identifier
stringlengths
7
18
space
stringclasses
4 values
uid
stringlengths
1
6
arch_str
stringlengths
1
32
input
stringlengths
8.51k
461k
target_metric
stringclasses
1 value
val_accuracy
float64
0
95.1
flops
float64
31.1M
14.7B
params
float64
227k
50M
metadata
stringlengths
0
1.46k
metainformation
stringclasses
1 value
NASBench101_272706
NASBench101
272706
a52a5411548352218cf0efc89f1f1345
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x3x3] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x3x3] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 128x128x1x1] %onnx::Conv_1118[FLOAT, 128x128x3x3] %onnx::Conv_1121[FLOAT, 128x128x1x1] %onnx::Conv_1124[FLOAT, 128x128x3x3] %onnx::Conv_1127[FLOAT, 128x128x1x1] %onnx::Conv_1130[FLOAT, 128x128x3x3] %onnx::Conv_1133[FLOAT, 128x128x1x1] %onnx::Conv_1136[FLOAT, 128x128x1x1] %onnx::Conv_1139[FLOAT, 128x128x1x1] %onnx::Conv_1142[FLOAT, 128x128x3x3] %onnx::Conv_1145[FLOAT, 128x128x1x1] %onnx::Conv_1148[FLOAT, 128x128x3x3] %onnx::Conv_1151[FLOAT, 256x128x1x1] %onnx::Conv_1152[FLOAT, 256] %onnx::Conv_1154[FLOAT, 256x256x3x3] %onnx::Conv_1157[FLOAT, 256x256x1x1] %onnx::Conv_1160[FLOAT, 256x128x1x1] %onnx::Conv_1163[FLOAT, 256x256x1x1] %onnx::Conv_1166[FLOAT, 256x256x3x3] %onnx::Conv_1169[FLOAT, 256x128x1x1] %onnx::Conv_1172[FLOAT, 256x256x3x3] %onnx::Conv_1175[FLOAT, 256x256x1x1] %onnx::Conv_1178[FLOAT, 256x256x3x3] %onnx::Conv_1181[FLOAT, 256x256x1x1] %onnx::Conv_1184[FLOAT, 256x256x1x1] %onnx::Conv_1187[FLOAT, 256x256x1x1] %onnx::Conv_1190[FLOAT, 256x256x3x3] %onnx::Conv_1193[FLOAT, 256x256x1x1] %onnx::Conv_1196[FLOAT, 256x256x3x3] %onnx::Conv_1199[FLOAT, 256x256x1x1] %onnx::Conv_1202[FLOAT, 256x256x3x3] %onnx::Conv_1205[FLOAT, 256x256x1x1] %onnx::Conv_1208[FLOAT, 256x256x1x1] %onnx::Conv_1211[FLOAT, 256x256x1x1] %onnx::Conv_1214[FLOAT, 256x256x3x3] %onnx::Conv_1217[FLOAT, 256x256x1x1] %onnx::Conv_1220[FLOAT, 256x256x3x3] %onnx::Conv_1223[FLOAT, 512x256x1x1] %onnx::Conv_1224[FLOAT, 512] %onnx::Conv_1226[FLOAT, 512x512x3x3] %onnx::Conv_1229[FLOAT, 512x512x1x1] %onnx::Conv_1232[FLOAT, 512x256x1x1] %onnx::Conv_1235[FLOAT, 512x512x1x1] %onnx::Conv_1238[FLOAT, 512x512x3x3] %onnx::Conv_1241[FLOAT, 512x256x1x1] %onnx::Conv_1244[FLOAT, 512x512x3x3] %onnx::Conv_1247[FLOAT, 512x512x1x1] %onnx::Conv_1250[FLOAT, 512x512x3x3] %onnx::Conv_1253[FLOAT, 512x512x1x1] %onnx::Conv_1256[FLOAT, 512x512x1x1] %onnx::Conv_1259[FLOAT, 512x512x1x1] %onnx::Conv_1262[FLOAT, 512x512x3x3] %onnx::Conv_1265[FLOAT, 512x512x1x1] %onnx::Conv_1268[FLOAT, 512x512x3x3] %onnx::Conv_1271[FLOAT, 512x512x1x1] %onnx::Conv_1274[FLOAT, 512x512x3x3] %onnx::Conv_1277[FLOAT, 512x512x1x1] %onnx::Conv_1280[FLOAT, 512x512x1x1] %onnx::Conv_1283[FLOAT, 512x512x1x1] %onnx::Conv_1286[FLOAT, 512x512x3x3] %onnx::Conv_1289[FLOAT, 512x512x1x1] %onnx::Conv_1292[FLOAT, 512x512x3x3] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1152) %onnx::Conv_1218 = Identity(%onnx::Conv_1152) %onnx::Conv_1215 = Identity(%onnx::Conv_1152) %onnx::Conv_1212 = Identity(%onnx::Conv_1152) %onnx::Conv_1209 = Identity(%onnx::Conv_1152) %onnx::Conv_1206 = Identity(%onnx::Conv_1152) %onnx::Conv_1203 = Identity(%onnx::Conv_1152) %onnx::Conv_1200 = Identity(%onnx::Conv_1152) %onnx::Conv_1197 = Identity(%onnx::Conv_1152) %onnx::Conv_1194 = Identity(%onnx::Conv_1152) %onnx::Conv_1191 = Identity(%onnx::Conv_1152) %onnx::Conv_1188 = Identity(%onnx::Conv_1152) %onnx::Conv_1185 = Identity(%onnx::Conv_1152) %onnx::Conv_1182 = Identity(%onnx::Conv_1152) %onnx::Conv_1179 = Identity(%onnx::Conv_1152) %onnx::Conv_1176 = Identity(%onnx::Conv_1152) %onnx::Conv_1173 = Identity(%onnx::Conv_1152) %onnx::Conv_1170 = Identity(%onnx::Conv_1152) %onnx::Conv_1167 = Identity(%onnx::Conv_1152) %onnx::Conv_1164 = Identity(%onnx::Conv_1152) %onnx::Conv_1161 = Identity(%onnx::Conv_1152) %onnx::Conv_1158 = Identity(%onnx::Conv_1152) %onnx::Conv_1155 = Identity(%onnx::Conv_1152) %onnx::Conv_1149 = Identity(%onnx::Conv_1077) %onnx::Conv_1146 = Identity(%onnx::Conv_1077) %onnx::Conv_1143 = Identity(%onnx::Conv_1077) %onnx::Conv_1140 = Identity(%onnx::Conv_1077) %onnx::Conv_1137 = Identity(%onnx::Conv_1077) %onnx::Conv_1134 = Identity(%onnx::Conv_1077) %onnx::Conv_1131 = Identity(%onnx::Conv_1077) %onnx::Conv_1128 = Identity(%onnx::Conv_1077) %onnx::Conv_1125 = Identity(%onnx::Conv_1077) %onnx::Conv_1122 = Identity(%onnx::Conv_1077) %onnx::Conv_1119 = Identity(%onnx::Conv_1077) %onnx::Conv_1116 = Identity(%onnx::Conv_1077) %onnx::Conv_1113 = Identity(%onnx::Conv_1077) %onnx::Conv_1110 = Identity(%onnx::Conv_1077) %onnx::Conv_1107 = Identity(%onnx::Conv_1077) %onnx::Conv_1104 = Identity(%onnx::Conv_1077) %onnx::Conv_1101 = Identity(%onnx::Conv_1077) %onnx::Conv_1098 = Identity(%onnx::Conv_1077) %onnx::Conv_1095 = Identity(%onnx::Conv_1077) %onnx::Conv_1092 = Identity(%onnx::Conv_1077) %onnx::Conv_1089 = Identity(%onnx::Conv_1077) %onnx::Conv_1086 = Identity(%onnx::Conv_1077) %onnx::Conv_1083 = Identity(%onnx::Conv_1077) %onnx::Conv_1080 = Identity(%onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.299282
9,615,190,016
32,590,474
{'zcp_epe_nas': 96.10788501940547, 'zcp_fisher': 36.37602996826172, 'zcp_flops': 153843040256.0, 'zcp_grad_norm': 116.3365707397461, 'zcp_grasp': -4.86907958984375, 'zcp_jacov': -16.057628411654157, 'zcp_l2_norm': 1649.8475341796875, 'zcp_nwot': 239.55846834349958, 'zcp_params': 32590474.0, 'zcp_plain': 0.039691682904958, 'zcp_snip': 1005.079833984375, 'zcp_synflow': 165.3796199494713, 'zcp_zen': 145.46829223632812, 'zcp_val_accuracy': 0.9358974099159241}
NASBench101_162372
NASBench101
162372
6252150c069061d763e1508b37d9e3c1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x64x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x128x1x1] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 64x64x1x1] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x256x1x1] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x512x1x1] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x256x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x512x1x1] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
90.52484
1,803,036,672
6,054,282
{'zcp_epe_nas': 133.866238001731, 'zcp_fisher': 5236.2607421875, 'zcp_flops': 28848586752.0, 'zcp_grad_norm': 1269.2545166015625, 'zcp_grasp': 23614.0, 'zcp_jacov': -16.06195129634729, 'zcp_l2_norm': 993.1043090820312, 'zcp_nwot': 224.51320368517577, 'zcp_params': 6054282.0, 'zcp_plain': 0.09430443495512, 'zcp_snip': 6789.66845703125, 'zcp_synflow': 140.9639365654442, 'zcp_zen': 94.94254302978516, 'zcp_val_accuracy': 0.91796875}
