 / 0.323480 (0.141618) | 0.004667 / 0.007986 (-0.003319) | 0.003880 / 0.004328 (-0.000449) | 0.076552 / 0.004250 (0.072301) | 0.066345 / 0.037052 (0.029292) | 0.419195 / 0.258489 (0.160706) | 0.478581 / 0.293841 (0.184741) | 0.036967 / 0.128546 (-0.091579) | 0.010000 / 0.075646 (-0.065647) | 0.347126 / 0.419271 (-0.072145) | 0.062265 / 0.043533 (0.018733) | 0.406653 / 0.255139 (0.151514) | 0.439044 / 0.283200 (0.155845) | 0.031289 / 0.141683 (-0.110394) | 1.797674 / 1.452155 (0.345520) | 1.835183 / 1.492716 (0.342467) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268194 / 0.018006 (0.250187) | 0.493614 / 0.000490 (0.493124) | 0.015636 / 0.000200 (0.015436) | 0.000417 / 0.000054 (0.000362) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034188 / 0.037411 (-0.003223) | 0.099127 / 0.014526 (0.084601) | 0.113949 / 0.176557 (-0.062607) | 0.181209 / 0.737135 (-0.555926) | 0.114943 / 0.296338 (-0.181395) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455767 / 0.215209 (0.240558) | 4.542947 / 2.077655 (2.465293) | 2.214605 / 1.504120 (0.710485) | 2.015163 / 1.541195 (0.473969) | 2.084945 / 1.468490 (0.616455) | 0.583827 / 4.584777 (-4.000950) | 4.187009 / 3.745712 (0.441297) | 3.920841 / 5.269862 (-1.349020) | 2.447260 / 4.565676 (-2.118417) | 0.069139 / 0.424275 (-0.355137) | 0.008734 / 0.007607 (0.001127) | 0.544673 / 0.226044 (0.318629) | 5.445094 / 2.268929 (3.176165) | 2.788284 / 55.444624 (-52.656340) | 2.395863 / 6.876477 (-4.480614) | 2.622632 / 2.142072 (0.480560) | 0.703931 / 4.805227 (-4.101297) | 0.160502 / 6.500664 (-6.340162) | 0.073734 / 0.075469 (-0.001735) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.498992 / 1.841788 (-0.342795) | 22.761476 / 8.074308 (14.687168) | 17.123919 / 10.191392 (6.932527) | 0.170272 / 0.680424 (-0.510151) | 0.021307 / 0.534201 (-0.512894) | 0.467548 / 0.579283 (-0.111735) | 0.480777 / 0.434364 (0.046413) | 0.542168 / 0.540337 (0.001830) | 0.771092 / 1.386936 (-0.615844) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007923 / 0.011353 (-0.003430) | 0.004664 / 0.011008 (-0.006344) | 0.077795 / 0.038508 (0.039286) | 0.090293 / 0.023109 (0.067184) | 0.494682 / 0.275898 (0.218784) | 0.539973 / 0.323480 (0.216494) | 0.006302 / 0.007986 (-0.001684) | 0.003794 / 0.004328 (-0.000535) | 0.076567 / 0.004250 (0.072317) | 0.067141 / 0.037052 (0.030089) | 0.501279 / 0.258489 (0.242790) | 0.555670 / 0.293841 (0.261829) | 0.037773 / 0.128546 (-0.090773) | 0.009930 / 0.075646 (-0.065716) | 0.084839 / 0.419271 (-0.334433) | 0.056876 / 0.043533 (0.013344) | 0.499329 / 0.255139 (0.244190) | 0.518449 / 0.283200 (0.235249) | 0.026041 / 0.141683 (-0.115642) | 1.787259 / 1.452155 (0.335105) | 1.853505 / 1.492716 (0.360788) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238413 / 0.018006 (0.220407) | 0.488889 / 0.000490 (0.488399) | 0.007476 / 0.000200 (0.007277) | 0.000141 / 0.000054 (0.000087) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038701 / 0.037411 (0.001290) | 0.115391 / 0.014526 (0.100865) | 0.125553 / 0.176557 (-0.051004) | 0.190267 / 0.737135 (-0.546868) | 0.126401 / 0.296338 (-0.169937) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.509270 / 0.215209 (0.294061) | 5.087631 / 2.077655 (3.009976) | 2.745863 / 1.504120 (1.241743) | 2.560259 / 1.541195 (1.019064) | 2.653124 / 1.468490 (1.184634) | 0.582118 / 4.584777 (-4.002659) | 4.181144 / 3.745712 (0.435431) | 3.871179 / 5.269862 (-1.398683) | 2.459849 / 4.565676 (-2.105827) | 0.068844 / 0.424275 (-0.355431) | 0.008672 / 0.007607 (0.001065) | 0.604898 / 0.226044 (0.378854) | 6.073263 / 2.268929 (3.804334) | 3.366638 / 55.444624 (-52.077986) | 2.937261 / 6.876477 (-3.939215) | 3.181173 / 2.142072 (1.039100) | 0.700478 / 4.805227 (-4.104750) | 0.158361 / 6.500664 (-6.342303) | 0.072860 / 0.075469 (-0.002609) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.621363 / 1.841788 (-0.220425) | 23.614315 / 8.074308 (15.540007) | 17.607213 / 10.191392 (7.415821) | 0.198031 / 0.680424 (-0.482393) | 0.023859 / 0.534201 (-0.510342) | 0.474674 / 0.579283 (-0.104609) | 0.491173 / 0.434364 (0.056809) | 0.581995 / 0.540337 (0.041658) | 0.792168 / 1.386936 (-0.594768) |\n\n</details>\n</details>\n\n\n"
] | 2023-10-05T14:43:08
| 2023-10-05T15:28:26
| null |
MEMBER
| null |
I just added drop_duplicates=True to `.from_patterns`. I used a dict to deduplicate and preserve the order
close https://github.com/huggingface/datasets/issues/6259
close https://github.com/huggingface/datasets/issues/6272
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6282/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6282/timeline
| null | null | true
|
{
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6282",
"html_url": "https://github.com/huggingface/datasets/pull/6282",
"diff_url": "https://github.com/huggingface/datasets/pull/6282.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6282.patch",
"merged_at": null
}
| true
|
https://api.github.com/repos/huggingface/datasets/issues/6281
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6281/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6281/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6281/events
|
https://github.com/huggingface/datasets/pull/6281
| 1,928,456,959
|
PR_kwDODunzps5cBQPd
| 6,281
|
Improve documentation of dataset.from_generator
|
{
"login": "hartmans",
"id": 53510,
"node_id": "MDQ6VXNlcjUzNTEw",
"avatar_url": "https://avatars.githubusercontent.com/u/53510?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hartmans",
"html_url": "https://github.com/hartmans",
"followers_url": "https://api.github.com/users/hartmans/followers",
"following_url": "https://api.github.com/users/hartmans/following{/other_user}",
"gists_url": "https://api.github.com/users/hartmans/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hartmans/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hartmans/subscriptions",
"organizations_url": "https://api.github.com/users/hartmans/orgs",
"repos_url": "https://api.github.com/users/hartmans/repos",
"events_url": "https://api.github.com/users/hartmans/events{/privacy}",
"received_events_url": "https://api.github.com/users/hartmans/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false
| null |
[] | null |
[
"I have looked at the doc failures, and I do not think that my change caused the doc build failure, but I'm not 100% sure about that.\r\nI have high confidence that the integration test failures are not something I introduced:-)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008557 / 0.011353 (-0.002796) | 0.005224 / 0.011008 (-0.005784) | 0.109402 / 0.038508 (0.070893) | 0.075008 / 0.023109 (0.051899) | 0.388910 / 0.275898 (0.113012) | 0.425481 / 0.323480 (0.102002) | 0.005046 / 0.007986 (-0.002939) | 0.004166 / 0.004328 (-0.000162) | 0.079890 / 0.004250 (0.075639) | 0.061992 / 0.037052 (0.024940) | 0.409933 / 0.258489 (0.151444) | 0.444096 / 0.293841 (0.150255) | 0.043958 / 0.128546 (-0.084588) | 0.013655 / 0.075646 (-0.061991) | 0.402620 / 0.419271 (-0.016651) | 0.062784 / 0.043533 (0.019251) | 0.399653 / 0.255139 (0.144514) | 0.432926 / 0.283200 (0.149727) | 0.034631 / 0.141683 (-0.107052) | 1.801450 / 1.452155 (0.349296) | 1.965007 / 1.492716 (0.472290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305744 / 0.018006 (0.287738) | 0.590825 / 0.000490 (0.590335) | 0.014561 / 0.000200 (0.014361) | 0.000430 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030449 / 0.037411 (-0.006962) | 0.091753 / 0.014526 (0.077227) | 0.106259 / 0.176557 (-0.070298) | 0.174599 / 0.737135 (-0.562537) | 0.107069 / 0.296338 (-0.189269) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.607544 / 0.215209 (0.392335) | 6.182592 / 2.077655 (4.104937) | 2.699782 / 1.504120 (1.195663) | 2.386915 / 1.541195 (0.845720) | 2.441763 / 1.468490 (0.973273) | 0.811360 / 4.584777 (-3.773417) | 5.253799 / 3.745712 (1.508087) | 4.762054 / 5.269862 (-0.507807) | 3.045161 / 4.565676 (-1.520515) | 0.095983 / 0.424275 (-0.328292) | 0.008653 / 0.007607 (0.001046) | 0.714218 / 0.226044 (0.488174) | 7.279325 / 2.268929 (5.010397) | 3.356107 / 55.444624 (-52.088517) | 2.765867 / 6.876477 (-4.110610) | 2.997756 / 2.142072 (0.855684) | 1.008740 / 4.805227 (-3.796487) | 0.201462 / 6.500664 (-6.299202) | 0.075780 / 0.075469 (0.000311) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.677034 / 1.841788 (-0.164754) | 23.546919 / 8.074308 (15.472610) | 21.576985 / 10.191392 (11.385593) | 0.239253 / 0.680424 (-0.441171) | 0.028740 / 0.534201 (-0.505460) | 0.468519 / 0.579283 (-0.110765) | 0.593935 / 0.434364 (0.159571) | 0.536830 / 0.540337 (-0.003507) | 0.779925 / 1.386936 (-0.607011) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009582 / 0.011353 (-0.001771) | 0.004971 / 0.011008 (-0.006037) | 0.081304 / 0.038508 (0.042796) | 0.077588 / 0.023109 (0.054478) | 0.486610 / 0.275898 (0.210712) | 0.580228 / 0.323480 (0.256748) | 0.006707 / 0.007986 (-0.001279) | 0.004325 / 0.004328 (-0.000004) | 0.086170 / 0.004250 (0.081920) | 0.060591 / 0.037052 (0.023539) | 0.501723 / 0.258489 (0.243234) | 0.548633 / 0.293841 (0.254793) | 0.050306 / 0.128546 (-0.078240) | 0.017458 / 0.075646 (-0.058188) | 0.093295 / 0.419271 (-0.325977) | 0.064588 / 0.043533 (0.021056) | 0.519395 / 0.255139 (0.264256) | 0.526021 / 0.283200 (0.242821) | 0.035795 / 