Pralekha / README.md
sanjay73's picture
Update README.md
8ead2b4 verified
metadata
language:
  - bn
  - en
  - gu
  - hi
  - kn
  - ml
  - mr
  - or
  - pa
  - ta
  - te
  - ur
license: cc-by-4.0
size_categories:
  - 1M<n<10M
pretty_name: Pralekha
dataset_info:
  - config_name: alignable
    features:
      - name: n_id
        dtype: string
      - name: doc_id
        dtype: string
      - name: lang
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: ben
        num_bytes: 651961117
        num_examples: 95813
      - name: eng
        num_bytes: 1048149692
        num_examples: 298111
      - name: guj
        num_bytes: 549286108
        num_examples: 67847
      - name: hin
        num_bytes: 1754308559
        num_examples: 204809
      - name: kan
        num_bytes: 567860764
        num_examples: 61998
      - name: mal
        num_bytes: 498894372
        num_examples: 67760
      - name: mar
        num_bytes: 961277740
        num_examples: 135301
      - name: ori
        num_bytes: 397642857
        num_examples: 46167
      - name: pan
        num_bytes: 872586190
        num_examples: 108459
      - name: tam
        num_bytes: 858335433
        num_examples: 149637
      - name: tel
        num_bytes: 914832899
        num_examples: 110077
      - name: urd
        num_bytes: 1199225480
        num_examples: 220425
    download_size: 3954199760
    dataset_size: 10274361211
  - config_name: dev
    features:
      - name: src_lang
        dtype: string
      - name: tgt_lang
        dtype: string
      - name: src_txt
        dtype: string
      - name: tgt_txt
        dtype: string
    splits:
      - name: eng_ben
        num_bytes: 10446287
        num_examples: 1000
      - name: eng_guj
        num_bytes: 10823551
        num_examples: 1000
      - name: eng_hin
        num_bytes: 10538595
        num_examples: 1000
      - name: eng_kan
        num_bytes: 11288140
        num_examples: 1000
      - name: eng_mal
        num_bytes: 11520061
        num_examples: 1000
      - name: eng_mar
        num_bytes: 11192800
        num_examples: 1000
      - name: eng_ori
        num_bytes: 10972595
        num_examples: 1000
      - name: eng_pan
        num_bytes: 10599515
        num_examples: 1000
      - name: eng_tam
        num_bytes: 10011545
        num_examples: 1000
      - name: eng_tel
        num_bytes: 11464868
        num_examples: 1000
      - name: eng_urd
        num_bytes: 8230149
        num_examples: 1000
    download_size: 48192585
    dataset_size: 117088106
  - config_name: test
    features:
      - name: src_lang
        dtype: string
      - name: tgt_lang
        dtype: string
      - name: src_txt
        dtype: string
      - name: tgt_txt
        dtype: string
    splits:
      - name: eng_ben
        num_bytes: 12100173
        num_examples: 1000
      - name: eng_guj
        num_bytes: 12403556
        num_examples: 1000
      - name: eng_hin
        num_bytes: 12162067
        num_examples: 1000
      - name: eng_kan
        num_bytes: 12840988
        num_examples: 999
      - name: eng_mal
        num_bytes: 13532353
        num_examples: 999
      - name: eng_mar
        num_bytes: 12894986
        num_examples: 1000
      - name: eng_ori
        num_bytes: 12591671
        num_examples: 1000
      - name: eng_pan
        num_bytes: 12198385
        num_examples: 1000
      - name: eng_tam
        num_bytes: 11333814
        num_examples: 1000
      - name: eng_tel
        num_bytes: 13147883
        num_examples: 1000
      - name: eng_urd
        num_bytes: 9670909
        num_examples: 1000
    download_size: 55844958
    dataset_size: 134876785
  - config_name: train
    features:
      - name: src_lang
        dtype: string
      - name: src_txt
        dtype: string
      - name: tgt_lang
        dtype: string
      - name: tgt_txt
        dtype: string
    splits:
      - name: eng_ben
        num_bytes: 891713179
        num_examples: 86815
      - name: eng_guj
        num_bytes: 676441229
        num_examples: 58869
      - name: eng_hin
        num_bytes: 2374813432
        num_examples: 195511
      - name: eng_kan
        num_bytes: 675075859
        num_examples: 53057
      - name: eng_mal
        num_bytes: 619416849
        num_examples: 58766
      - name: eng_mar
        num_bytes: 1329539092
        num_examples: 126173
      - name: eng_ori
        num_bytes: 455052253
        num_examples: 37321
      - name: eng_pan
        num_bytes: 1139730462
        num_examples: 99475
      - name: eng_tam
        num_bytes: 1278582351
        num_examples: 140499