NASBench101_28820
NASBench101
28820
116b26269ebd7f6a84da802e6e2ece2b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_851[FLOAT, 128x3x3x3] %onnx::Conv_852[FLOAT, 128] %onnx::Conv_854[FLOAT, 64x128x1x1] %onnx::Conv_855[FLOAT, 64] %onnx::Conv_857[FLOAT, 64x64x1x1] %onnx::Conv_860[FLOAT, 64x128x1x1] %onnx::Conv_863[FLOAT, 64x64x1x1] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 64x64x1x1] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x128x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x256x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x256x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x256x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_963[FLOAT, 256] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x512x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x512x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x512x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x1x1] ) { %onnx::Conv_1014 = Identity(%onnx::Conv_963) %onnx::Conv_1011 = Identity(%onnx::Conv_963) %onnx::Conv_1008 = Identity(%onnx::Conv_963) %onnx::Conv_1005 = Identity(%onnx::Conv_963) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_963) %onnx::Conv_993 = Identity(%onnx::Conv_963) %onnx::Conv_990 = Identity(%onnx::Conv_963) %onnx::Conv_987 = Identity(%onnx::Conv_963) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_963) %onnx::Conv_975 = Identity(%onnx::Conv_963) %onnx::Conv_972 = Identity(%onnx::Conv_963) %onnx::Conv_969 = Identity(%onnx::Conv_963) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_852) %onnx::Conv_957 = Identity(%onnx::Conv_852) %onnx::Conv_954 = Identity(%onnx::Conv_852) %onnx::Conv_951 = Identity(%onnx::Conv_852) %onnx::Conv_948 = Identity(%onnx::Conv_852) %onnx::Conv_945 = Identity(%onnx::Conv_852) %onnx::Conv_942 = Identity(%onnx::Conv_852) %onnx::Conv_939 = Identity(%onnx::Conv_852) %onnx::Conv_936 = Identity(%onnx::Conv_852) %onnx::Conv_933 = Identity(%onnx::Conv_852) %onnx::Conv_930 = Identity(%onnx::Conv_852) %onnx::Conv_927 = Identity(%onnx::Conv_852) %onnx::Conv_924 = Identity(%onnx::Conv_852) %onnx::Conv_921 = Identity(%onnx::Conv_852) %onnx::Conv_918 = Identity(%onnx::Conv_852) %onnx::Conv_915 = Identity(%onnx::Conv_852) %onnx::Conv_912 = Identity(%onnx::Conv_852) %onnx::Conv_909 = Identity(%onnx::Conv_852) %onnx::Conv_906 = Identity(%onnx::Conv_855) %onnx::Conv_903 = Identity(%onnx::Conv_855) %onnx::Conv_900 = Identity(%onnx::Conv_855) %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_851, %onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %849 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %849 }
val_accuracy
92.387819
1,199,056,896
3,989,898
{'zcp_epe_nas': 114.7251945292877, 'zcp_fisher': 54.78136444091797, 'zcp_flops': 19184910336.0, 'zcp_grad_norm': 155.05148315429688, 'zcp_grasp': 59.26025390625, 'zcp_jacov': -16.0611920891864, 'zcp_l2_norm': 994.475830078125, 'zcp_nwot': 224.49035420099065, 'zcp_params': 3989898.0, 'zcp_plain': -0.007184784859418001, 'zcp_snip': 850.1800537109375, 'zcp_synflow': 106.94681887395548, 'zcp_zen': 83.84249114990234, 'zcp_val_accuracy': 0.936097741127014}
NASBench101_182082
NASBench101
182082
6e2a51a5f7d43ee2abbb8e52a583abc5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x64x3x3] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
92.658252
1,120,806,912
3,729,162
{'zcp_epe_nas': 103.62238200738751, 'zcp_fisher': 4.975096702575684, 'zcp_flops': 17932910592.0, 'zcp_grad_norm': 47.185028076171875, 'zcp_grasp': 1.147552490234375, 'zcp_jacov': -16.035812475414073, 'zcp_l2_norm': 843.6575927734375, 'zcp_nwot': 221.91455749030627, 'zcp_params': 3729162.0, 'zcp_plain': 0.015163822099566002, 'zcp_snip': 272.6099548339844, 'zcp_synflow': 107.87912739574298, 'zcp_zen': 79.63036346435547, 'zcp_val_accuracy': 0.875}
NASBench101_191851
NASBench101
191851
74070a16fa24fb0af0f0d624aef1e0ae
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_734[FLOAT, 128x3x3x3] %onnx::Conv_735[FLOAT, 128] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x3x3] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 128x128x1x1] %onnx::Conv_758[FLOAT, 128x128x3x3] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 128x128x3x3] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x3x3] %onnx::Conv_782[FLOAT, 256x128x1x1] %onnx::Conv_783[FLOAT, 256] %onnx::Conv_785[FLOAT, 256x128x1x1] %onnx::Conv_788[FLOAT, 256x256x3x3] %onnx::Conv_791[FLOAT, 256x128x1x1] %onnx::Conv_794[FLOAT, 256x256x3x3] %onnx::Conv_797[FLOAT, 256x256x1x1] %onnx::Conv_800[FLOAT, 256x256x1x1] %onnx::Conv_803[FLOAT, 256x256x3x3] %onnx::Conv_806[FLOAT, 256x256x1x1] %onnx::Conv_809[FLOAT, 256x256x3x3] %onnx::Conv_812[FLOAT, 256x256x1x1] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x3x3] %onnx::Conv_827[FLOAT, 512x256x1x1] %onnx::Conv_828[FLOAT, 512] %onnx::Conv_830[FLOAT, 512x256x1x1] %onnx::Conv_833[FLOAT, 512x512x3x3] %onnx::Conv_836[FLOAT, 512x256x1x1] %onnx::Conv_839[FLOAT, 512x512x3x3] %onnx::Conv_842[FLOAT, 512x512x1x1] %onnx::Conv_845[FLOAT, 512x512x1x1] %onnx::Conv_848[FLOAT, 512x512x3x3] %onnx::Conv_851[FLOAT, 512x512x1x1] %onnx::Conv_854[FLOAT, 512x512x3x3] %onnx::Conv_857[FLOAT, 512x512x1x1] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x512x1x1] %onnx::Conv_869[FLOAT, 512x512x3x3] ) { %onnx::Conv_870 = Identity(%onnx::Conv_828) %onnx::Conv_867 = Identity(%onnx::Conv_828) %onnx::Conv_864 = Identity(%onnx::Conv_828) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_828) %onnx::Conv_852 = Identity(%onnx::Conv_828) %onnx::Conv_849 = Identity(%onnx::Conv_828) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_828) %onnx::Conv_837 = Identity(%onnx::Conv_828) %onnx::Conv_834 = Identity(%onnx::Conv_828) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_783) %onnx::Conv_822 = Identity(%onnx::Conv_783) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_783) %onnx::Conv_807 = Identity(%onnx::Conv_783) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_783) %onnx::Conv_792 = Identity(%onnx::Conv_783) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %onnx::Conv_780 = Identity(%onnx::Conv_735) %onnx::Conv_777 = Identity(%onnx::Conv_735) %onnx::Conv_774 = Identity(%onnx::Conv_735) %onnx::Conv_771 = Identity(%onnx::Conv_735) %onnx::Conv_768 = Identity(%onnx::Conv_735) %onnx::Conv_765 = Identity(%onnx::Conv_735) %onnx::Conv_762 = Identity(%onnx::Conv_735) %onnx::Conv_759 = Identity(%onnx::Conv_735) %onnx::Conv_756 = Identity(%onnx::Conv_735) %onnx::Conv_753 = Identity(%onnx::Conv_735) %onnx::Conv_750 = Identity(%onnx::Conv_735) %onnx::Conv_747 = Identity(%onnx::Conv_735) %onnx::Conv_744 = Identity(%onnx::Conv_735) %onnx::Conv_741 = Identity(%onnx::Conv_735) %onnx::Conv_738 = Identity(%onnx::Conv_735) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_734, %onnx::Conv_735) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %732 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %732 }