0.141683 (-0.105888) | 1.792927 / 1.452155 (0.340772) | 1.956499 / 1.492716 (0.463783) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296249 / 0.018006 (0.278243) | 0.594482 / 0.000490 (0.593992) | 0.007318 / 0.000200 (0.007118) | 0.000182 / 0.000054 (0.000128) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036110 / 0.037411 (-0.001301) | 0.107924 / 0.014526 (0.093399) | 0.119975 / 0.176557 (-0.056582) | 0.177499 / 0.737135 (-0.559636) | 0.123299 / 0.296338 (-0.173039) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.632994 / 0.215209 (0.417785) | 6.481663 / 2.077655 (4.404008) | 3.231259 / 1.504120 (1.727139) | 2.768298 / 1.541195 (1.227103) | 2.694543 / 1.468490 (1.226053) | 0.837384 / 4.584777 (-3.747393) | 5.405278 / 3.745712 (1.659566) | 4.639424 / 5.269862 (-0.630437) | 2.944251 / 4.565676 (-1.621426) | 0.094978 / 0.424275 (-0.329297) | 0.008716 / 0.007607 (0.001108) | 0.795820 / 0.226044 (0.569776) | 8.514233 / 2.268929 (6.245304) | 3.800463 / 55.444624 (-51.644161) | 3.000005 / 6.876477 (-3.876472) | 3.298853 / 2.142072 (1.156781) | 0.994112 / 4.805227 (-3.811115) | 0.209435 / 6.500664 (-6.291229) | 0.075610 / 0.075469 (0.000141) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.681127 / 1.841788 (-0.160661) | 23.874465 / 8.074308 (15.800156) | 21.638567 / 10.191392 (11.447175) | 0.233303 / 0.680424 (-0.447121) | 0.032504 / 0.534201 (-0.501697) | 0.460462 / 0.579283 (-0.118821) | 0.560043 / 0.434364 (0.125679) | 0.555059 / 0.540337 (0.014721) | 0.831444 / 1.386936 (-0.555492) |\n\n</details>\n</details>\n\n\n"
] | 2023-10-05T14:34:49
| 2023-10-05T19:09:07
| 2023-10-05T18:57:41
|
CONTRIBUTOR
| null |
Improve documentation to clarify sharding behavior (#6270)
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6281/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6281/timeline
| null | null | false
|
{
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6281",
"html_url": "https://github.com/huggingface/datasets/pull/6281",
"diff_url": "https://github.com/huggingface/datasets/pull/6281.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6281.patch",
"merged_at": "2023-10-05T18:57:41"
}
| true
|
https://api.github.com/repos/huggingface/datasets/issues/6280
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6280/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6280/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6280/events
|
https://github.com/huggingface/datasets/issues/6280
| 1,928,215,278
|
I_kwDODunzps5y7jru
| 6,280
|
Couldn't cast array of type fixed_size_list to Sequence(Value(float64))
|
{
"login": "jmif",
"id": 1000442,
"node_id": "MDQ6VXNlcjEwMDA0NDI=",
"avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jmif",
"html_url": "https://github.com/jmif",
"followers_url": "https://api.github.com/users/jmif/followers",
"following_url": "https://api.github.com/users/jmif/following{/other_user}",
"gists_url": "https://api.github.com/users/jmif/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jmif/subscriptions",
"organizations_url": "https://api.github.com/users/jmif/orgs",
"repos_url": "https://api.github.com/users/jmif/repos",
"events_url": "https://api.github.com/users/jmif/events{/privacy}",
"received_events_url": "https://api.github.com/users/jmif/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"Thanks for reporting! I've opened a PR with a fix.",
"Thanks for the quick response @mariosasko! I just installed your branch via `poetry add 'git+https://github.com/huggingface/datasets#fix-array_values'` and I can confirm it works on the example provided.\r\n\r\nFollow up question for you, should `None`s be supported in these types of features as they are in others?\r\n\r\nFor example, the following script:\r\n\r\n```\r\nfrom datasets import Features, Value, Sequence, ClassLabel, Dataset\r\n\r\ndataset_features = Features({\r\n 'text': Value('string'),\r\n 'embedding': Sequence(Value('double'), length=2),\r\n 'categories': Sequence(ClassLabel(names=sorted([\r\n 'one',\r\n 'two',\r\n 'three'\r\n ]))),\r\n})\r\n\r\ndataset = Dataset.from_dict(\r\n {\r\n 'text': ['A'] * 10000,\r\n \"embedding\": [None] * 10000, # THIS LINE CHANGED\r\n 'categories': [[0]] * 10000,\r\n },\r\n features=dataset_features\r\n)\r\n\r\ndef test_mapper(r):\r\n r['text'] = list(map(lambda t: t + ' b', r['text']))\r\n return r\r\n\r\n\r\ndataset = dataset.map(test_mapper, batched=True, batch_size=10, features=dataset_features, num_proc=2)\r\n```\r\n\r\nfails with\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/multiprocess/pool.py\", line 125, in worker\r\n result = (True, func(*args, **kwds))\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py\", line 1354, in _write_generator_to_queue\r\n for i, result in enumerate(func(**kwargs)):\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_dataset.py\", line 3493, in _map_single\r\n writer.write_batch(batch)\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_writer.py\", line 549, in write_batch\r\n array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 1831, in wrapper\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 1831, in <listcomp>\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 2160, in cast_array_to_feature\r\n raise TypeError(f\"Couldn't cast array of type\\n{array.type}\\nto\\n{feature}\")\r\nTypeError: Couldn't cast array of type\r\nfixed_size_list<item: double>[2]\r\nto\r\nSequence(feature=Value(dtype='float64', id=None), length=2, id=None)\r\n```\r\n\r\nIdeally we can have empty embedding columns as well!"
] | 2023-10-05T12:48:31
| 2023-10-05T16:55:46
| null |
NONE
| null |
### Describe the bug
I have a dataset with an embedding column, when I try to map that dataset I get the following exception:
```
Traceback (most recent call last):
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3189, in map
for rank, done, content in iflatmap_unordered(
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1387, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1387, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
TypeError: Couldn't cast array of type
fixed_size_list<item: float>[2]
to
Sequence(feature=Value(dtype='float32', id=None), length=2, id=None)
```
### Steps to reproduce the bug
Here's a simple repro script:
```
from datasets import Features, Value, Sequence, ClassLabel, Dataset
dataset_features = Features({
'text': Value('string'),
'embedding': Sequence(Value('double'), length=2),
'categories': Sequence(ClassLabel(names=sorted([
'one',
'two',
'three'
]))),
})
dataset = Dataset.from_dict(
{
'text': ['A'] * 10000,
'embedding': [[0.0, 0.1]] * 10000,
'categories': [[0]] * 10000,
},
features=dataset_features
)
def test_mapper(r):
r['text'] = list(map(lambda t: t + ' b', r['text']))
return r
dataset = dataset.map(test_mapper, batched=True, batch_size=10, features=dataset_features, num_proc=2)
```
Removing the embedding column fixes the issue!
### Expected behavior
The mapping completes successfully.
### Environment info
- `datasets` version: 2.14.4
- Platform: macOS-14.0-arm64-arm-64bit
- Python version: 3.10.12
- Huggingface_hub version: 0.17.1
- PyArrow version: 13.0.0
- Pandas version: 2.0.3
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6280/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6280/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6279
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6279/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6279/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6279/events
|
https://github.com/huggingface/datasets/issues/6279
| 1,928,028,226
|
I_kwDODunzps5y62BC
| 6,279
|
Batched IterableDataset
|
{
"login": "lneukom",
"id": 7010688,
"node_id": "MDQ6VXNlcjcwMTA2ODg=",
"avatar_url": "https://avatars.githubusercontent.com/u/7010688?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lneukom",
"html_url": "https://github.com/lneukom",
"followers_url": "https://api.github.com/users/lneukom/followers",
"following_url": "https://api.github.com/users/lneukom/following{/other_user}",
"gists_url": "https://api.github.com/users/lneukom/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lneukom/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lneukom/subscriptions",
"organizations_url": "https://api.github.com/users/lneukom/orgs",
"repos_url": "https://api.github.com/users/lneukom/repos",
"events_url": "https://api.github.com/users/lneukom/events{/privacy}",
"received_events_url": "https://api.github.com/users/lneukom/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] |
open
| false
| null |
[] | null |
[
"This is exactly what I was looking for. It would also be very useful for me :-)"
] | 2023-10-05T11:12:49
| 2023-10-05T11:50:28
| null |
NONE
| null |
### Feature request
Hi,
could you add an implementation of a batched `IterableDataset`. It already support an option to do batch iteration via `.iter(batch_size=...)` but this cannot be used in combination with a torch `DataLoader` since it just returns an iterator.
### Motivation
The current implementation loads each element of a batch individually which can be very slow in cases of a big batch_size. I did some experiments [here](https://discuss.huggingface.co/t/slow-dataloader-with-big-batch-size/57224) and using a batched iteration would speed up data loading significantly.