      - name: eng_tel
        num_bytes: 1162702779
        num_examples: 101109
      - name: eng_urd
        num_bytes: 1843885193
        num_examples: 211229
    download_size: 5224096653
    dataset_size: 12446952678
  - config_name: unalignable
    features:
      - name: n_id
        dtype: string
      - name: doc_id
        dtype: string
      - name: lang
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: ben
        num_bytes: 273391595
        num_examples: 47906
      - name: eng
        num_bytes: 420307531
        num_examples: 149055
      - name: guj
        num_bytes: 214351582
        num_examples: 33923
      - name: hin
        num_bytes: 683869386
        num_examples: 102404
      - name: kan
        num_bytes: 189633814
        num_examples: 30999
      - name: mal
        num_bytes: 192394324
        num_examples: 33880
      - name: mar
        num_bytes: 428715921
        num_examples: 67650
      - name: ori
        num_bytes: 111986274
        num_examples: 23083
      - name: pan
        num_bytes: 328564948
        num_examples: 54229
      - name: tam
        num_bytes: 614171222
        num_examples: 74818
      - name: tel
        num_bytes: 372531108
        num_examples: 55038
      - name: urd
        num_bytes: 644995094
        num_examples: 110212
    download_size: 1855179179
    dataset_size: 4474912799
configs:
  - config_name: alignable
    data_files:
      - split: ben
        path: alignable/ben-*
      - split: eng
        path: alignable/eng-*
      - split: guj
        path: alignable/guj-*
      - split: hin
        path: alignable/hin-*
      - split: kan
        path: alignable/kan-*
      - split: mal
        path: alignable/mal-*
      - split: mar
        path: alignable/mar-*
      - split: ori
        path: alignable/ori-*
      - split: pan
        path: alignable/pan-*
      - split: tam
        path: alignable/tam-*
      - split: tel
        path: alignable/tel-*
      - split: urd
        path: alignable/urd-*
  - config_name: dev
    data_files:
      - split: eng_ben
        path: dev/eng_ben-*
      - split: eng_guj
        path: dev/eng_guj-*
      - split: eng_hin
        path: dev/eng_hin-*
      - split: eng_kan
        path: dev/eng_kan-*
      - split: eng_mal
        path: dev/eng_mal-*
      - split: eng_mar
        path: dev/eng_mar-*
      - split: eng_ori
        path: dev/eng_ori-*
      - split: eng_pan
        path: dev/eng_pan-*
      - split: eng_tam
        path: dev/eng_tam-*
      - split: eng_tel
        path: dev/eng_tel-*
      - split: eng_urd
        path: dev/eng_urd-*
  - config_name: test
    data_files:
      - split: eng_ben
        path: test/eng_ben-*
      - split: eng_guj
        path: test/eng_guj-*
      - split: eng_hin
        path: test/eng_hin-*
      - split: eng_kan
        path: test/eng_kan-*
      - split: eng_mal
        path: test/eng_mal-*
      - split: eng_mar
        path: test/eng_mar-*
      - split: eng_ori
        path: test/eng_ori-*
      - split: eng_pan
        path: test/eng_pan-*
      - split: eng_tam
        path: test/eng_tam-*
      - split: eng_tel
        path: test/eng_tel-*
      - split: eng_urd
        path: test/eng_urd-*
  - config_name: train
    data_files:
      - split: eng_ben
        path: train/eng_ben-*
      - split: eng_guj
        path: train/eng_guj-*
      - split: eng_hin
        path: train/eng_hin-*
      - split: eng_kan
        path: train/eng_kan-*
      - split: eng_mal
        path: train/eng_mal-*
      - split: eng_mar
        path: train/eng_mar-*
      - split: eng_ori
        path: train/eng_ori-*
      - split: eng_pan
        path: train/eng_pan-*
      - split: eng_tam
        path: train/eng_tam-*
      - split: eng_tel
        path: train/eng_tel-*
      - split: eng_urd
        path: train/eng_urd-*
  - config_name: unalignable
    data_files:
      - split: ben
        path: unalignable/ben-*
      - split: eng
        path: unalignable/eng-*
      - split: guj
        path: unalignable/guj-*
      - split: hin
        path: unalignable/hin-*
      - split: kan
        path: unalignable/kan-*
      - split: mal
        path: unalignable/mal-*
      - split: mar
        path: unalignable/mar-*
      - split: ori
        path: unalignable/ori-*
      - split: pan
        path: unalignable/pan-*
      - split: tam
        path: unalignable/tam-*
      - split: tel
        path: unalignable/tel-*
      - split: urd
        path: unalignable/urd-*
tags:
  - parallel-corpus
  - document-alignment
  - machine-translation
task_categories:
  - translation