val_accuracy
91.396236
6,276,786,176
21,220,234
{'zcp_epe_nas': 78.22431475685018, 'zcp_fisher': 10.40926456451416, 'zcp_flops': 100428578816.0, 'zcp_grad_norm': 47.756744384765625, 'zcp_grasp': -0.38787078857421803, 'zcp_jacov': -16.056650647288503, 'zcp_l2_norm': 1014.8201293945312, 'zcp_nwot': 230.26116987055383, 'zcp_params': 21220234.0, 'zcp_plain': 0.009535145014524, 'zcp_snip': 472.74127197265625, 'zcp_synflow': 109.73754591659777, 'zcp_zen': 101.76516723632812, 'zcp_val_accuracy': 0.8858172893524171}
NASBench101_351246
NASBench101
351246
d455e882dce47e4ce0b85bb29ac41192
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_698[FLOAT, 128x3x3x3] %onnx::Conv_699[FLOAT, 128] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x128x3x3] %onnx::Conv_737[FLOAT, 256x128x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x256x3x3] %onnx::Conv_773[FLOAT, 512x256x1x1] %onnx::Conv_774[FLOAT, 512] %onnx::Conv_776[FLOAT, 512x512x1x1] %onnx::Conv_779[FLOAT, 512x512x3x3] %onnx::Conv_782[FLOAT, 512x512x3x3] %onnx::Conv_785[FLOAT, 512x512x1x1] %onnx::Conv_788[FLOAT, 512x512x1x1] %onnx::Conv_791[FLOAT, 512x512x3x3] %onnx::Conv_794[FLOAT, 512x512x3x3] %onnx::Conv_797[FLOAT, 512x512x1x1] %onnx::Conv_800[FLOAT, 512x512x1x1] %onnx::Conv_803[FLOAT, 512x512x3x3] %onnx::Conv_806[FLOAT, 512x512x3x3] ) { %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_699) %onnx::Conv_732 = Identity(%onnx::Conv_699) %onnx::Conv_729 = Identity(%onnx::Conv_699) %onnx::Conv_726 = Identity(%onnx::Conv_699) %onnx::Conv_723 = Identity(%onnx::Conv_699) %onnx::Conv_720 = Identity(%onnx::Conv_699) %onnx::Conv_717 = Identity(%onnx::Conv_699) %onnx::Conv_714 = Identity(%onnx::Conv_699) %onnx::Conv_711 = Identity(%onnx::Conv_699) %onnx::Conv_708 = Identity(%onnx::Conv_699) %onnx::Conv_705 = Identity(%onnx::Conv_699) %onnx::Conv_702 = Identity(%onnx::Conv_699) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_698, %onnx::Conv_699) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %696 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %696 }
val_accuracy
88.311297
6,036,400,128
20,510,346
{'zcp_epe_nas': 119.83207974067952, 'zcp_fisher': 734.042724609375, 'zcp_flops': 96582402048.0, 'zcp_grad_norm': 461.09954833984375, 'zcp_grasp': -731.1328125, 'zcp_jacov': -16.06054051434196, 'zcp_l2_norm': 835.0250854492188, 'zcp_nwot': 228.60556449872126, 'zcp_params': 20510346.0, 'zcp_plain': 0.378916829824447, 'zcp_snip': 3822.6259765625, 'zcp_synflow': 103.56962765494788, 'zcp_zen': 86.67073822021484, 'zcp_val_accuracy': 0.872796475887298}
NASBench101_178054
NASBench101
178054
6bcbcaf2cea640d50387beea0d4bb5c8
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x128x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x256x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x3x3] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x3x3] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
89.623398
9,033,754,624
30,679,178
{'zcp_epe_nas': 123.01891733013898, 'zcp_fisher': 2519.386962890625, 'zcp_flops': 144540073984.0, 'zcp_grad_norm': 898.2315673828125, 'zcp_grasp': -475.2265625, 'zcp_jacov': -16.051868702803752, 'zcp_l2_norm': 1242.798583984375, 'zcp_nwot': 235.13775292512503, 'zcp_params': 30679178.0, 'zcp_plain': -0.025955270975828, 'zcp_snip': 7410.29296875, 'zcp_synflow': 130.67298450298279, 'zcp_zen': 125.82475280761719, 'zcp_val_accuracy': 0.9354968070983881}
NASBench101_330783
NASBench101
330783
c816739043d60ff46588131cfac20a34
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_716[FLOAT, 128x3x3x3] %onnx::Conv_717[FLOAT, 128] %onnx::Conv_719[FLOAT, 32x128x1x1] %onnx::Conv_720[FLOAT, 32] %onnx::Conv_722[FLOAT, 32x32x1x1] %onnx::Conv_725[FLOAT, 32x32x1x1] %onnx::Conv_728[FLOAT, 32x32x3x3] %onnx::Conv_731[FLOAT, 32x32x1x1] %onnx::Conv_734[FLOAT, 32x128x1x1] %onnx::Conv_737[FLOAT, 32x32x1x1] %onnx::Conv_740[FLOAT, 32x32x1x1] %onnx::Conv_743[FLOAT, 32x32x3x3] %onnx::Conv_746[FLOAT, 32x32x1x1] %onnx::Conv_749[FLOAT, 32x128x1x1] %onnx::Conv_752[FLOAT, 32x32x1x1] %onnx::Conv_755[FLOAT, 32x32x1x1] %onnx::Conv_758[FLOAT, 32x32x3x3] %onnx::Conv_761[FLOAT, 32x32x1x1] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x64x1x1] %onnx::Conv_773[FLOAT, 64x64x3x3] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x256x1x1] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x64x1x1] %onnx::Conv_788[FLOAT, 64x64x3x3] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x256x1x1] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x64x3x3] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 128x256x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x3x3] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x512x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x512x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x3x3] %onnx::Conv_851[FLOAT, 128x128x1x1] ) { %onnx::Conv_852 = Identity(%onnx::Conv_717) %onnx::Conv_849 = Identity(%onnx::Conv_717) %onnx::Conv_846 = Identity(%onnx::Conv_717) %onnx::Conv_843 = Identity(%onnx::Conv_717) %onnx::Conv_840 = Identity(%onnx::Conv_717) %onnx::Conv_837 = Identity(%onnx::Conv_717) %onnx::Conv_834 = Identity(%onnx::Conv_717) %onnx::Conv_831 = Identity(%onnx::Conv_717) %onnx::Conv_828 = Identity(%onnx::Conv_717) %onnx::Conv_825 = Identity(%onnx::Conv_717) %onnx::Conv_822 = Identity(%onnx::Conv_717) %onnx::Conv_819 = Identity(%onnx::Conv_717) %onnx::Conv_816 = Identity(%onnx::Conv_717) %onnx::Conv_813 = Identity(%onnx::Conv_717) %onnx::Conv_810 = Identity(%onnx::Conv_717) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_762 = Identity(%onnx::Conv_720) %onnx::Conv_759 = Identity(%onnx::Conv_720) %onnx::Conv_756 = Identity(%onnx::Conv_720) %onnx::Conv_753 = Identity(%onnx::Conv_720) %onnx::Conv_750 = Identity(%onnx::Conv_720) %onnx::Conv_747 = Identity(%onnx::Conv_720) %onnx::Conv_744 = Identity(%onnx::Conv_720) %onnx::Conv_741 = Identity(%onnx::Conv_720) %onnx::Conv_738 = Identity(%onnx::Conv_720) %onnx::Conv_735 = Identity(%onnx::Conv_720) %onnx::Conv_732 = Identity(%onnx::Conv_720) %onnx::Conv_729 = Identity(%onnx::Conv_720) %onnx::Conv_726 = Identity(%onnx::Conv_720) %onnx::Conv_723 = Identity(%onnx::Conv_720) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_716, %onnx::Conv_717) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %714 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %714 }