### Your contribution
N/A
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6279/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6279/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6278
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6278/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6278/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6278/events
|
https://github.com/huggingface/datasets/pull/6278
| 1,927,957,877
|
PR_kwDODunzps5b_iKb
| 6,278
|
No data files duplicates
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009624 / 0.011353 (-0.001729) | 0.005121 / 0.011008 (-0.005887) | 0.105560 / 0.038508 (0.067052) | 0.090749 / 0.023109 (0.067640) | 0.430274 / 0.275898 (0.154376) | 0.443399 / 0.323480 (0.119919) | 0.006575 / 0.007986 (-0.001411) | 0.004396 / 0.004328 (0.000068) | 0.080900 / 0.004250 (0.076649) | 0.064921 / 0.037052 (0.027868) | 0.410092 / 0.258489 (0.151603) | 0.470058 / 0.293841 (0.176217) | 0.054160 / 0.128546 (-0.074386) | 0.014367 / 0.075646 (-0.061279) | 0.384844 / 0.419271 (-0.034428) | 0.072818 / 0.043533 (0.029285) | 0.429341 / 0.255139 (0.174202) | 0.430968 / 0.283200 (0.147769) | 0.038437 / 0.141683 (-0.103246) | 1.814456 / 1.452155 (0.362301) | 1.832122 / 1.492716 (0.339406) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329266 / 0.018006 (0.311260) | 0.596848 / 0.000490 (0.596358) | 0.018291 / 0.000200 (0.018091) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030505 / 0.037411 (-0.006907) | 0.097394 / 0.014526 (0.082869) | 0.127144 / 0.176557 (-0.049412) | 0.190251 / 0.737135 (-0.546884) | 0.116543 / 0.296338 (-0.179795) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.592124 / 0.215209 (0.376915) | 5.979801 / 2.077655 (3.902146) | 2.837753 / 1.504120 (1.333633) | 2.492942 / 1.541195 (0.951747) | 2.548083 / 1.468490 (1.079593) | 0.870446 / 4.584777 (-3.714330) | 5.493718 / 3.745712 (1.748006) | 4.945135 / 5.269862 (-0.324727) | 3.133994 / 4.565676 (-1.431683) | 0.097742 / 0.424275 (-0.326533) | 0.008750 / 0.007607 (0.001143) | 0.723304 / 0.226044 (0.497260) | 7.353766 / 2.268929 (5.084838) | 3.504808 / 55.444624 (-51.939816) | 2.872490 / 6.876477 (-4.003987) | 3.186628 / 2.142072 (1.044556) | 1.035470 / 4.805227 (-3.769758) | 0.211980 / 6.500664 (-6.288684) | 0.080356 / 0.075469 (0.004887) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623389 / 1.841788 (-0.218399) | 23.492350 / 8.074308 (15.418042) | 21.053525 / 10.191392 (10.862133) | 0.225668 / 0.680424 (-0.454756) | 0.028311 / 0.534201 (-0.505890) | 0.472672 / 0.579283 (-0.106611) | 0.581536 / 0.434364 (0.147172) | 0.525180 / 0.540337 (-0.015158) | 0.790420 / 1.386936 (-0.596516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009091 / 0.011353 (-0.002262) | 0.004978 / 0.011008 (-0.006030) | 0.077633 / 0.038508 (0.039125) | 0.103189 / 0.023109 (0.080080) | 0.500194 / 0.275898 (0.224296) | 0.524310 / 0.323480 (0.200831) | 0.006656 / 0.007986 (-0.001329) | 0.004586 / 0.004328 (0.000257) | 0.075535 / 0.004250 (0.071284) | 0.065100 / 0.037052 (0.028048) | 0.513776 / 0.258489 (0.255287) | 0.528483 / 0.293841 (0.234642) | 0.049877 / 0.128546 (-0.078669) | 0.012494 / 0.075646 (-0.063152) | 0.090225 / 0.419271 (-0.329046) | 0.054648 / 0.043533 (0.011116) | 0.510369 / 0.255139 (0.255230) | 0.540042 / 0.283200 (0.256842) | 0.035966 / 0.141683 (-0.105717) | 1.825965 / 1.452155 (0.373810) | 1.965647 / 1.492716 (0.472931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295921 / 0.018006 (0.277914) | 0.605751 / 0.000490 (0.605262) | 0.007243 / 0.000200 (0.007043) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.093613 / 0.014526 (0.079087) | 0.120010 / 0.176557 (-0.056546) | 0.176168 / 0.737135 (-0.560967) | 0.113978 / 0.296338 (-0.182360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.682904 / 0.215209 (0.467695) | 6.674640 / 2.077655 (4.596986) | 3.360660 / 1.504120 (1.856540) | 3.227246 / 1.541195 (1.686051) | 3.188852 / 1.468490 (1.720362) | 0.862293 / 4.584777 (-3.722484) | 5.518455 / 3.745712 (1.772743) | 4.881904 / 5.269862 (-0.387957) | 3.066964 / 4.565676 (-1.498712) | 0.099284 / 0.424275 (-0.324991) | 0.008644 / 0.007607 (0.001037) | 0.789231 / 0.226044 (0.563186) | 7.872017 / 2.268929 (5.603089) | 4.037105 / 55.444624 (-51.407519) | 3.318921 / 6.876477 (-3.557555) | 3.621953 / 2.142072 (1.479881) | 1.012049 / 4.805227 (-3.793178) | 0.204541 / 6.500664 (-6.296123) | 0.074509 / 0.075469 (-0.000960) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748215 / 1.841788 (-0.093573) | 24.274974 / 8.074308 (16.200665) | 20.582389 / 10.191392 (10.390997) | 0.251001 / 0.680424 (-0.429423) | 0.032390 / 0.534201 (-0.501811) | 0.479211 / 0.579283 (-0.100072) | 0.607482 / 0.434364 (0.173118) | 0.587867 / 0.540337 (0.047530) | 0.822399 / 1.386936 (-0.564537) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009715 / 0.011353 (-0.001638) | 0.005449 / 0.011008 (-0.005559) | 0.108556 / 0.038508 (0.070048) | 0.080512 / 0.023109 (0.057403) | 0.450736 / 0.275898 (0.174838) | 0.487771 / 0.323480 (0.164291) | 0.005155 / 0.007986 (-0.002830) | 0.004213 / 0.004328 (-0.000115) | 0.087247 / 0.004250 (0.082997) | 0.063962 / 0.037052 (0.026909) | 0.454153 / 0.258489 (0.195664) | 0.499917 / 0.293841 (0.206076) | 0.052605 / 0.128546 (-0.075942) | 0.013019 / 0.075646 (-0.062627) | 0.379716 / 0.419271 (-0.039555) | 0.073241 / 0.043533 (0.029708) | 0.473488 / 0.255139 (0.218349) | 0.482944 / 0.283200 (0.199745) | 0.041541 / 0.141683 (-0.100142) | 1.829415 / 1.452155 (0.377261) | 1.953280 / 1.492716 (0.460564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313725 / 0.018006 (0.295719) | 0.591336 / 0.000490 (0.590847) | 0.021224 / 0.000200 (0.021025) | 0.000969 / 0.000054 (0.000914) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031874 / 0.037411 (-0.005537) | 0.099786 / 0.014526 (0.085260) | 0.116987 / 0.176557 (-0.059569) | 0.205538 / 0.737135 (-0.531597) | 0.118716 / 0.296338 (-0.177622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.617145 / 0.215209 (0.401936) | 6.079144 / 2.077655 (4.001489) | 2.567233 / 1.504120 (1.063113) | 2.265301 / 1.541195 (0.724107) | 2.314001 / 1.468490 (0.845511) | 0.871561 / 4.584777 (-3.713216) | 5.477049 / 3.745712 (1.731337) | 4.720552 / 5.269862 (-0.549309) | 3.107515 / 4.565676 (-1.458162) | 0.100438 / 0.424275 (-0.323838) | 0.008586 / 0.007607 (0.000979) | 0.716913 / 0.226044 (0.490869) | 7.108417 / 2.268929 (4.839489) | 3.391336 / 55.444624 (-52.053288) | 2.734052 / 6.876477 (-4.142425) | 2.857226 / 2.142072 (0.715153) | 1.024121 / 4.805227 (-3.781106) | 0.216735 / 6.500664 (-6.283929) | 0.081605 / 0.075469 (0.006136) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.678176 / 1.841788 (-0.163611) | 23.606037 / 8.074308 (15.531729) | 21.485331 / 10.191392 (11.293939) | 0.218312 / 0.680424 (-0.462112) | 0.027061 / 0.534201 (-0.507140) | 0.481188 / 0.579283 (-0.098096) | 0.620592 / 0.434364 (0.186228) | 0.574778 / 0.540337 (0.034441) | 0.831529 / 1.386936 (-0.555407) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011666 / 0.011353 (0.000313) | 0.005187 / 0.011008 (-0.005821) | 0.080692 / 0.038508 (0.042184) | 0.079159 / 0.023109 (0.056049) | 0.530823 / 0.275898 (0.254925) | 0.577807 / 0.323480 (0.254327) | 0.006246 / 0.007986 (-0.001740) | 0.004355 / 0.004328 (0.000026) | 0.080702 / 0.004250 (0.076452) | 0.062279 / 0.037052 (0.025226) | 0.553712 / 0.258489 (0.295223) | 0.579112 / 0.293841 (0.285271) | 0.056374 / 0.128546 (-0.072172) | 0.014681 / 0.075646 (-0.060966) | 0.097110 / 0.419271 (-0.322161) | 0.061040 / 0.043533 (0.017507) | 0.524718 / 0.255139 (0.269579) | 0.568586 / 0.283200 (0.285386) | 0.035774 / 0.141683 (-0.105909) | 1.864590 / 1.452155 (0.412435) | 1.953715 / 1.492716 (0.460998) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271315 / 0.018006 (0.253309) | 0.571343 / 0.000490 (0.570854) | 0.015812 / 0.000200 (0.015612) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038582 / 0.037411 (0.001170) | 0.117523 / 0.014526 (0.102997) | 0.128864 / 0.176557 (-0.047693) | 0.191164 / 0.737135 (-0.545971) | 0.133161 / 0.296338 (-0.163178) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.679305 / 0.215209 (0.464096) | 6.814451 / 2.077655 (4.736796) | 3.377431 / 1.504120 (1.873311) | 3.011008 / 1.541195 (1.469813) | 3.093200 / 1.468490 (1.624710) | 0.905827 / 4.584777 (-3.678950) | 5.456094 / 3.745712 (1.710382) | 4.848511 / 5.269862 (-0.421351) | 3.064230 / 4.565676 (-1.501447) | 0.107478 / 0.424275 (-0.316798) | 0.009234 / 0.007607 (0.001627) | 0.833944 / 0.226044 (0.607899) | 8.286100 / 2.268929 (6.017171) | 4.241455 / 55.444624 (-51.203169) | 3.405460 / 6.876477 (-3.471017) | 3.660618 / 2.142072 (1.518546) | 1.046310 / 4.805227 (-3.758917) | 0.210891 / 6.500664 (-6.289773) | 0.079413 / 0.075469 (0.003944) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.825448 / 1.841788 (-0.016340) | 24.639059 / 8.074308 (16.564750) | 21.970417 / 10.191392 (11.779025) | 0.247708 / 0.680424 (-0.432715) | 0.033810 / 0.534201 (-0.500391) | 0.495517 / 0.579283 (-0.083766) | 0.601820 / 0.434364 (0.167456) | 0.585618 / 0.540337 (0.045280) | 0.858722 / 1.386936 (-0.528214) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006137 / 0.011353 (-0.005216) | 0.003685 / 0.011008 (-0.007324) | 0.079985 / 0.038508 (0.041476) | 0.060937 / 0.023109 (0.037828) | 0.390583 / 0.275898 (0.114685) | 0.425307 / 0.323480 (0.101827) | 0.003433 / 0.007986 (-0.004552) | 0.002868 / 0.004328 (-0.001461) | 0.062572 / 0.004250 (0.058322) | 0.048642 / 0.037052 (0.011590) | 0.401096 / 0.258489 (0.142607) | 0.436988 / 0.293841 (0.143147) | 0.027645 / 0.128546 (-0.100901) | 0.007973 / 0.075646 (-0.067673) | 0.261997 / 0.419271 (-0.157275) | 0.045393 / 0.043533 (0.001860) | 0.394266 / 0.255139 (0.139127) | 0.414448 / 0.283200 (0.131248) | 0.022551 / 0.141683 (-0.119131) | 1.438458 / 1.452155 (-0.013697) | 1.501568 / 1.492716 (0.008852) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224335 / 0.018006 (0.206329) | 0.421918 / 0.000490 (0.421428) | 0.006883 / 0.000200 (0.006683) | 0.000210 / 0.000054 (0.000155) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023505 / 0.037411 (-0.013906) | 0.072438 / 0.014526 (0.057912) | 0.083576 / 0.176557 (-0.092981) | 0.142906 / 0.737135 (-0.594229) | 0.083910 / 0.296338 (-0.212428) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396004 / 0.215209 (0.180795) | 3.969852 / 2.077655 (1.892197) | 1.966000 / 1.504120 (0.461880) | 1.786453 / 1.541195 (0.245258) | 1.866082 / 1.468490 (0.397592) | 0.502633 / 4.584777 (-4.082144) | 3.114331 / 3.745712 (-0.631382) | 2.940003 / 5.269862 (-2.329859) | 1.901844 / 4.565676 (-2.663832) | 0.058109 / 0.424275 (-0.366166) | 0.006502 / 0.007607 (-0.001105) | 0.463465 / 0.226044 (0.237420) | 4.641531 / 2.268929 (2.372603) | 2.315759 / 55.444624 (-53.128865) | 2.253088 / 6.876477 (-4.623389) | 2.151399 / 2.142072 (0.009326) | 0.592225 / 4.805227 (-4.213002) | 0.125072 / 6.500664 (-6.375592) | 0.059966 / 0.075469 (-0.015503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231392 / 1.841788 (-0.610396) | 17.533893 / 8.074308 (9.459585) | 13.710478 / 10.191392 (3.519086) | 0.147389 / 0.680424 (-0.533035) | 0.017932 / 0.534201 (-0.516269) | 0.334144 / 0.579283 (-0.245139) | 0.368817 / 0.434364 (-0.065547) | 0.383790 / 0.540337 (-0.156547) | 0.540262 / 1.386936 (-0.846674) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006066 / 0.011353 (-0.005287) | 0.003804 / 0.011008 (-0.007205) | 0.062474 / 0.038508 (0.023966) | 0.060547 / 0.023109 (0.037437) | 0.448643 / 0.275898 (0.172745) | 0.487005 / 0.323480 (0.163525) | 0.004884 / 0.007986 (-0.003102) | 0.002911 / 0.004328 (-0.001418) | 0.062950 / 0.004250 (0.058700) | 0.049672 / 0.037052 (0.012620) | 0.477491 / 0.258489 (0.219002) | 0.488234 / 0.293841 (0.194393) | 0.028711 / 0.128546 (-0.099835) | 0.008101 / 0.075646 (-0.067545) | 0.068333 / 0.419271 (-0.350939) | 0.040959 / 0.043533 (-0.002574) | 0.450716 / 0.255139 (0.195577) | 0.471089 / 0.283200 (0.187890) | 0.020710 / 0.141683 (-0.120973) | 1.474850 / 1.452155 (0.022695) | 1.540115 / 1.492716 (0.047399) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229811 / 0.018006 (0.211805) | 0.419526 / 0.000490 (0.419036) | 0.003818 / 0.000200 (0.003618) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026045 / 0.037411 (-0.011366) | 0.080325 / 0.014526 (0.065799) | 0.091549 / 0.176557 (-0.085007) | 0.145253 / 0.737135 (-0.591882) | 0.091849 / 0.296338 (-0.204489) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463047 / 0.215209 (0.247838) | 4.598727 / 2.077655 (2.521072) | 2.558996 / 1.504120 (1.054877) | 2.405896 / 1.541195 (0.864701) | 2.447291 / 1.468490 (0.978801) | 0.510393 / 4.584777 (-4.074384) | 3.173344 / 3.745712 (-0.572368) | 2.901201 / 5.269862 (-2.368661) | 1.896440 / 4.565676 (-2.669236) | 0.058374 / 0.424275 (-0.365901) | 0.006449 / 0.007607 (-0.001158) | 0.539653 / 0.226044 (0.313608) | 5.408217 / 2.268929 (3.139289) | 3.042453 / 55.444624 (-52.402172) | 2.656724 / 6.876477 (-4.219753) | 2.838165 / 2.142072 (0.696092) | 0.598663 / 4.805227 (-4.206565) | 0.126211 / 6.500664 (-6.374453) | 0.062830 / 0.075469 (-0.012639) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.392412 / 1.841788 (-0.449376) | 18.195170 / 8.074308 (10.120862) | 14.788251 / 10.191392 (4.596859) | 0.132579 / 0.680424 (-0.547845) | 0.017867 / 0.534201 (-0.516334) | 0.340020 / 0.579283 (-0.239263) | 0.386719 / 0.434364 (-0.047645) | 0.398863 / 0.540337 (-0.141475) | 0.579320 / 1.386936 (-0.807617) |\n\n</details>\n</details>\n\n\n",
"closing in favor of https://github.com/huggingface/datasets/pull/6282"
] | 2023-10-05T10:31:58
| 2023-10-05T14:43:17
| 2023-10-05T14:43:17
|
MEMBER
| null |
I added a new DataFilesSet class to disallow duplicate data files.
I also deprecated DataFilesList.
EDIT: actually I might just add drop_duplicates=True to `.from_patterns`
close https://github.com/huggingface/datasets/issues/6259
close https://github.com/huggingface/datasets/issues/6272
TODO:
- [ ] tests
- [ ] preserve data files order
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6278/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6278/timeline
| null | null | true
|
{
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6278",
"html_url": "https://github.com/huggingface/datasets/pull/6278",
"diff_url": "https://github.com/huggingface/datasets/pull/6278.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6278.patch",
"merged_at": null
}
| true
|
https://api.github.com/repos/huggingface/datasets/issues/6277
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6277/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6277/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6277/events
|
https://github.com/huggingface/datasets/issues/6277
| 1,927,044,546
|
I_kwDODunzps5y3F3C
| 6,277
|
FileNotFoundError: Couldn't find a module script at /content/paws-x/paws-x.py. Module 'paws-x' doesn't exist on the Hugging Face Hub either.
|
{
"login": "diegogonzalezc",
"id": 66733346,
"node_id": "MDQ6VXNlcjY2NzMzMzQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/66733346?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/diegogonzalezc",
"html_url": "https://github.com/diegogonzalezc",
"followers_url": "https://api.github.com/users/diegogonzalezc/followers",
"following_url": "https://api.github.com/users/diegogonzalezc/following{/other_user}",
"gists_url": "https://api.github.com/users/diegogonzalezc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/diegogonzalezc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/diegogonzalezc/subscriptions",
"organizations_url": "https://api.github.com/users/diegogonzalezc/orgs",
"repos_url": "https://api.github.com/users/diegogonzalezc/repos",
"events_url": "https://api.github.com/users/diegogonzalezc/events{/privacy}",
"received_events_url": "https://api.github.com/users/diegogonzalezc/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"`evaluate.load(\"paws-x\", \"es\")` throws the error because there is no such metric in the `evaluate` lib.\r\n\r\nSo, this is unrelated to our lib."
] | 2023-10-04T22:01:25
| 2023-10-05T14:00:58
| null |
NONE
| null |
### Describe the bug
I'm encountering a "FileNotFoundError" while attempting to use the "paws-x" dataset to retrain the DistilRoBERTa-base model. The error message is as follows:
FileNotFoundError: Couldn't find a module script at /content/paws-x/paws-x.py. Module 'paws-x' doesn't exist on the Hugging Face Hub either.