Pralekha: Cross-Lingual Document Alignment for Indic Languages

Pralekha is a large-scale parallel document dataset spanning across 11 Indic languages and English. It comprises over 3 million document pairs, with 1.5 million being English-Indic Pairs. This dataset serves both as a benchmark for evaluating Cross-Lingual Document Alignment (CLDA) techniques and as a domain-specific parallel corpus for training document-level Machine Translation (MT) models in Indic Languages.


Dataset Description

Pralekha covers 12 languages—Bengali (ben), Gujarati (guj), Hindi (hin), Kannada (kan), Malayalam (mal), Marathi (mar), Odia (ori), Punjabi (pan), Tamil (tam), Telugu (tel), Urdu (urd), and English (eng). It includes a mixture of high- and medium-resource languages, covering 11 different scripts. The dataset spans two broad domains: News Bulletins (Indian Press Information Bureau (PIB)) and Podcast Scripts (Mann Ki Baat (MKB)), offering both written and spoken forms of data. All the data is human-written or human-verified, ensuring high quality.

While this accounts for alignable (parallel) documents, In real-world scenarios, multilingual corpora often include unalignable documents. To simulate this for CLDA evaluation, we sample unalignable documents from Sangraha Unverified, selecting 50% of Pralekha’s size to maintain a 1:2 ratio of unalignable to alignable documents.

For Machine Translation (MT) tasks, we first randomly sample 1,000 documents from the alignable subset per English-Indic language pair for each development (dev) and test set, ensuring a good distribution of varying document lengths. After excluding these sampled documents, we use the remaining documents as the training set for training document-level machine translation models.


Data Fields

Alignable & Unalignable Set:

  • n_id: Unique identifier for alignable document pairs (Random n_id's are assigned for the unalignable set.)
  • doc_id: Unique identifier for individual documents.
  • lang: Language of the document (ISO 639-3 code).
  • text: The textual content of the document.

Train, Dev & Test Set:

  • src_lang: Source Language (eng)
  • src_text: Source Language Text
  • tgt_lang: Target Language (ISO 639-3 code)
  • tgt_text: Target Language Text

Usage

You can load specific subsets and splits from this dataset using the datasets library.

Load an entire subset

from datasets import load_dataset

dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>")
# <subset> = alignable, unalignable, train, dev & test.

Load a specific split within a subset

from datasets import load_dataset

dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/<lang>")
# <subset> = alignable, unalignable ; <lang> = ben, eng, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.
from datasets import load_dataset

dataset = load_dataset("ai4bharat/Pralekha", data_dir="<subset>/eng_<lang>")
# <subset> = train, dev & test ; <lang> = ben, guj, hin, kan, mal, mar, ori, pan, tam, tel, urd.

Data Size Statistics

Split Number of Documents Size (bytes)
Alignable 1,566,404 10,274,361,211
Unalignable 783,197 4,466,506,637
Total 2,349,601 14,740,867,848

Language-wise Statistics

Language (ISO-3) Alignable Documents Unalignable Documents Total Documents
Bengali (ben) 95,813 47,906 143,719
English (eng) 298,111 149,055 447,166
Gujarati (guj) 67,847 33,923 101,770
Hindi (hin) 204,809 102,404 307,213
Kannada (kan) 61,998 30,999 92,997
Malayalam (mal) 67,760 33,880 101,640
Marathi (mar) 135,301 67,650 202,951
Odia (ori) 46,167 23,083 69,250
Punjabi (pan) 108,459 54,229 162,688
Tamil (tam) 149,637 74,818 224,455
Telugu (tel) 110,077 55,038 165,115
Urdu (urd) 220,425 110,212 330,637

Citation

If you use Pralekha in your work, please cite us:

@misc{suryanarayanan2025pralekhacrosslingualdocumentalignment,
      title={Pralekha: Cross-Lingual Document Alignment for Indic Languages}, 
      author={Sanjay Suryanarayanan and Haiyue Song and Mohammed Safi Ur Rahman Khan and Anoop Kunchukuttan and Raj Dabre},
      year={2025},
      eprint={2411.19096},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.19096}, 
}

License

This dataset is released under the CC BY 4.0 license.

Contact

For any questions or feedback, please contact:

Please get in touch with us for any copyright concerns.