val_accuracy
89.953929
308,619,264
1,006,794
{'zcp_epe_nas': 84.26285255067191, 'zcp_fisher': 2.903185129165649, 'zcp_flops': 4937908224.0, 'zcp_grad_norm': 35.51585388183594, 'zcp_grasp': -0.08648681640625, 'zcp_jacov': -16.04536293370574, 'zcp_l2_norm': 622.3577270507812, 'zcp_nwot': 211.57424346497848, 'zcp_params': 1006794.0, 'zcp_plain': 0.0010769304353740001, 'zcp_snip': 154.40567016601562, 'zcp_synflow': 75.4387142863063, 'zcp_zen': 63.69587707519531, 'zcp_val_accuracy': 0.9328926205635071}
NASBench101_298682
NASBench101
298682
b4c41416f499cfc81250d6e05f893c2b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_792[FLOAT, 64] %onnx::Conv_794[FLOAT, 64x64x3x3] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 64x64x3x3] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x64x1x1] %onnx::Conv_818[FLOAT, 64x128x1x1] %onnx::Conv_821[FLOAT, 64x128x1x1] %onnx::Conv_824[FLOAT, 64x64x3x3] %onnx::Conv_827[FLOAT, 64x128x1x1] %onnx::Conv_830[FLOAT, 64x64x1x1] %onnx::Conv_833[FLOAT, 64x128x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x3x3] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 128x128x3x3] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 128x256x1x1] %onnx::Conv_866[FLOAT, 128x256x1x1] %onnx::Conv_869[FLOAT, 128x128x3x3] %onnx::Conv_872[FLOAT, 128x256x1x1] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x256x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_882[FLOAT, 256] %onnx::Conv_884[FLOAT, 256x256x3x3] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 256x256x3x3] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x256x1x1] %onnx::Conv_908[FLOAT, 256x512x1x1] %onnx::Conv_911[FLOAT, 256x512x1x1] %onnx::Conv_914[FLOAT, 256x256x3x3] %onnx::Conv_917[FLOAT, 256x512x1x1] %onnx::Conv_920[FLOAT, 256x256x1x1] %onnx::Conv_923[FLOAT, 256x512x1x1] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_789) %onnx::Conv_876 = Identity(%onnx::Conv_789) %onnx::Conv_873 = Identity(%onnx::Conv_789) %onnx::Conv_870 = Identity(%onnx::Conv_789) %onnx::Conv_867 = Identity(%onnx::Conv_789) %onnx::Conv_864 = Identity(%onnx::Conv_789) %onnx::Conv_861 = Identity(%onnx::Conv_789) %onnx::Conv_858 = Identity(%onnx::Conv_789) %onnx::Conv_855 = Identity(%onnx::Conv_789) %onnx::Conv_852 = Identity(%onnx::Conv_789) %onnx::Conv_849 = Identity(%onnx::Conv_789) %onnx::Conv_846 = Identity(%onnx::Conv_789) %onnx::Conv_843 = Identity(%onnx::Conv_789) %onnx::Conv_840 = Identity(%onnx::Conv_789) %onnx::Conv_837 = Identity(%onnx::Conv_789) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
91.726762
1,179,527,168
3,905,290
{'zcp_epe_nas': 94.87338656737681, 'zcp_fisher': 16.692155838012695, 'zcp_flops': 18872434688.0, 'zcp_grad_norm': 81.42008209228516, 'zcp_grasp': -20.85528564453125, 'zcp_jacov': -16.050776645157, 'zcp_l2_norm': 890.9265747070312, 'zcp_nwot': 221.5668910854127, 'zcp_params': 3905290.0, 'zcp_plain': 0.038262091577053, 'zcp_snip': 496.565673828125, 'zcp_synflow': 68.536653450334, 'zcp_zen': 85.73316955566406, 'zcp_val_accuracy': 0.920773208141326}
NASBench101_124264
NASBench101
124264
4b11a8eabf19a9a3dbbae6629d5880b5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_830[FLOAT, 128x3x3x3] %onnx::Conv_831[FLOAT, 128] %onnx::Conv_833[FLOAT, 43x128x1x1] %onnx::Conv_834[FLOAT, 43] %onnx::Conv_836[FLOAT, 43x43x1x1] %onnx::Conv_839[FLOAT, 43x128x1x1] %onnx::Conv_842[FLOAT, 43x43x3x3] %onnx::Conv_845[FLOAT, 42x42x1x1] %onnx::Conv_846[FLOAT, 42] %onnx::Conv_848[FLOAT, 43x128x1x1] %onnx::Conv_851[FLOAT, 43x43x1x1] %onnx::Conv_854[FLOAT, 43x128x1x1] %onnx::Conv_857[FLOAT, 43x43x3x3] %onnx::Conv_860[FLOAT, 42x42x1x1] %onnx::Conv_863[FLOAT, 43x128x1x1] %onnx::Conv_866[FLOAT, 43x43x1x1] %onnx::Conv_869[FLOAT, 43x128x1x1] %onnx::Conv_872[FLOAT, 43x43x3x3] %onnx::Conv_875[FLOAT, 42x42x1x1] %onnx::Conv_878[FLOAT, 86x128x1x1] %onnx::Conv_879[FLOAT, 86] %onnx::Conv_881[FLOAT, 86x86x1x1] %onnx::Conv_884[FLOAT, 86x128x1x1] %onnx::Conv_887[FLOAT, 86x86x3x3] %onnx::Conv_890[FLOAT, 85x85x1x1] %onnx::Conv_891[FLOAT, 85] %onnx::Conv_893[FLOAT, 86x256x1x1] %onnx::Conv_896[FLOAT, 86x86x1x1] %onnx::Conv_899[FLOAT, 86x256x1x1] %onnx::Conv_902[FLOAT, 86x86x3x3] %onnx::Conv_905[FLOAT, 85x85x1x1] %onnx::Conv_908[FLOAT, 86x256x1x1] %onnx::Conv_911[FLOAT, 86x86x1x1] %onnx::Conv_914[FLOAT, 86x256x1x1] %onnx::Conv_917[FLOAT, 86x86x3x3] %onnx::Conv_920[FLOAT, 85x85x1x1] %onnx::Conv_923[FLOAT, 171x256x1x1] %onnx::Conv_924[FLOAT, 171] %onnx::Conv_926[FLOAT, 171x171x1x1] %onnx::Conv_929[FLOAT, 171x256x1x1] %onnx::Conv_932[FLOAT, 171x171x3x3] %onnx::Conv_935[FLOAT, 170x170x1x1] %onnx::Conv_936[FLOAT, 170] %onnx::Conv_938[FLOAT, 171x512x1x1] %onnx::Conv_941[FLOAT, 171x171x1x1] %onnx::Conv_944[FLOAT, 171x512x1x1] %onnx::Conv_947[FLOAT, 171x171x3x3] %onnx::Conv_950[FLOAT, 170x170x1x1] %onnx::Conv_953[FLOAT, 171x512x1x1] %onnx::Conv_956[FLOAT, 171x171x1x1] %onnx::Conv_959[FLOAT, 171x512x1x1] %onnx::Conv_962[FLOAT, 171x171x3x3] %onnx::Conv_965[FLOAT, 170x170x1x1] ) { %onnx::Conv_966 = Identity(%onnx::Conv_936) %onnx::Conv_963 = Identity(%onnx::Conv_924) %onnx::Conv_960 = Identity(%onnx::Conv_924) %onnx::Conv_957 = Identity(%onnx::Conv_924) %onnx::Conv_954 = Identity(%onnx::Conv_924) %onnx::Conv_951 = Identity(%onnx::Conv_936) %onnx::Conv_948 = Identity(%onnx::Conv_924) %onnx::Conv_945 = Identity(%onnx::Conv_924) %onnx::Conv_942 = Identity(%onnx::Conv_924) %onnx::Conv_939 = Identity(%onnx::Conv_924) %onnx::Conv_933 = Identity(%onnx::Conv_924) %onnx::Conv_930 = Identity(%onnx::Conv_924) %onnx::Conv_927 = Identity(%onnx::Conv_924) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_879) %onnx::Conv_915 = Identity(%onnx::Conv_879) %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_879) %onnx::Conv_900 = Identity(%onnx::Conv_879) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_888 = Identity(%onnx::Conv_879) %onnx::Conv_885 = Identity(%onnx::Conv_879) %onnx::Conv_882 = Identity(%onnx::Conv_879) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_834) %onnx::Conv_870 = Identity(%onnx::Conv_834) %onnx::Conv_867 = Identity(%onnx::Conv_834) %onnx::Conv_864 = Identity(%onnx::Conv_834) %onnx::Conv_861 = Identity(%onnx::Conv_846) %onnx::Conv_858 = Identity(%onnx::Conv_834) %onnx::Conv_855 = Identity(%onnx::Conv_834) %onnx::Conv_852 = Identity(%onnx::Conv_834) %onnx::Conv_849 = Identity(%onnx::Conv_834) %onnx::Conv_843 = Identity(%onnx::Conv_834) %onnx::Conv_840 = Identity(%onnx::Conv_834) %onnx::Conv_837 = Identity(%onnx::Conv_834) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_830, %onnx::Conv_831) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_11_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_11_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_11_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %828 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %828 }
val_accuracy
91.466343
569,894,656
1,866,935
{'zcp_epe_nas': 100.51772981199711, 'zcp_fisher': 76.462646484375, 'zcp_flops': 9118314496.0, 'zcp_grad_norm': 141.581787109375, 'zcp_grasp': 14.92822265625, 'zcp_jacov': -16.054297971502848, 'zcp_l2_norm': 762.62646484375, 'zcp_nwot': 215.7064858733587, 'zcp_params': 1866935.0, 'zcp_plain': -0.012152693234384001, 'zcp_snip': 678.4883422851562, 'zcp_synflow': 102.46710855597587, 'zcp_zen': 72.68488311767578, 'zcp_val_accuracy': 0.887419879436492}
NASBench101_230889
NASBench101
230889
8bcc2d86bb745b07d4a1adb169bef13b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_791[FLOAT, 128x3x3x3] %onnx::Conv_792[FLOAT, 128] %onnx::Conv_794[FLOAT, 43x128x1x1] %onnx::Conv_795[FLOAT, 43] %onnx::Conv_797[FLOAT, 43x43x1x1] %onnx::Conv_800[FLOAT, 42x128x1x1] %onnx::Conv_801[FLOAT, 42] %onnx::Conv_803[FLOAT, 42x42x3x3] %onnx::Conv_806[FLOAT, 42x42x1x1] %onnx::Conv_809[FLOAT, 43x128x1x1] %onnx::Conv_812[FLOAT, 43x43x1x1] %onnx::Conv_815[FLOAT, 42x128x1x1] %onnx::Conv_818[FLOAT, 42x42x3x3] %onnx::Conv_821[FLOAT, 42x42x1x1] %onnx::Conv_824[FLOAT, 43x128x1x1] %onnx::Conv_827[FLOAT, 43x43x1x1] %onnx::Conv_830[FLOAT, 42x128x1x1] %onnx::Conv_833[FLOAT, 42x42x3x3] %onnx::Conv_836[FLOAT, 42x42x1x1] %onnx::Conv_839[FLOAT, 86x128x1x1] %onnx::Conv_840[FLOAT, 86] %onnx::Conv_842[FLOAT, 85x85x1x1] %onnx::Conv_843[FLOAT, 85] %onnx::Conv_845[FLOAT, 85x128x1x1] %onnx::Conv_848[FLOAT, 85x85x3x3] %onnx::Conv_851[FLOAT, 85x85x1x1] %onnx::Conv_854[FLOAT, 86x256x1x1] %onnx::Conv_857[FLOAT, 85x85x1x1] %onnx::Conv_860[FLOAT, 85x256x1x1] %onnx::Conv_863[FLOAT, 85x85x3x3] %onnx::Conv_866[FLOAT, 85x85x1x1] %onnx::Conv_869[FLOAT, 86x256x1x1] %onnx::Conv_872[FLOAT, 85x85x1x1] %onnx::Conv_875[FLOAT, 85x256x1x1] %onnx::Conv_878[FLOAT, 85x85x3x3] %onnx::Conv_881[FLOAT, 85x85x1x1] %onnx::Conv_884[FLOAT, 171x256x1x1] %onnx::Conv_885[FLOAT, 171] %onnx::Conv_887[FLOAT, 171x171x1x1] %onnx::Conv_890[FLOAT, 170x256x1x1] %onnx::Conv_891[FLOAT, 170] %onnx::Conv_893[FLOAT, 170x170x3x3] %onnx::Conv_896[FLOAT, 170x170x1x1] %onnx::Conv_899[FLOAT, 171x512x1x1] %onnx::Conv_902[FLOAT, 171x171x1x1] %onnx::Conv_905[FLOAT, 170x512x1x1] %onnx::Conv_908[FLOAT, 170x170x3x3] %onnx::Conv_911[FLOAT, 170x170x1x1] %onnx::Conv_914[FLOAT, 171x512x1x1] %onnx::Conv_917[FLOAT, 171x171x1x1] %onnx::Conv_920[FLOAT, 170x512x1x1] %onnx::Conv_923[FLOAT, 170x170x3x3] %onnx::Conv_926[FLOAT, 170x170x1x1] ) { %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_885) %onnx::Conv_915 = Identity(%onnx::Conv_885) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_885) %onnx::Conv_900 = Identity(%onnx::Conv_885) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %onnx::Conv_888 = Identity(%onnx::Conv_885) %onnx::Conv_882 = Identity(%onnx::Conv_843) %onnx::Conv_879 = Identity(%onnx::Conv_843) %onnx::Conv_876 = Identity(%onnx::Conv_843) %onnx::Conv_873 = Identity(%onnx::Conv_843) %onnx::Conv_870 = Identity(%onnx::Conv_840) %onnx::Conv_867 = Identity(%onnx::Conv_843) %onnx::Conv_864 = Identity(%onnx::Conv_843) %onnx::Conv_861 = Identity(%onnx::Conv_843) %onnx::Conv_858 = Identity(%onnx::Conv_843) %onnx::Conv_855 = Identity(%onnx::Conv_840) %onnx::Conv_852 = Identity(%onnx::Conv_843) %onnx::Conv_849 = Identity(%onnx::Conv_843) %onnx::Conv_846 = Identity(%onnx::Conv_843) %onnx::Conv_837 = Identity(%onnx::Conv_801) %onnx::Conv_834 = Identity(%onnx::Conv_801) %onnx::Conv_831 = Identity(%onnx::Conv_801) %onnx::Conv_828 = Identity(%onnx::Conv_795) %onnx::Conv_825 = Identity(%onnx::Conv_795) %onnx::Conv_822 = Identity(%onnx::Conv_801) %onnx::Conv_819 = Identity(%onnx::Conv_801) %onnx::Conv_816 = Identity(%onnx::Conv_801) %onnx::Conv_813 = Identity(%onnx::Conv_795) %onnx::Conv_810 = Identity(%onnx::Conv_795) %onnx::Conv_807 = Identity(%onnx::Conv_801) %onnx::Conv_804 = Identity(%onnx::Conv_801) %onnx::Conv_798 = Identity(%onnx::Conv_795) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_791, %onnx::Conv_792) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_9_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Slice_1_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_9_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Slice_1_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_9_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Slice_1_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_9_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Slice_1_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_9_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Slice_1_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_9_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Slice_1_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %789 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %789 }
val_accuracy
91.416264
560,040,832
1,847,957
{'zcp_epe_nas': 114.47017319197894, 'zcp_fisher': 2.274003982543945, 'zcp_flops': 8960653312.0, 'zcp_grad_norm': 30.036678314208984, 'zcp_grasp': -0.342025756835937, 'zcp_jacov': -16.056963341658104, 'zcp_l2_norm': 761.5464477539062, 'zcp_nwot': 215.68247895948087, 'zcp_params': 1847957.0, 'zcp_plain': -0.013963636010885001, 'zcp_snip': 150.497314453125, 'zcp_synflow': 81.42966388357148, 'zcp_zen': 74.08085632324219, 'zcp_val_accuracy': 0.9044471383094781}