### Steps to reproduce the bug
https://colab.research.google.com/drive/11xUUFxloClpmqLvDy_Xxfmo3oUzjY5nx#scrollTo=kUn74FigzhHm
### Expected behavior
The the trained model
### Environment info
colab, "paws-x" dataset , DistilRoBERTa-base model
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6277/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6277/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6276
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6276/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6276/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6276/events
|
https://github.com/huggingface/datasets/issues/6276
| 1,925,961,878
|
I_kwDODunzps5yy9iW
| 6,276
|
I'm trying to fine tune the openai/whisper model from huggingface using jupyter notebook and i keep getting this error
|
{
"login": "valaofficial",
"id": 50768065,
"node_id": "MDQ6VXNlcjUwNzY4MDY1",
"avatar_url": "https://avatars.githubusercontent.com/u/50768065?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/valaofficial",
"html_url": "https://github.com/valaofficial",
"followers_url": "https://api.github.com/users/valaofficial/followers",
"following_url": "https://api.github.com/users/valaofficial/following{/other_user}",
"gists_url": "https://api.github.com/users/valaofficial/gists{/gist_id}",
"starred_url": "https://api.github.com/users/valaofficial/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/valaofficial/subscriptions",
"organizations_url": "https://api.github.com/users/valaofficial/orgs",
"repos_url": "https://api.github.com/users/valaofficial/repos",
"events_url": "https://api.github.com/users/valaofficial/events{/privacy}",
"received_events_url": "https://api.github.com/users/valaofficial/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"Since you are using Windows, maybe moving the `map` call inside `if __name__ == \"__main__\"` can fix the issue:\r\n```python\r\nif __name__ == \"__main__\":\r\n common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=4)\r\n```\r\n\r\nOtherwise, the only solution is to set `num_proc=1`.",
"> Since you are using Windows, maybe moving the `map` call inside `if __name__ == \"__main__\"` can fix the issue:\r\n> \r\n> ```python\r\n> if __name__ == \"__main__\":\r\n> common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=4)\r\n> ```\r\n> \r\n> Otherwise, the only solution is to set `num_proc=1`.\r\n\r\nThank you very much for the response, i eventually tried setting `num_proc=1` and now the jupyter notebook kernel keers dying after running the command, what do you think the issue could be, could it be that my system is not capable of running the command \"i'm using a Lenovo Thinkpad T440 with no GPU\""
] | 2023-10-04T11:03:41
| 2023-10-04T22:14:38
| null |
NONE
| null |
### Describe the bug
I'm trying to fine tune the openai/whisper model from huggingface using jupyter notebook and i keep getting this error, i'm following the steps in this blog post
https://huggingface.co/blog/fine-tune-whisper
I tried google collab and it works but because I'm on the free version the training doesn't complete
the error comes in jupyter notebook when i run this line
`common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=4)`
here is the error message
```
Map (num_proc=4): 0% 0/2506 [00:52<?, ? examples/s]
The above exception was the direct cause of the following exception:
NameError Traceback (most recent call last) Cell In[19], line 1 ----> 1 common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=4)
File ~\anaconda\Lib\site-packages\datasets\dataset_dict.py:853, in DatasetDict.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, desc) 850 if cache_file_names is None: 851 cache_file_names = {k: None for k in self} 852 return DatasetDict( --> 853 { 854 k: dataset.map( 855 function=function, 856 with_indices=with_indices, 857 with_rank=with_rank, 858 input_columns=input_columns, 859 batched=batched, 860 batch_size=batch_size, 861 drop_last_batch=drop_last_batch, 862 remove_columns=remove_columns, 863 keep_in_memory=keep_in_memory, 864 load_from_cache_file=load_from_cache_file, 865 cache_file_name=cache_file_names[k], 866 writer_batch_size=writer_batch_size, 867 features=features, 868 disable_nullable=disable_nullable, 869 fn_kwargs=fn_kwargs, 870 num_proc=num_proc, 871 desc=desc, 872 ) 873 for k, dataset in self.items() 874 } 875 )
File ~\anaconda\Lib\site-packages\datasets\dataset_dict.py:854, in <dictcomp>(.0) 850 if cache_file_names is None: 851 cache_file_names = {k: None for k in self} 852 return DatasetDict( 853 { --> 854 k: dataset.map( 855 function=function, 856 with_indices=with_indices, 857 with_rank=with_rank, 858 input_columns=input_columns, 859 batched=batched, 860 batch_size=batch_size, 861 drop_last_batch=drop_last_batch, 862 remove_columns=remove_columns, 863 keep_in_memory=keep_in_memory, 864 load_from_cache_file=load_from_cache_file, 865 cache_file_name=cache_file_names[k], 866 writer_batch_size=writer_batch_size, 867 features=features, 868 disable_nullable=disable_nullable, 869 fn_kwargs=fn_kwargs, 870 num_proc=num_proc, 871 desc=desc, 872 ) 873 for k, dataset in self.items() 874 } 875 )
File ~\anaconda\Lib\site-packages\datasets\arrow_dataset.py:592, in transmit_tasks.<locals>.wrapper(*args, **kwargs) 590 self: "Dataset" = kwargs.pop("self") 591 # apply actual function --> 592 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 593 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 594 for dataset in datasets: 595 # Remove task templates if a column mapping of the template is no longer valid
File ~\anaconda\Lib\site-packages\datasets\arrow_dataset.py:557, in transmit_format.<locals>.wrapper(*args, **kwargs) 550 self_format = { 551 "type": self._format_type, 552 "format_kwargs": self._format_kwargs, 553 "columns": self._format_columns, 554 "output_all_columns": self._output_all_columns, 555 } 556 # apply actual function --> 557 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 558 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 559 # re-apply format to the output
File ~\anaconda\Lib\site-packages\datasets\arrow_dataset.py:3189, in Dataset.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 3182 logger.info(f"Spawning {num_proc} processes") 3183 with logging.tqdm( 3184 disable=not logging.is_progress_bar_enabled(), 3185 unit=" examples", 3186 total=pbar_total, 3187 desc=(desc or "Map") + f" (num_proc={num_proc})", 3188 ) as pbar: -> 3189 for rank, done, content in iflatmap_unordered( 3190 pool, Dataset._map_single, kwargs_iterable=kwargs_per_job 3191 ): 3192 if done: 3193 shards_done += 1
File ~\anaconda\Lib\site-packages\datasets\utils\py_utils.py:1394, in iflatmap_unordered(pool, func, kwargs_iterable) 1391 finally: 1392 if not pool_changed: 1393 # we get the result in case there's an error to raise -> 1394 [async_result.get(timeout=0.05) for async_result in async_results]
File ~\anaconda\Lib\site-packages\datasets\utils\py_utils.py:1394, in <listcomp>(.0) 1391 finally: 1392 if not pool_changed: 1393 # we get the result in case there's an error to raise -> 1394 [async_result.get(timeout=0.05) for async_result in async_results]
File ~\anaconda\Lib\site-packages\multiprocess\pool.py:774, in ApplyResult.get(self, timeout) 772 return self._value 773 else: --> 774 raise self._value
NameError: name 'feature_extractor' is not defined
```
### Steps to reproduce the bug
1. follow the steps in this blog post
https://huggingface.co/blog/fine-tune-whisper
2. run this line of code
`common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=4)`
3. I'm using jupyter notebook from anaconda
### Expected behavior
No error message
### Environment info
datasets version: 2.8.0
Python version: 3.11
Windows 10
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6276/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6276/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6275
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6275/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6275/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6275/events
|
https://github.com/huggingface/datasets/issues/6275
| 1,921,354,680
|
I_kwDODunzps5yhYu4
| 6,275
|
Would like to Contribute a dataset
|
{
"login": "vikas70607",
"id": 97907750,
"node_id": "U_kgDOBdX0Jg",
"avatar_url": "https://avatars.githubusercontent.com/u/97907750?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vikas70607",
"html_url": "https://github.com/vikas70607",
"followers_url": "https://api.github.com/users/vikas70607/followers",
"following_url": "https://api.github.com/users/vikas70607/following{/other_user}",
"gists_url": "https://api.github.com/users/vikas70607/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vikas70607/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vikas70607/subscriptions",
"organizations_url": "https://api.github.com/users/vikas70607/orgs",
"repos_url": "https://api.github.com/users/vikas70607/repos",
"events_url": "https://api.github.com/users/vikas70607/events{/privacy}",
"received_events_url": "https://api.github.com/users/vikas70607/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi! The process of contributing a dataset is explained here: https://huggingface.co/docs/datasets/upload_dataset. Also, check https://huggingface.co/docs/datasets/image_dataset for a more detailed explanation of how to share an image dataset."
] | 2023-10-02T07:00:21
| 2023-10-02T15:56:34
| null |
NONE
| null |
I have a dataset of 2500 images that can be used for color-blind machine-learning algorithms. Since , there was no dataset available online , I made this dataset myself and would like to contribute this now to community
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6275/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6275/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6274
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6274/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6274/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6274/events
|
https://github.com/huggingface/datasets/issues/6274
| 1,921,036,328
|
I_kwDODunzps5ygLAo
| 6,274
|
FileNotFoundError for dataset with multiple builder config
|
{
"login": "LouisChen15",
"id": 97120485,
"node_id": "U_kgDOBcnw5Q",
"avatar_url": "https://avatars.githubusercontent.com/u/97120485?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/LouisChen15",
"html_url": "https://github.com/LouisChen15",
"followers_url": "https://api.github.com/users/LouisChen15/followers",
"following_url": "https://api.github.com/users/LouisChen15/following{/other_user}",
"gists_url": "https://api.github.com/users/LouisChen15/gists{/gist_id}",
"starred_url": "https://api.github.com/users/LouisChen15/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LouisChen15/subscriptions",
"organizations_url": "https://api.github.com/users/LouisChen15/orgs",
"repos_url": "https://api.github.com/users/LouisChen15/repos",
"events_url": "https://api.github.com/users/LouisChen15/events{/privacy}",
"received_events_url": "https://api.github.com/users/LouisChen15/received_events",
"type": "User",
"site_admin": false
}
|
[] |
closed
| false
| null |
[] | null |
[
"Please tell me if the above info is not enough for solving the problem. I will then make my dataset public temporarily so that you can really reproduce the bug. "
] | 2023-10-01T23:45:56
| 2023-10-02T20:09:38
| 2023-10-02T20:09:38
|
NONE
| null |
### Describe the bug
When there is only one config and only the dataset name is entered when using datasets.load_dataset(), it works fine. But if I create a second builder_config for my dataset and enter the config name when using datasets.load_dataset(), the following error will happen.
FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/chenx/.cache/huggingface/datasets/my_dataset/0_shot_multiple_choice/1.0.0/97c3854a012cfd6b045e3be4c864739902af2d818bb9235b047baa94c302e9a2.incomplete/my_dataset-test-00000-00000-of-NNNNN.arrow'
The "XXX.incomplete folder" in the cache folder of my dataset will disappear before "generating test split", which does not happen when config name is not entered and the config name is "default"
C:\Users\chenx\.cache\huggingface\datasets\my_dataset\0_shot_multiple_choice\1.0.0
The folder that is supposed to remain under the above directory will disappear, and the data generator will not have a place to generate data into.
### Steps to reproduce the bug
test = load_dataset('my_dataset', '0_shot_multiple_choice')
### Expected behavior
FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/chenx/.cache/huggingface/datasets/my_dataset/0_shot_multiple_choice/1.0.0/97c3854a012cfd6b045e3be4c864739902af2d818bb9235b047baa94c302e9a2.incomplete/my_dataset-test-00000-00000-of-NNNNN.arrow'
### Environment info
datasets 2.14.5
python 3.8.18
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6274/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6274/timeline
| null |
completed
| null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6273
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6273/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6273/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6273/events
|
https://github.com/huggingface/datasets/issues/6273
| 1,920,922,260
|
I_kwDODunzps5yfvKU
| 6,273
|
Broken Link to PubMed Abstracts dataset .
|
{
"login": "sameemqureshi",
"id": 100606327,
"node_id": "U_kgDOBf8hdw",
"avatar_url": "https://avatars.githubusercontent.com/u/100606327?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sameemqureshi",
"html_url": "https://github.com/sameemqureshi",
"followers_url": "https://api.github.com/users/sameemqureshi/followers",
"following_url": "https://api.github.com/users/sameemqureshi/following{/other_user}",
"gists_url": "https://api.github.com/users/sameemqureshi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sameemqureshi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sameemqureshi/subscriptions",
"organizations_url": "https://api.github.com/users/sameemqureshi/orgs",
"repos_url": "https://api.github.com/users/sameemqureshi/repos",
"events_url": "https://api.github.com/users/sameemqureshi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sameemqureshi/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"This has already been reported in the HF Course repo (https://github.com/huggingface/course/issues/623).",
"@lhoestq @albertvillanova @lewtun I don't think we are allowed to host these data files on the Hub (due to DMCA), which means the only option is to use a different dataset in the course (and to re-record the video 🙂), no?",
"Keeping the video is maybe fine, we can add a note on youtube to suggest to load a dataset with a different name. Maybe C4 ? And update the code snippets on the website ?"
