Datasets:
metadata
license: mit
task_categories:
- text-retrieval
- question-answering
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- ne
- or
- pa
- ta
- te
- ur
multilinguality: multilingual
size_categories:
- 10K<n<100K
source_datasets:
- ms_marco
tags:
- indian-languages
- multilingual
- indic
- retrieval
- msmarco
- benchmark
pretty_name: 'IndicMSMARCO: Multilingual Information Retrieval Benchmark'
configs:
- config_name: as
data_files:
- as/*.parquet
default: false
description: Assamese language subset
- config_name: bn
data_files:
- bn/*.parquet
default: false
description: Bengali language subset
- config_name: gu
data_files:
- gu/*.parquet
default: false
description: Gujarati language subset
- config_name: hi
data_files:
- hi/*.parquet
default: false
description: Hindi language subset
- config_name: kn
data_files:
- kn/*.parquet
default: false
description: Kannada language subset
- config_name: ml
data_files:
- ml/*.parquet
default: false
description: Malayalam language subset
- config_name: mr
data_files:
- mr/*.parquet
default: false
description: Marathi language subset
- config_name: ne
data_files:
- ne/*.parquet
default: false
description: Nepali language subset
- config_name: or
data_files:
- or/*.parquet
default: false
description: Odia language subset
- config_name: pa
data_files:
- pa/*.parquet
default: false
description: Punjabi language subset
- config_name: ta
data_files:
- ta/*.parquet
default: false
description: Tamil language subset
- config_name: te
data_files:
- te/*.parquet
default: false
description: Telugu language subset
- config_name: ur
data_files:
- ur/*.parquet
default: false
description: Urdu language subset
🔍 IndicMSMARCO: Multilingual Information Retrieval Benchmark
A comprehensive multilingual variant of MS MARCO specifically tailored for Indian languages, featuring carefully selected queries and corresponding passages with high-quality translations.
🚀 Quick Start - Load Individual Languages
from datasets import load_dataset
# Load ONLY Hindi data (fast and efficient!)
hindi_data = load_dataset("ai4bharat/IndicMSMARCO", "hi")
print(f"Hindi queries: {len(hindi_data['train'])} samples")
# Load ONLY Bengali data
bengali_data = load_dataset("ai4bharat/IndicMSMARCO", "bn")
print(f"Bengali queries: {len(bengali_data['train'])} samples")
# Access query-passage pairs
for example in hindi_data['train'][:3]:
print(f"Query: {example['query']}")
print(f"Passage: {example['passage'][:200]}...")
print("---")
📊 Dataset Overview
- Total Samples: 12,999
- Languages: 13 languages
- Source: MS MARCO development set
- Quality: Human-verified translations
- Task: Information Retrieval / Passage Ranking
🎯 Key Features
- Topic Diversity: Science, history, politics, health, technology
- Query Complexity: Simple factual, descriptive, and complex entity-based queries
- Balanced Representation: Short, medium, and long-form queries
- High-Quality Translations: Professional translation and verification
- Consistent Structure: Normalized schema across all languages
📋 Available Languages (13 total)
| Code | Language | Load Command | Sample Count |
|---|---|---|---|
as |
Assamese | load_dataset('ai4bharat/IndicMSMARCO', 'as') |
~999 |
bn |
Bengali | load_dataset('ai4bharat/IndicMSMARCO', 'bn') |
~999 |
gu |
Gujarati | load_dataset('ai4bharat/IndicMSMARCO', 'gu') |
~999 |
hi |
Hindi | load_dataset('ai4bharat/IndicMSMARCO', 'hi') |
~999 |
kn |
Kannada | load_dataset('ai4bharat/IndicMSMARCO', 'kn') |
~999 |
ml |
Malayalam | load_dataset('ai4bharat/IndicMSMARCO', 'ml') |
~999 |
mr |
Marathi | load_dataset('ai4bharat/IndicMSMARCO', 'mr') |
~999 |
ne |
Nepali | load_dataset('ai4bharat/IndicMSMARCO', 'ne') |
~999 |
or |
Odia | load_dataset('ai4bharat/IndicMSMARCO', 'or') |
~999 |
pa |
Punjabi | load_dataset('ai4bharat/IndicMSMARCO', 'pa') |
~999 |
ta |
Tamil | load_dataset('ai4bharat/IndicMSMARCO', 'ta') |
~999 |
te |
Telugu | load_dataset('ai4bharat/IndicMSMARCO', 'te') |
~999 |
ur |
Urdu | load_dataset('ai4bharat/IndicMSMARCO', 'ur') |
~999 |
💡 Usage Examples
Information Retrieval Evaluation
from datasets import load_dataset
# Load Hindi benchmark
dataset = load_dataset("ai4bharat/IndicMSMARCO", "hi")
queries = dataset['train']
# Extract queries and passages for retrieval evaluation
for item in queries:
query_id = item['query_id']
query_text = item['query']
passage_text = item['passage']
relevance = item['relevance_score']
# Use for your retrieval model evaluation
print(f"Query {query_id}: {query_text}")
print(f"Relevant passage: {passage_text[:100]}...")
Cross-lingual Retrieval Benchmark
# Compare retrieval across languages
languages = ['as', 'bn', 'gu', 'hi']
results = {}
for lang in languages:
dataset = load_dataset("ai4bharat/IndicMSMARCO", lang)
results[lang] = dataset['train']
print(f"{lang}: {len(results[lang])} query-passage pairs")
# Evaluate your multilingual retrieval model
for lang_code, queries in results.items():
# Run your retrieval evaluation here
pass
📋 Dataset Structure
{
"query_id": "1234567",
"query": "भारत की राजधानी क्या है?",
"passage": "भारत की राजधानी नई दिल्ली है। यह देश के उत्तरी भाग में स्थित है...",
"passage_id": "7654321",
"language": "hi",
"answer": "नई दिल्ली",
"title": "भारत की राजधानी",
"query_type": "factual",
"relevance_score": 1.0,
"is_selected": true,
"text": "Query: भारत की राजधानी क्या है? | Passage: भारत की राजधानी नई दिल्ली है...",
"dataset": "IndicMSMARCO",
"source": "MS MARCO translated to Indian languages",
"meta": "{\"model\": \"translation_model\", \"verified\": true}"
}
⚡ Performance & Loading Tips
- Single Language Loading: Always use config name for fastest loading
- Streaming: Use
streaming=Truefor memory-efficient processing - Batch Evaluation: Load full train split for comprehensive benchmarking
- Cross-lingual: Compare same query_id across languages
🎯 Use Cases
- 🔍 Information Retrieval: Benchmark multilingual retrieval systems
- 🤖 RAG Evaluation: Test retrieval-augmented generation systems
- 📊 Cross-lingual IR: Evaluate cross-language information retrieval
- 🧪 Model Comparison: Compare multilingual embedding models
- 📚 Academic Research: Multilingual IR and NLP research
📖 Citation
If you use IndicMSMARCO in your research, please cite:
@dataset{indic_msmarco_2024,
title={IndicRAGSuite: LargeScale Datasets and a Benchmark for Indian Language RAG Systems},
author={Pasunuti Prasanjith,Prathmesh B More,Anoop Kunchukuttan, Raj Dabre},
year={2025},
{journal = {arXiv preprint arXiv:2506.01615},
url={https://huggingface.co/datasets/ai4bharat/IndicMSMARCO}
}
📄 License
MIT License
🔧 Technical Details
- Format: JSONL files per language
- Encoding: UTF-8
- Schema: Normalized MS MARCO structure
- Quality Control: Multi-stage validation process
Built for multilingual information retrieval • Human-verified quality • Ready for benchmarking