NASBench101_11929
NASBench101
11929
0729a1fd2c9e28bac0b45a41220aca43
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_644[FLOAT, 128x3x3x3] %onnx::Conv_645[FLOAT, 128] %onnx::Conv_647[FLOAT, 64x128x1x1] %onnx::Conv_648[FLOAT, 64] %onnx::Conv_650[FLOAT, 64x128x1x1] %onnx::Conv_653[FLOAT, 64x64x3x3] %onnx::Conv_656[FLOAT, 128x128x1x1] %onnx::Conv_659[FLOAT, 64x128x1x1] %onnx::Conv_662[FLOAT, 64x128x1x1] %onnx::Conv_665[FLOAT, 64x64x3x3] %onnx::Conv_668[FLOAT, 128x128x1x1] %onnx::Conv_671[FLOAT, 64x128x1x1] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_677[FLOAT, 64x64x3x3] %onnx::Conv_680[FLOAT, 128x128x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x128x1x1] %onnx::Conv_689[FLOAT, 128x128x3x3] %onnx::Conv_692[FLOAT, 256x128x1x1] %onnx::Conv_693[FLOAT, 256] %onnx::Conv_695[FLOAT, 128x256x1x1] %onnx::Conv_698[FLOAT, 128x256x1x1] %onnx::Conv_701[FLOAT, 128x128x3x3] %onnx::Conv_704[FLOAT, 256x256x1x1] %onnx::Conv_707[FLOAT, 128x256x1x1] %onnx::Conv_710[FLOAT, 128x256x1x1] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 256x256x1x1] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x256x1x1] %onnx::Conv_725[FLOAT, 256x256x3x3] %onnx::Conv_728[FLOAT, 512x256x1x1] %onnx::Conv_729[FLOAT, 512] %onnx::Conv_731[FLOAT, 256x512x1x1] %onnx::Conv_734[FLOAT, 256x512x1x1] %onnx::Conv_737[FLOAT, 256x256x3x3] %onnx::Conv_740[FLOAT, 512x512x1x1] %onnx::Conv_743[FLOAT, 256x512x1x1] %onnx::Conv_746[FLOAT, 256x512x1x1] %onnx::Conv_749[FLOAT, 256x256x3x3] %onnx::Conv_752[FLOAT, 512x512x1x1] ) { %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_693) %onnx::Conv_747 = Identity(%onnx::Conv_693) %onnx::Conv_744 = Identity(%onnx::Conv_693) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_693) %onnx::Conv_735 = Identity(%onnx::Conv_693) %onnx::Conv_732 = Identity(%onnx::Conv_693) %onnx::Conv_726 = Identity(%onnx::Conv_693) %onnx::Conv_723 = Identity(%onnx::Conv_693) %onnx::Conv_720 = Identity(%onnx::Conv_693) %onnx::Conv_717 = Identity(%onnx::Conv_693) %onnx::Conv_714 = Identity(%onnx::Conv_645) %onnx::Conv_711 = Identity(%onnx::Conv_645) %onnx::Conv_708 = Identity(%onnx::Conv_645) %onnx::Conv_705 = Identity(%onnx::Conv_693) %onnx::Conv_702 = Identity(%onnx::Conv_645) %onnx::Conv_699 = Identity(%onnx::Conv_645) %onnx::Conv_696 = Identity(%onnx::Conv_645) %onnx::Conv_690 = Identity(%onnx::Conv_645) %onnx::Conv_687 = Identity(%onnx::Conv_645) %onnx::Conv_684 = Identity(%onnx::Conv_645) %onnx::Conv_681 = Identity(%onnx::Conv_645) %onnx::Conv_678 = Identity(%onnx::Conv_648) %onnx::Conv_675 = Identity(%onnx::Conv_648) %onnx::Conv_672 = Identity(%onnx::Conv_648) %onnx::Conv_669 = Identity(%onnx::Conv_645) %onnx::Conv_666 = Identity(%onnx::Conv_648) %onnx::Conv_663 = Identity(%onnx::Conv_648) %onnx::Conv_660 = Identity(%onnx::Conv_648) %onnx::Conv_657 = Identity(%onnx::Conv_645) %onnx::Conv_654 = Identity(%onnx::Conv_648) %onnx::Conv_651 = Identity(%onnx::Conv_648) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_644, %onnx::Conv_645) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_2_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_2_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_2_output_0) %642 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %642 }
val_accuracy
89.613384
1,238,247,424
4,081,418
{'zcp_epe_nas': 139.04078496437756, 'zcp_fisher': 4.168543815612793, 'zcp_flops': 19811958784.0, 'zcp_grad_norm': 43.985164642333984, 'zcp_grasp': -10.246009826660156, 'zcp_jacov': -16.050439880731748, 'zcp_l2_norm': 740.6906127929688, 'zcp_nwot': 221.13662907342348, 'zcp_params': 4081418.0, 'zcp_plain': 0.10611875355243601, 'zcp_snip': 266.85101318359375, 'zcp_synflow': 67.43131160071697, 'zcp_zen': 81.48155212402344, 'zcp_val_accuracy': 0.906750798225402}
NASBench101_114054
NASBench101
114054
44e34b11f6ce10f1c22851da2c9773d0
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_905[FLOAT, 128x3x3x3] %onnx::Conv_906[FLOAT, 128] %onnx::Conv_908[FLOAT, 43x128x1x1] %onnx::Conv_909[FLOAT, 43] %onnx::Conv_911[FLOAT, 43x43x3x3] %onnx::Conv_914[FLOAT, 43x128x1x1] %onnx::Conv_917[FLOAT, 43x43x3x3] %onnx::Conv_920[FLOAT, 43x43x3x3] %onnx::Conv_923[FLOAT, 42x42x3x3] %onnx::Conv_924[FLOAT, 42] %onnx::Conv_926[FLOAT, 43x128x1x1] %onnx::Conv_929[FLOAT, 43x43x3x3] %onnx::Conv_932[FLOAT, 43x128x1x1] %onnx::Conv_935[FLOAT, 43x43x3x3] %onnx::Conv_938[FLOAT, 43x43x3x3] %onnx::Conv_941[FLOAT, 42x42x3x3] %onnx::Conv_944[FLOAT, 43x128x1x1] %onnx::Conv_947[FLOAT, 43x43x3x3] %onnx::Conv_950[FLOAT, 43x128x1x1] %onnx::Conv_953[FLOAT, 43x43x3x3] %onnx::Conv_956[FLOAT, 43x43x3x3] %onnx::Conv_959[FLOAT, 42x42x3x3] %onnx::Conv_962[FLOAT, 86x128x1x1] %onnx::Conv_963[FLOAT, 86] %onnx::Conv_965[FLOAT, 86x86x3x3] %onnx::Conv_968[FLOAT, 85x128x1x1] %onnx::Conv_969[FLOAT, 85] %onnx::Conv_971[FLOAT, 85x85x3x3] %onnx::Conv_974[FLOAT, 85x85x3x3] %onnx::Conv_977[FLOAT, 85x85x3x3] %onnx::Conv_980[FLOAT, 86x256x1x1] %onnx::Conv_983[FLOAT, 86x86x3x3] %onnx::Conv_986[FLOAT, 85x256x1x1] %onnx::Conv_989[FLOAT, 85x85x3x3] %onnx::Conv_992[FLOAT, 85x85x3x3] %onnx::Conv_995[FLOAT, 85x85x3x3] %onnx::Conv_998[FLOAT, 86x256x1x1] %onnx::Conv_1001[FLOAT, 86x86x3x3] %onnx::Conv_1004[FLOAT, 85x256x1x1] %onnx::Conv_1007[FLOAT, 85x85x3x3] %onnx::Conv_1010[FLOAT, 85x85x3x3] %onnx::Conv_1013[FLOAT, 85x85x3x3] %onnx::Conv_1016[FLOAT, 171x256x1x1] %onnx::Conv_1017[FLOAT, 171] %onnx::Conv_1019[FLOAT, 171x171x3x3] %onnx::Conv_1022[FLOAT, 171x256x1x1] %onnx::Conv_1025[FLOAT, 171x171x3x3] %onnx::Conv_1028[FLOAT, 171x171x3x3] %onnx::Conv_1031[FLOAT, 170x170x3x3] %onnx::Conv_1032[FLOAT, 170] %onnx::Conv_1034[FLOAT, 171x512x1x1] %onnx::Conv_1037[FLOAT, 171x171x3x3] %onnx::Conv_1040[FLOAT, 171x512x1x1] %onnx::Conv_1043[FLOAT, 171x171x3x3] %onnx::Conv_1046[FLOAT, 171x171x3x3] %onnx::Conv_1049[FLOAT, 170x170x3x3] %onnx::Conv_1052[FLOAT, 171x512x1x1] %onnx::Conv_1055[FLOAT, 171x171x3x3] %onnx::Conv_1058[FLOAT, 171x512x1x1] %onnx::Conv_1061[FLOAT, 171x171x3x3] %onnx::Conv_1064[FLOAT, 171x171x3x3] %onnx::Conv_1067[FLOAT, 170x170x3x3] ) { %onnx::Conv_1068 = Identity(%onnx::Conv_1032) %onnx::Conv_1065 = Identity(%onnx::Conv_1017) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1032) %onnx::Conv_1047 = Identity(%onnx::Conv_1017) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1029 = Identity(%onnx::Conv_1017) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_969) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_969) %onnx::Conv_993 = Identity(%onnx::Conv_969) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_969) %onnx::Conv_975 = Identity(%onnx::Conv_969) %onnx::Conv_972 = Identity(%onnx::Conv_969) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_924) %onnx::Conv_957 = Identity(%onnx::Conv_909) %onnx::Conv_954 = Identity(%onnx::Conv_909) %onnx::Conv_951 = Identity(%onnx::Conv_909) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_924) %onnx::Conv_939 = Identity(%onnx::Conv_909) %onnx::Conv_936 = Identity(%onnx::Conv_909) %onnx::Conv_933 = Identity(%onnx::Conv_909) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_921 = Identity(%onnx::Conv_909) %onnx::Conv_918 = Identity(%onnx::Conv_909) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_905, %onnx::Conv_906) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %903 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %903 }
val_accuracy
92.86859
1,408,068,224
4,730,965
{'zcp_epe_nas': 119.48103681950816, 'zcp_fisher': 56.19613265991211, 'zcp_flops': 22529091584.0, 'zcp_grad_norm': 136.21450805664062, 'zcp_grasp': -27.16845703125, 'zcp_jacov': -16.070478266355632, 'zcp_l2_norm': 884.1926879882812, 'zcp_nwot': 217.78535441192815, 'zcp_params': 4730965.0, 'zcp_plain': -0.009351402521133001, 'zcp_snip': 698.9832153320312, 'zcp_synflow': 125.95802979958889, 'zcp_zen': 106.89590454101562, 'zcp_val_accuracy': 0.9094551205635071}
NASBench101_265723
NASBench101
265723
a0e528ccfdc38eb03a8d8aa51968b7ac
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x128x1x1] %onnx::Conv_998[FLOAT, 64x64x1x1] %onnx::Conv_1001[FLOAT, 64x64x3x3] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x128x1x1] %onnx::Conv_1019[FLOAT, 64x64x1x1] %onnx::Conv_1022[FLOAT, 64x64x3x3] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x128x1x1] %onnx::Conv_1040[FLOAT, 64x64x1x1] %onnx::Conv_1043[FLOAT, 64x64x3x3] %onnx::Conv_1046[FLOAT, 64x64x1x1] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x128x3x3] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 256x128x1x1] %onnx::Conv_1071[FLOAT, 256] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x256x1x1] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x128x3x3] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x256x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x3x3] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x256x3x3] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 512x256x1x1] %onnx::Conv_1134[FLOAT, 512] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x512x1x1] %onnx::Conv_1145[FLOAT, 256x256x1x1] %onnx::Conv_1148[FLOAT, 256x256x3x3] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x512x1x1] %onnx::Conv_1166[FLOAT, 256x256x1x1] %onnx::Conv_1169[FLOAT, 256x256x3x3] %onnx::Conv_1172[FLOAT, 256x256x1x1] %onnx::Conv_1175[FLOAT, 512x512x1x1] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1134) %onnx::Conv_1173 = Identity(%onnx::Conv_1071) %onnx::Conv_1170 = Identity(%onnx::Conv_1071) %onnx::Conv_1167 = Identity(%onnx::Conv_1071) %onnx::Conv_1164 = Identity(%onnx::Conv_1071) %onnx::Conv_1161 = Identity(%onnx::Conv_1071) %onnx::Conv_1158 = Identity(%onnx::Conv_1071) %onnx::Conv_1155 = Identity(%onnx::Conv_1134) %onnx::Conv_1152 = Identity(%onnx::Conv_1071) %onnx::Conv_1149 = Identity(%onnx::Conv_1071) %onnx::Conv_1146 = Identity(%onnx::Conv_1071) %onnx::Conv_1143 = Identity(%onnx::Conv_1071) %onnx::Conv_1140 = Identity(%onnx::Conv_1071) %onnx::Conv_1137 = Identity(%onnx::Conv_1071) %onnx::Conv_1131 = Identity(%onnx::Conv_1071) %onnx::Conv_1128 = Identity(%onnx::Conv_1071) %onnx::Conv_1125 = Identity(%onnx::Conv_1071) %onnx::Conv_1122 = Identity(%onnx::Conv_1071) %onnx::Conv_1119 = Identity(%onnx::Conv_1071) %onnx::Conv_1116 = Identity(%onnx::Conv_1071) %onnx::Conv_1113 = Identity(%onnx::Conv_1071) %onnx::Conv_1110 = Identity(%onnx::Conv_987) %onnx::Conv_1107 = Identity(%onnx::Conv_987) %onnx::Conv_1104 = Identity(%onnx::Conv_987) %onnx::Conv_1101 = Identity(%onnx::Conv_987) %onnx::Conv_1098 = Identity(%onnx::Conv_987) %onnx::Conv_1095 = Identity(%onnx::Conv_987) %onnx::Conv_1092 = Identity(%onnx::Conv_1071) %onnx::Conv_1089 = Identity(%onnx::Conv_987) %onnx::Conv_1086 = Identity(%onnx::Conv_987) %onnx::Conv_1083 = Identity(%onnx::Conv_987) %onnx::Conv_1080 = Identity(%onnx::Conv_987) %onnx::Conv_1077 = Identity(%onnx::Conv_987) %onnx::Conv_1074 = Identity(%onnx::Conv_987) %onnx::Conv_1068 = Identity(%onnx::Conv_987) %onnx::Conv_1065 = Identity(%onnx::Conv_987) %onnx::Conv_1062 = Identity(%onnx::Conv_987) %onnx::Conv_1059 = Identity(%onnx::Conv_987) %onnx::Conv_1056 = Identity(%onnx::Conv_987) %onnx::Conv_1053 = Identity(%onnx::Conv_987) %onnx::Conv_1050 = Identity(%onnx::Conv_987) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_987) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_987) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
93.369389
2,076,977,152
6,928,010
{'zcp_epe_nas': 89.83217832081375, 'zcp_fisher': 31.53862190246582, 'zcp_flops': 33231634432.0, 'zcp_grad_norm': 132.969970703125, 'zcp_grasp': -47.6787109375, 'zcp_jacov': -16.044577195861045, 'zcp_l2_norm': 1190.568359375, 'zcp_nwot': 228.86809151211511, 'zcp_params': 6928010.0, 'zcp_plain': 0.167182758450508, 'zcp_snip': 828.8077392578125, 'zcp_synflow': 116.98797364538729, 'zcp_zen': 115.01798248291016, 'zcp_val_accuracy': 0.9045472741127011}
NASBench101_323629
NASBench101
323629
c3d0c446a3abcbc2ff99fc77a16c0c62