] | 2023-10-01T19:08:48
| 2023-10-02T16:40:18
| null |
NONE
| null |
### Describe the bug
The link provided for the dataset is broken,
data_files =
[https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst](url)
The
### Steps to reproduce the bug
Steps to reproduce:
1) Head over to [https://huggingface.co/learn/nlp-course/chapter5/4?fw=pt#big-data-datasets-to-the-rescue](url)
2) In the Section "What is the Pile?", you can see a code snippet that contains the broken link.
### Expected behavior
The link should Redirect to the "PubMed Abstracts dataset" as expected .
### Environment info
.
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6273/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6273/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6272
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6272/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6272/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6272/events
|
https://github.com/huggingface/datasets/issues/6272
| 1,920,831,487
|
I_kwDODunzps5yfY__
| 6,272
|
Duplicate `data_files` when named `<split>/<split>.parquet`
|
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
|
[
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] |
open
| false
| null |
[] | null |
[
"Also reported in https://github.com/huggingface/datasets/issues/6259",
"I think it's best to drop duplicates with a `set` (as a temporary fix) and improve the patterns when/if https://github.com/fsspec/filesystem_spec/pull/1382 gets merged. @lhoestq Do you have some other ideas?",
"Alternatively we could just use this no ?\r\n\r\n```python\r\nif config.FSSPEC_VERSION < version.parse(\"2023.9.0\"):\r\n KEYWORDS_IN_PATH_NAME_BASE_PATTERNS = [\r\n \"{keyword}[{sep}/]**\",\r\n \"**[{sep}]{keyword}[{sep}/]**\",\r\n \"**/{keyword}[{sep}/]**\",\r\n ]\r\nelse:\r\n KEYWORDS_IN_PATH_NAME_BASE_PATTERNS = [\r\n \"{keyword}[{sep}/]**\",\r\n \"**/*[{sep}]{keyword}[{sep}/]**\",\r\n \"**/*/{keyword}[{sep}/]**\",\r\n ]\r\n```\r\n\r\nThis way no need to implement sets, which would require a bit of work since we've always considered a list of pattern to be resolved as the concatenated list of resolved files for each pattern (including duplicates)\r\n",
"Arf `\"**/*/{keyword}[{sep}/]**\"` does return `data/keyword.txt` in latest `fsspec` but not in `glob.glob`\r\n\r\nEDIT: actually forgot to set `recursive=True`",
"Actually `glob.glob` does return it with `recursive=True` ! my bad",
"Pff just tested and my idea sucks, pattern 1 and 3 obviously give duplicates ",
"> I think it's best to drop duplicates with a set (as a temporary fix)\r\n\r\nI started https://github.com/huggingface/datasets/pull/6278 to use DataFilesSet objects instead of DataFilesList"
] | 2023-10-01T15:43:56
| 2023-10-05T10:32:27
| null |
MEMBER
| null |
e.g. with `u23429/stock_1_minute_ticker`
```ipython
In [1]: from datasets import *
In [2]: b = load_dataset_builder("u23429/stock_1_minute_ticker")
Downloading readme: 100%|██████████████████████████| 627/627 [00:00<00:00, 246kB/s]
In [3]: b.config.data_files
Out[3]:
{NamedSplit('train'): ['hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/train/train.parquet',
'hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/train/train.parquet'],
NamedSplit('validation'): ['hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/validation/validation.parquet',
'hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/validation/validation.parquet'],
NamedSplit('test'): ['hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/test/test.parquet',
'hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/test/test.parquet']}
```
This bug issue is present in the current `datasets` 2.14.5 and also on `main` even after https://github.com/huggingface/datasets/pull/6244 cc @mariosasko
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6272/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6272/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6271
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6271/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6271/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6271/events
|
https://github.com/huggingface/datasets/issues/6271
| 1,920,420,295
|
I_kwDODunzps5yd0nH
| 6,271
|
Overwriting Split overwrites data but not metadata, corrupting dataset
|
{
"login": "govindrai",
"id": 13859249,
"node_id": "MDQ6VXNlcjEzODU5MjQ5",
"avatar_url": "https://avatars.githubusercontent.com/u/13859249?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/govindrai",
"html_url": "https://github.com/govindrai",
"followers_url": "https://api.github.com/users/govindrai/followers",
"following_url": "https://api.github.com/users/govindrai/following{/other_user}",
"gists_url": "https://api.github.com/users/govindrai/gists{/gist_id}",
"starred_url": "https://api.github.com/users/govindrai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/govindrai/subscriptions",
"organizations_url": "https://api.github.com/users/govindrai/orgs",
"repos_url": "https://api.github.com/users/govindrai/repos",
"events_url": "https://api.github.com/users/govindrai/events{/privacy}",
"received_events_url": "https://api.github.com/users/govindrai/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[] | 2023-09-30T22:37:31
| 2023-09-30T22:37:31
| null |
NONE
| null |
### Describe the bug
I want to be able to overwrite/update/delete splits in my dataset. Currently the only way to do is to manually go into the dataset and delete the split. If I try to overwrite programmatically I end up in an error state and (somewhat) corrupting the dataset. Read below.
**Current Behavior**
When I push to an existing split I get this error:
`ValueError: Split complexRoofLocation_01Apr2023_to_31May2023test already present`
This seems to suggest that the library doesn't support overwriting splits.
**Potential Bug**
What’s strange is that datasets, despite the operation erroring out with the ValueError above, does, in fact, overwrite the split:
`Pushing dataset shards to the dataset hub: 100% [.....................] 1/1 [00:00<00:00, 55.04it/s]`
Even though you got an error message and your code fails, your dataset is now changed. That seems like a bug. Either don't change the dataset, or don't throw the error and allow the script to proceed.
Additional Bug
While it overwrites the split, it doesn’t overwrite the split’s information. Because of this when you pull down the dataset you may end up getting a `NonMatchingSplitsSizesError` if the size of the dataset during the overwrite is different. For example, my original split had 5 rows, but on my overwrite, I only had 4. Then when I try to download the dataset, I get a `NonMatchingSplitsSizesError` because the dataset's data.json states there’s 5 but only 4 exist in the split.
Expected Behavior
This corrupts the dataset rendering it unusable (until you take manual intervention). Either the library should let the overwrite happen (which it does but should also update the metadata) or it shouldn’t do anything.
### Steps to reproduce the bug
[Colab Notebook](https://colab.research.google.com/drive/1bqVkD06Ngs9MQNdSk_ygCG6y1UqXA4pC?usp=sharing)
### Expected behavior
The split should be overwritten and I should be able to use the new version of the dataset without issue.
### Environment info
- `datasets` version: 2.14.5
- Platform: Linux-5.15.120+-x86_64-with-glibc2.35
- Python version: 3.10.12
- Huggingface_hub version: 0.17.3
- PyArrow version: 9.0.0
- Pandas version: 1.5.3
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6271/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6271/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6270
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6270/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6270/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6270/events
|
https://github.com/huggingface/datasets/issues/6270
| 1,920,329,373
|
I_kwDODunzps5ydead
| 6,270
|
Dataset.from_generator raises with sharded gen_args
|
{
"login": "hartmans",
"id": 53510,
"node_id": "MDQ6VXNlcjUzNTEw",
"avatar_url": "https://avatars.githubusercontent.com/u/53510?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hartmans",
"html_url": "https://github.com/hartmans",
"followers_url": "https://api.github.com/users/hartmans/followers",
"following_url": "https://api.github.com/users/hartmans/following{/other_user}",
"gists_url": "https://api.github.com/users/hartmans/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hartmans/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hartmans/subscriptions",
"organizations_url": "https://api.github.com/users/hartmans/orgs",
"repos_url": "https://api.github.com/users/hartmans/repos",
"events_url": "https://api.github.com/users/hartmans/events{/privacy}",
"received_events_url": "https://api.github.com/users/hartmans/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"`gen_kwargs` should be a `dict`, as stated in the docstring, but you are passing a `list`.\r\n\r\nSo, to fix the error, replace the list of dicts with a dict of lists (and slightly modify the generator function):\r\n```python\r\nfrom pathlib import Path\r\nimport datasets\r\n\r\ndef process_yaml(files):\r\n for f in files:\r\n # process\r\n yield dict(...)\r\n\r\n\r\nif __name__ == '__main__':\r\n import sys\r\n dir = Path(sys.argv[0]).parent\r\n ds = datasets.Dataset.from_generator(process_yaml, gen_kwargs={'files': [f for f in dir.glob('*.yml')]})\r\n ds.to_json('training.jsonl')\r\n```",
"That runs, and because my dataset is small, it's what I did to get past the problem.\r\nHowever, it does not produce a sharded dataset. From the doc string I expect there ought to be a way to call from_generator such that num_shards in the resulting data set is equal to the number of items in the list.\r\nThe part of the doc string that your suggestion is not responsive to is:\r\n` You can define a sharded dataset by passing the list of shards in *g\r\nen_kwargs*.\r\n`\r\n\r\nWhat your suggestion does is calls the generator once, with the list argument, and produces a single shard dataset.\r\n",
"The sharding mentioned here refers to using this function with `num_proc` (multiprocessing splits the `kwargs` into shards and passes them to the generator function)\r\n\r\n> That runs, and because my dataset is small, it's what I did to get past the problem.\r\n\r\n`from_generator` generates a memory-mapped dataset (can be larger than RAM), so the dataset size should not be an issue unless the generator function's implementation does not properly free the memory.\r\n",
"It sounds like you are saying that num_proc affects the form of gen_kwargs.\r\nAre you saying that for non-zero num_proc gen_kwargs should be a list whose length is the same as num_proc?\r\nOr are you saying that for non-zero num_proc, gen_kwargs should be a dict whose elements are lists the length of num_proc?\r\n",
"I ran some tests. So, it looks like with num_proc greater than 1, gen_kwargs is expected to be a dict of lists. It calls the generator also with a dict of lists, but the lists are split.\r\nI.E. if my original has `gen_kwargs=dict(a=[0,1,2])`, then my generator might get called with `gen_kwalrgs=dict([0])`.\r\nThat all makes sense, but I definitely think there is room for improvement in the doc string here.\r\nIn order to suggest improvements to the doc string, I need to look at how the gen_kwargs are split, and figure out if:\r\n* num_proc needs to exactly equal the length of the lists\r\n* num_proc needs to evenly divide the length of the lists\r\n* Or there's no required relationship.\r\nI'll look into that and then propose an improved doc string if no one else gets to it first.",
"Okay, that was fun; I took a dive through the dataset code and feel like I have a much better understanding.\r\nHere is my understanding of the behavior:\r\n* max_proc is an upper limit on the number of shards that `from_generator` produces\r\n* If `max_proc` is greater than 1, then all lists in *gen_kwargs* must be the same length\r\n* If the lists in *gen_kwargs* are shorter than *num_proc* elements, *num_proc* will be reduced and a warning produced. Put another way, `min(list_length, num_shards)` shards will be produced\r\n* The members of the lists in *gen_kwargs* will be partitioned among the created jobs.\r\nTo validate the above, take a look at\r\n`_number_of_shards_in_gen_kwargs` and `_distribute_shards` and `_split_gen_kwargs` in utils/sharding.py.\r\nI've also chased down starting at *from_generator* all the way through to GeneratorBuilder and the calls to the functions in sharding.py.\r\nTomorrow I'll take a look at the contributing guidelines and see what's involved in putting together a PR to improve the doc string."
] | 2023-09-30T16:50:06
| 2023-10-03T01:21:39
| null |
CONTRIBUTOR
| null |
### Describe the bug
According to the docs of Datasets.from_generator:
```
gen_kwargs(`dict`, *optional*):
Keyword arguments to be passed to the `generator` callable.
You can define a sharded dataset by passing the list of shards in `gen_kwargs`.
```
So I'd expect that if gen_kwargs was a list, then my generator would be called once for each element in the list with the dict in the list for that element.
It doesn't work that way though.
### Steps to reproduce the bug
```python
#!/usr/bin/python
from pathlib import Path
import datasets
def process_yaml(file):
yield dict(example=42)
if __name__ == '__main__':
import sys
dir = Path(sys.argv[0]).parent
ds = datasets.Dataset.from_generator(process_yaml, gen_kwargs=[{'file':f} for f in dir.glob('*.yml')],
)
ds.to_json('training.jsonl')
```
```
Generating train split: 0 examples [00:00, ? examples/s]
Traceback (most recent call last):
File "/tmp/dataset_bug.py", line 13, in <module>
ds = datasets.Dataset.from_generator(process_yaml, gen_kwargs=[{'file':f} for f in dir.glob('*.yml')],
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 1072, in from_generator
).read()
^^^^^^
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/io/generator.py", line 47, in read
self.builder.download_and_prepare(
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 954, in download_and_prepare
self._download_and_prepare(
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1717, in _download_and_prepare
super()._download_and_prepare(
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1049, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1555, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1656, in _prepare_split_single
generator = self._generate_examples(**gen_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: datasets.packaged_modules.generator.generator.Generator._generate_examples() argument after ** must be a ```
mapping, not list
### Expected behavior
I would expect that process_yaml would be called once for each yaml file in the directory where the script is run.
I also tried with the list being in gen_kwargs, but in that case process_yaml gets called with a list.
### Environment info
- `datasets` version: 2.14.6.dev0 (git commit 0cc77d7f45c7369; also tested with 2.14.0)
- Platform: Linux-6.1.0-10-amd64-x86_64-with-glibc2.36
- Python version: 3.11.2
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 2.0.3
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6270/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6270/timeline
| null | null | null | null | false
|
https://api.github.com/repos/huggingface/datasets/issues/6269
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6269/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6269/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6269/events
|
https://github.com/huggingface/datasets/pull/6269
| 1,919,572,790
|
PR_kwDODunzps5bjbDc
| 6,269
|
Test single commit `push_to_hub` API
|
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
|
[] |
open
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6269). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005864 / 0.011353 (-0.005489) | 0.003535 / 0.011008 (-0.007474) | 0.080732 / 0.038508 (0.042224) | 0.057072 / 0.023109 (0.033963) | 0.334342 / 0.275898 (0.058444) | 0.361345 / 0.323480 (0.037865) | 0.003290 / 0.007986 (-0.004696) | 0.003794 / 0.004328 (-0.000534) | 0.063414 / 0.004250 (0.059163) | 0.046901 / 0.037052 (0.009848) | 0.335973 / 0.258489 (0.077484) | 0.377929 / 0.293841 (0.084088) | 0.027199 / 0.128546 (-0.101348) | 0.008049 / 0.075646 (-0.067597) | 0.261810 / 0.419271 (-0.157462) | 0.044669 / 0.043533 (0.001136) | 0.333600 / 0.255139 (0.078461) | 0.356362 / 0.283200 (0.073162) | 0.020325 / 0.141683 (-0.121358) | 1.458138 / 1.452155 (0.005984) | 1.505923 / 1.492716 (0.013207) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216456 / 0.018006 (0.198450) | 0.421750 / 0.000490 (0.421261) | 0.007359 / 0.000200 (0.007159) | 0.000246 / 0.000054 (0.000191) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023400 / 0.037411 (-0.014012) | 0.073363 / 0.014526 (0.058838) | 0.083533 / 0.176557 (-0.093023) | 0.144045 / 0.737135 (-0.593090) | 0.084050 / 0.296338 (-0.212288) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398354 / 0.215209 (0.183145) | 3.982875 / 2.077655 (1.905220) | 2.047299 / 1.504120 (0.543180) | 1.873780 / 1.541195 (0.332585) | 1.977044 / 1.468490 (0.508554) | 0.497038 / 4.584777 (-4.087739) | 3.039743 / 3.745712 (-0.705969) | 2.832885 / 5.269862 (-2.436977) | 1.827300 / 4.565676 (-2.738377) | 0.057503 / 0.424275 (-0.366772) | 0.006272 / 0.007607 (-0.001335) | 0.468681 / 0.226044 (0.242637) | 4.696551 / 2.268929 (2.427622) | 2.413805 / 55.444624 (-53.030819) | 2.157199 / 6.876477 (-4.719278) | 2.345986 / 2.142072 (0.203914) | 0.584632 / 4.805227 (-4.220595) | 0.124684 / 6.500664 (-6.375980) | 0.060090 / 0.075469 (-0.015379) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293551 / 1.841788 (-0.548236) | 17.198292 / 8.074308 (9.123984) | 13.677910 / 10.191392 (3.486518) | 0.146633 / 0.680424 (-0.533791) | 0.016711 / 0.534201 (-0.517490) | 0.331644 / 0.579283 (-0.247639) | 0.360148 / 0.434364 (-0.074215) | 0.381194 / 0.540337 (-0.159143) | 0.537952 / 1.386936 (-0.848984) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006020 / 0.011353 (-0.005333) | 0.003557 / 0.011008 (-0.007451) | 0.061926 / 0.038508 (0.023418) | 0.056246 / 0.023109 (0.033137) | 0.446679 / 0.275898 (0.170781) | 0.479843 / 0.323480 (0.156363) | 0.004656 / 0.007986 (-0.003330) | 0.002823 / 0.004328 (-0.001505) | 0.061366 / 0.004250 (0.057115) | 0.045793 / 0.037052 (0.008740) | 0.460807 / 0.258489 (0.202318) | 0.485467 / 0.293841 (0.191626) | 0.028555 / 0.128546 (-0.099991) | 0.007973 / 0.075646 (-0.067674) | 0.068305 / 0.419271 (-0.350966) | 0.040844 / 0.043533 (-0.002689) | 0.463715 / 0.255139 (0.208576) | 0.474553 / 0.283200 (0.191354) | 0.019959 / 0.141683 (-0.121723) | 1.432527 / 1.452155 (-0.019628) | 1.485410 / 1.492716 (-0.007307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205555 / 0.018006 (0.187549) | 0.408271 / 0.000490 (0.407781) | 0.004325 / 0.000200 (0.004125) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026338 / 0.037411 (-0.011074) | 0.080534 / 0.014526 (0.066008) | 0.093935 / 0.176557 (-0.082622) | 0.146446 / 0.737135 (-0.590689) | 0.092890 / 0.296338 (-0.203448) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463879 / 0.215209 (0.248670) | 4.646411 / 2.077655 (2.568756) | 2.567320 / 1.504120 (1.063200) | 2.384376 / 1.541195 (0.843181) | 2.412738 / 1.468490 (0.944248) | 0.510240 / 4.584777 (-4.074537) | 3.094988 / 3.745712 (-0.650724) | 2.837700 / 5.269862 (-2.432161) | 1.850163 / 4.565676 (-2.715513) | 0.059320 / 0.424275 (-0.364955) | 0.006330 / 0.007607 (-0.001277) | 0.537770 / 0.226044 (0.311726) | 5.385556 / 2.268929 (3.116627) | 3.036088 / 55.444624 (-52.408536) | 2.650464 / 6.876477 (-4.226013) | 2.755676 / 2.142072 (0.613603) | 0.607353 / 4.805227 (-4.197875) | 0.124589 / 6.500664 (-6.376075) | 0.060778 / 0.075469 (-0.014691) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.343243 / 1.841788 (-0.498545) | 17.630281 / 8.074308 (9.555973) | 14.401219 / 10.191392 (4.209827) | 0.143252 / 0.680424 (-0.537172) | 0.017880 / 0.534201 (-0.516321) | 0.337391 / 0.579283 (-0.241892) | 0.373531 / 0.434364 (-0.060833) | 0.398408 / 0.540337 (-0.141929) | 0.558925 / 1.386936 (-0.828011) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006552 / 0.011353 (-0.004801) | 0.003853 / 0.011008 (-0.007155) | 0.077673 / 0.038508 (0.039165) | 0.066043 / 0.023109 (0.042934) | 0.289858 / 0.275898 (0.013960) | 0.299009 / 0.323480 (-0.024471) | 0.004806 / 0.007986 (-0.003179) | 0.003517 / 0.004328 (-0.000811) | 0.058227 / 0.004250 (0.053977) | 0.052134 / 0.037052 (0.015082) | 0.328800 / 0.258489 (0.070311) | 0.317616 / 0.293841 (0.023776) | 0.028344 / 0.128546 (-0.100202) | 0.007853 / 0.075646 (-0.067794) | 0.291207 / 0.419271 (-0.128065) | 0.052977 / 0.043533 (0.009444) | 0.287548 / 0.255139 (0.032409) | 0.307647 / 0.283200 (0.024448) | 0.023899 / 0.141683 (-0.117784) | 1.382267 / 1.452155 (-0.069888) | 1.589915 / 1.492716 (0.097199) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246244 / 0.018006 (0.228238) | 0.478255 / 0.000490 (0.477766) | 0.014115 / 0.000200 (0.013915) | 0.000305 / 0.000054 (0.000250) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027033 / 0.037411 (-0.010378) | 0.073988 / 0.014526 (0.059462) | 0.088337 / 0.176557 (-0.088219) | 0.144067 / 0.737135 (-0.593069) | 0.091295 / 0.296338 (-0.205043) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.365904 / 0.215209 (0.150695) | 3.537330 / 2.077655 (1.459675) | 1.678341 / 1.504120 (0.174221) | 1.530297 / 1.541195 (-0.010898) | 1.605634 / 1.468490 (0.137144) | 0.437461 / 4.584777 (-4.147316) | 3.419040 / 3.745712 (-0.326672) | 3.203549 / 5.269862 (-2.066312) | 1.913214 / 4.565676 (-2.652463) | 0.052675 / 0.424275 (-0.371600) | 0.006681 / 0.007607 (-0.000926) | 0.429269 / 0.226044 (0.203225) | 4.214051 / 2.268929 (1.945122) | 2.217928 / 55.444624 (-53.226696) | 1.842679 / 6.876477 (-5.033798) | 1.867961 / 2.142072 (-0.274111) | 0.550566 / 4.805227 (-4.254661) | 0.118015 / 6.500664 (-6.382649) | 0.054749 / 0.075469 (-0.020720) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.170547 / 1.841788 (-0.671241) | 18.410567 / 8.074308 (10.336259) | 12.729992 / 10.191392 (2.538600) | 0.160426 / 0.680424 (-0.519998) | 0.021259 / 0.534201 (-0.512942) | 0.369573 / 0.579283 (-0.209710) | 0.440350 / 0.434364 (0.005986) | 0.443755 / 0.540337 (-0.096582) | 0.645614 / 1.386936 (-0.741322) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005913 / 0.011353 (-0.005440) | 0.003542 / 0.011008 (-0.007466) | 0.057621 / 0.038508 (0.019113) | 0.065822 / 0.023109 (0.042713) | 0.390847 / 0.275898 (0.114949) | 0.393127 / 0.323480 (0.069647) | 0.005040 / 0.007986 (-0.002945) | 0.002944 / 0.004328 (-0.001384) | 0.069058 / 0.004250 (0.064808) | 0.051594 / 0.037052 (0.014542) | 0.383745 / 0.258489 (0.125256) | 0.414372 / 0.293841 (0.120531) | 0.030038 / 0.128546 (-0.098508) | 0.008109 / 0.075646 (-0.067538) | 0.065444 / 0.419271 (-0.353828) | 0.045974 / 0.043533 (0.002441) | 0.401695 / 0.255139 (0.146556) | 0.417834 / 0.283200 (0.134635) | 0.020137 / 0.141683 (-0.121546) | 1.452130 / 1.452155 (-0.000025) | 1.455259 / 1.492716 (-0.037458) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228262 / 0.018006 (0.210255) | 0.455155 / 0.000490 (0.454665) | 0.006667 / 0.000200 (0.006467) | 0.000207 / 0.000054 (0.000153) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030159 / 0.037411 (-0.007252) | 0.098478 / 0.014526 (0.083952) | 0.101409 / 0.176557 (-0.075147) | 0.148689 / 0.737135 (-0.588446) | 0.103067 / 0.296338 (-0.193272) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444095 / 0.215209 (0.228886) | 3.991588 / 2.077655 (1.913934) | 2.147845 / 1.504120 (0.643725) | 2.007871 / 1.541195 (0.466676) | 2.042074 / 1.468490 (0.573584) | 0.451592 / 4.584777 (-4.133185) | 3.439400 / 3.745712 (-0.306312) | 3.107756 / 5.269862 (-2.162106) | 1.909785 / 4.565676 (-2.655891) | 0.051718 / 0.424275 (-0.372558) | 0.006597 / 0.007607 (-0.001010) | 0.480822 / 0.226044 (0.254777) | 4.913235 / 2.268929 (2.644307) | 2.631882 / 55.444624 (-52.812742) | 2.397209 / 6.876477 (-4.479267) | 2.487191 / 2.142072 (0.345119) | 0.566321 / 4.805227 (-4.238906) | 0.121741 / 6.500664 (-6.378924) | 0.053399 / 0.075469 (-0.022070) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256599 / 1.841788 (-0.585189) | 18.891127 / 8.074308 (10.816819) | 13.219662 / 10.191392 (3.028270) | 0.154570 / 0.680424 (-0.525854) | 0.022599 / 0.534201 (-0.511602) | 0.361998 / 0.579283 (-0.217286) | 0.413287 / 0.434364 (-0.021077) | 0.464867 / 0.540337 (-0.075470) | 0.638880 / 1.386936 (-0.748056) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010625 / 0.011353 (-0.000728) | 0.005129 / 0.011008 (-0.005879) | 0.119975 / 0.038508 (0.081467) | 0.100128 / 0.023109 (0.077019) | 0.448678 / 0.275898 (0.172780) | 0.533150 / 0.323480 (0.209670) | 0.005881 / 0.007986 (-0.002105) | 0.007451 / 0.004328 (0.003123) | 0.090792 / 0.004250 (0.086542) | 0.073416 / 0.037052 (0.036363) | 0.455395 / 0.258489 (0.196906) | 0.497572 / 0.293841 (0.203731) | 0.053112 / 0.128546 (-0.075434) | 0.014619 / 0.075646 (-0.061027) | 0.388023 / 0.419271 (-0.031248) | 0.074004 / 0.043533 (0.030471) | 0.435319 / 0.255139 (0.180180) | 0.465985 / 0.283200 (0.182785) | 0.046991 / 0.141683 (-0.094692) | 1.895717 / 1.452155 (0.443563) | 2.086600 / 1.492716 (0.593884) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.334412 / 0.018006 (0.316406) | 0.645510 / 0.000490 (0.645020) | 0.019175 / 0.000200 (0.018975) | 0.000429 / 0.000054 (0.000374) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034385 / 0.037411 (-0.003026) | 0.108939 / 0.014526 (0.094413) | 0.125937 / 0.176557 (-0.050619) | 0.205643 / 0.737135 (-0.531493) | 0.127662 / 0.296338 (-0.168676) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.674093 / 0.215209 (0.458884) | 6.646554 / 2.077655 (4.568900) | 2.837698 / 1.504120 (1.333578) | 2.397199 / 1.541195 (0.856004) | 2.485856 / 1.468490 (1.017366) | 0.955142 / 4.584777 (-3.629635) | 5.667462 / 3.745712 (1.921750) | 5.354129 / 5.269862 (0.084268) | 3.301609 / 4.565676 (-1.264068) | 0.106051 / 0.424275 (-0.318224) | 0.009287 / 0.007607 (0.001680) | 0.766678 / 0.226044 (0.540634) | 7.786701 / 2.268929 (5.517772) | 3.665463 / 55.444624 (-51.779161) | 2.982912 / 6.876477 (-3.893564) | 3.053363 / 2.142072 (0.911290) | 1.141090 / 4.805227 (-3.664137) | 0.223975 / 6.500664 (-6.276689) | 0.093024 / 0.075469 (0.017555) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.728175 / 1.841788 (-0.113613) | 25.640134 / 8.074308 (17.565826) | 22.124769 / 10.191392 (11.933377) | 0.237489 / 0.680424 (-0.442935) | 0.030353 / 0.534201 (-0.503848) | 0.509371 / 0.579283 (-0.069913) | 0.642320 / 0.434364 (0.207956) | 0.576889 / 0.540337 (0.036552) | 0.899377 / 1.386936 (-0.487559) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010846 / 0.011353 (-0.000507) | 0.005876 / 0.011008 (-0.005132) | 0.090810 / 0.038508 (0.052302) | 0.106651 / 0.023109 (0.083542) | 0.551064 / 0.275898 (0.275166) | 0.608328 / 0.323480 (0.284848) | 0.007563 / 0.007986 (-0.000423) | 0.004595 / 0.004328 (0.000267) | 0.089125 / 0.004250 (0.084874) | 0.076577 / 0.037052 (0.039525) | 0.579970 / 0.258489 (0.321481) | 0.620214 / 0.293841 (0.326373) | 0.052577 / 0.128546 (-0.075970) | 0.013734 / 0.075646 (-0.061912) | 0.099825 / 0.419271 (-0.319447) | 0.068391 / 0.043533 (0.024858) | 0.564733 / 0.255139 (0.309594) | 0.593925 / 0.283200 (0.310726) | 0.037201 / 0.141683 (-0.104482) | 1.880969 / 1.452155 (0.428815) | 2.065094 / 1.492716 (0.572377) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.426148 / 0.018006 (0.408141) | 0.673935 / 0.000490 (0.673445) | 0.124190 / 0.000200 (0.123990) | 0.001219 / 0.000054 (0.001164) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040280 / 0.037411 (0.002868) | 0.122042 / 0.014526 (0.107516) | 0.131333 / 0.176557 (-0.045223) | 0.203039 / 0.737135 (-0.534096) | 0.134851 / 0.296338 (-0.161487) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.684599 / 0.215209 (0.469390) | 6.727529 / 2.077655 (4.649874) | 3.255228 / 1.504120 (1.751108) | 2.925865 / 1.541195 (1.384670) | 2.978762 / 1.468490 (1.510272) | 0.931769 / 4.584777 (-3.653008) | 5.988956 / 3.745712 (2.243244) | 5.228049 / 5.269862 (-0.041812) | 3.341470 / 4.565676 (-1.224206) | 0.106737 / 0.424275 (-0.317539) | 0.009847 / 0.007607 (0.002240) | 0.813954 / 0.226044 (0.587909) | 8.137071 / 2.268929 (5.868143) | 4.140725 / 55.444624 (-51.303899) | 3.500579 / 6.876477 (-3.375898) | 3.623120 / 2.142072 (1.481047) | 1.096634 / 4.805227 (-3.708593) | 0.236938 / 6.500664 (-6.263726) | 0.083099 / 0.075469 (0.007630) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.856112 / 1.841788 (0.014324) | 26.531325 / 8.074308 (18.457017) | 24.435866 / 10.191392 (14.244474) | 0.264093 / 0.680424 (-0.416331) | 0.034872 / 0.534201 (-0.499329) | 0.520682 / 0.579283 (-0.058601) | 0.635010 / 0.434364 (0.200646) | 0.645451 / 0.540337 (0.105113) | 0.914616 / 1.386936 (-0.472320) |\n\n</details>\n</details>\n\n\n"
] | 2023-09-29T16:22:31
| 2023-10-02T14:53:06
| null |
CONTRIBUTOR
| null |
Test PR to check the compatibility with https://github.com/huggingface/huggingface_hub/pull/1699
cc @Wauplin
|
{
"url": "https://api.github.com/repos/huggingface/datasets/issues/6269/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 1,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
}
|
https://api.github.com/repos/huggingface/datasets/issues/6269/timeline
| null | null | true
|
{
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6269",
"html_url": "https://github.com/huggingface/datasets/pull/6269",
"diff_url": "https://github.com/huggingface/datasets/pull/6269.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6269.patch",
"merged_at": null
}
| true
|
End of preview. Expand
in Data Studio
- Downloads last month
- 1