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_707[FLOAT, 128x3x3x3] %onnx::Conv_708[FLOAT, 128] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x3x3] %onnx::Conv_731[FLOAT, 128x128x1x1] %onnx::Conv_734[FLOAT, 128x128x3x3] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x3x3] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 256x128x1x1] %onnx::Conv_756[FLOAT, 256] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x128x1x1] %onnx::Conv_764[FLOAT, 256x256x3x3] %onnx::Conv_767[FLOAT, 256x128x1x1] %onnx::Conv_770[FLOAT, 256x256x1x1] %onnx::Conv_773[FLOAT, 256x256x3x3] %onnx::Conv_776[FLOAT, 256x256x1x1] %onnx::Conv_779[FLOAT, 256x256x3x3] %onnx::Conv_782[FLOAT, 256x256x1x1] %onnx::Conv_785[FLOAT, 256x256x1x1] %onnx::Conv_788[FLOAT, 256x256x3x3] %onnx::Conv_791[FLOAT, 256x256x1x1] %onnx::Conv_794[FLOAT, 256x256x3x3] %onnx::Conv_797[FLOAT, 256x256x1x1] %onnx::Conv_800[FLOAT, 512x256x1x1] %onnx::Conv_801[FLOAT, 512] %onnx::Conv_803[FLOAT, 512x512x3x3] %onnx::Conv_806[FLOAT, 512x256x1x1] %onnx::Conv_809[FLOAT, 512x512x3x3] %onnx::Conv_812[FLOAT, 512x256x1x1] %onnx::Conv_815[FLOAT, 512x512x1x1] %onnx::Conv_818[FLOAT, 512x512x3x3] %onnx::Conv_821[FLOAT, 512x512x1x1] %onnx::Conv_824[FLOAT, 512x512x3x3] %onnx::Conv_827[FLOAT, 512x512x1x1] %onnx::Conv_830[FLOAT, 512x512x1x1] %onnx::Conv_833[FLOAT, 512x512x3x3] %onnx::Conv_836[FLOAT, 512x512x1x1] %onnx::Conv_839[FLOAT, 512x512x3x3] %onnx::Conv_842[FLOAT, 512x512x1x1] ) { %onnx::Conv_843 = Identity(%onnx::Conv_801) %onnx::Conv_840 = Identity(%onnx::Conv_801) %onnx::Conv_837 = Identity(%onnx::Conv_801) %onnx::Conv_834 = Identity(%onnx::Conv_801) %onnx::Conv_831 = Identity(%onnx::Conv_801) %onnx::Conv_828 = Identity(%onnx::Conv_801) %onnx::Conv_825 = Identity(%onnx::Conv_801) %onnx::Conv_822 = Identity(%onnx::Conv_801) %onnx::Conv_819 = Identity(%onnx::Conv_801) %onnx::Conv_816 = Identity(%onnx::Conv_801) %onnx::Conv_813 = Identity(%onnx::Conv_801) %onnx::Conv_810 = Identity(%onnx::Conv_801) %onnx::Conv_807 = Identity(%onnx::Conv_801) %onnx::Conv_804 = Identity(%onnx::Conv_801) %onnx::Conv_798 = Identity(%onnx::Conv_756) %onnx::Conv_795 = Identity(%onnx::Conv_756) %onnx::Conv_792 = Identity(%onnx::Conv_756) %onnx::Conv_789 = Identity(%onnx::Conv_756) %onnx::Conv_786 = Identity(%onnx::Conv_756) %onnx::Conv_783 = Identity(%onnx::Conv_756) %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_756) %onnx::Conv_774 = Identity(%onnx::Conv_756) %onnx::Conv_771 = Identity(%onnx::Conv_756) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_756) %onnx::Conv_762 = Identity(%onnx::Conv_756) %onnx::Conv_759 = Identity(%onnx::Conv_756) %onnx::Conv_753 = Identity(%onnx::Conv_708) %onnx::Conv_750 = Identity(%onnx::Conv_708) %onnx::Conv_747 = Identity(%onnx::Conv_708) %onnx::Conv_744 = Identity(%onnx::Conv_708) %onnx::Conv_741 = Identity(%onnx::Conv_708) %onnx::Conv_738 = Identity(%onnx::Conv_708) %onnx::Conv_735 = Identity(%onnx::Conv_708) %onnx::Conv_732 = Identity(%onnx::Conv_708) %onnx::Conv_729 = Identity(%onnx::Conv_708) %onnx::Conv_726 = Identity(%onnx::Conv_708) %onnx::Conv_723 = Identity(%onnx::Conv_708) %onnx::Conv_720 = Identity(%onnx::Conv_708) %onnx::Conv_717 = Identity(%onnx::Conv_708) %onnx::Conv_714 = Identity(%onnx::Conv_708) %onnx::Conv_711 = Identity(%onnx::Conv_708) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_707, %onnx::Conv_708) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %705 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %705 }
val_accuracy
94.43109
6,276,786,176
21,220,234
{'zcp_epe_nas': 121.85525480724654, 'zcp_fisher': 2.570351839065551, 'zcp_flops': 100428578816.0, 'zcp_grad_norm': 32.12532424926758, 'zcp_grasp': 1.36669921875, 'zcp_jacov': -16.06960870693365, 'zcp_l2_norm': 1014.568359375, 'zcp_nwot': 231.83433923718565, 'zcp_params': 21220234.0, 'zcp_plain': -0.035543926060199, 'zcp_snip': 278.8524475097656, 'zcp_synflow': 102.79013084141391, 'zcp_zen': 100.37113189697266, 'zcp_val_accuracy': 0.8898237347602841}
NASBench101_329718
NASBench101
329718
c770b7c682c03a804243b5e75aaeb5ea
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_851[FLOAT, 128x3x3x3] %onnx::Conv_852[FLOAT, 128] %onnx::Conv_854[FLOAT, 43x128x1x1] %onnx::Conv_855[FLOAT, 43] %onnx::Conv_857[FLOAT, 43x43x1x1] %onnx::Conv_860[FLOAT, 43x128x1x1] %onnx::Conv_863[FLOAT, 43x43x3x3] %onnx::Conv_866[FLOAT, 42x128x1x1] %onnx::Conv_867[FLOAT, 42] %onnx::Conv_869[FLOAT, 42x42x1x1] %onnx::Conv_872[FLOAT, 43x128x1x1] %onnx::Conv_875[FLOAT, 43x43x1x1] %onnx::Conv_878[FLOAT, 43x128x1x1] %onnx::Conv_881[FLOAT, 43x43x3x3] %onnx::Conv_884[FLOAT, 42x128x1x1] %onnx::Conv_887[FLOAT, 42x42x1x1] %onnx::Conv_890[FLOAT, 43x128x1x1] %onnx::Conv_893[FLOAT, 43x43x1x1] %onnx::Conv_896[FLOAT, 43x128x1x1] %onnx::Conv_899[FLOAT, 43x43x3x3] %onnx::Conv_902[FLOAT, 42x128x1x1] %onnx::Conv_905[FLOAT, 42x42x1x1] %onnx::Conv_908[FLOAT, 86x128x1x1] %onnx::Conv_909[FLOAT, 86] %onnx::Conv_911[FLOAT, 86x86x1x1] %onnx::Conv_914[FLOAT, 85x128x1x1] %onnx::Conv_915[FLOAT, 85] %onnx::Conv_917[FLOAT, 85x85x3x3] %onnx::Conv_920[FLOAT, 85x128x1x1] %onnx::Conv_923[FLOAT, 85x85x1x1] %onnx::Conv_926[FLOAT, 86x256x1x1] %onnx::Conv_929[FLOAT, 86x86x1x1] %onnx::Conv_932[FLOAT, 85x256x1x1] %onnx::Conv_935[FLOAT, 85x85x3x3] %onnx::Conv_938[FLOAT, 85x256x1x1] %onnx::Conv_941[FLOAT, 85x85x1x1] %onnx::Conv_944[FLOAT, 86x256x1x1] %onnx::Conv_947[FLOAT, 86x86x1x1] %onnx::Conv_950[FLOAT, 85x256x1x1] %onnx::Conv_953[FLOAT, 85x85x3x3] %onnx::Conv_956[FLOAT, 85x256x1x1] %onnx::Conv_959[FLOAT, 85x85x1x1] %onnx::Conv_962[FLOAT, 171x256x1x1] %onnx::Conv_963[FLOAT, 171] %onnx::Conv_965[FLOAT, 171x171x1x1] %onnx::Conv_968[FLOAT, 171x256x1x1] %onnx::Conv_971[FLOAT, 171x171x3x3] %onnx::Conv_974[FLOAT, 170x256x1x1] %onnx::Conv_975[FLOAT, 170] %onnx::Conv_977[FLOAT, 170x170x1x1] %onnx::Conv_980[FLOAT, 171x512x1x1] %onnx::Conv_983[FLOAT, 171x171x1x1] %onnx::Conv_986[FLOAT, 171x512x1x1] %onnx::Conv_989[FLOAT, 171x171x3x3] %onnx::Conv_992[FLOAT, 170x512x1x1] %onnx::Conv_995[FLOAT, 170x170x1x1] %onnx::Conv_998[FLOAT, 171x512x1x1] %onnx::Conv_1001[FLOAT, 171x171x1x1] %onnx::Conv_1004[FLOAT, 171x512x1x1] %onnx::Conv_1007[FLOAT, 171x171x3x3] %onnx::Conv_1010[FLOAT, 170x512x1x1] %onnx::Conv_1013[FLOAT, 170x170x1x1] ) { %onnx::Conv_1014 = Identity(%onnx::Conv_975) %onnx::Conv_1011 = Identity(%onnx::Conv_975) %onnx::Conv_1008 = Identity(%onnx::Conv_963) %onnx::Conv_1005 = Identity(%onnx::Conv_963) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_975) %onnx::Conv_993 = Identity(%onnx::Conv_975) %onnx::Conv_990 = Identity(%onnx::Conv_963) %onnx::Conv_987 = Identity(%onnx::Conv_963) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_975) %onnx::Conv_972 = Identity(%onnx::Conv_963) %onnx::Conv_969 = Identity(%onnx::Conv_963) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_915) %onnx::Conv_957 = Identity(%onnx::Conv_915) %onnx::Conv_954 = Identity(%onnx::Conv_915) %onnx::Conv_951 = Identity(%onnx::Conv_915) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_915) %onnx::Conv_939 = Identity(%onnx::Conv_915) %onnx::Conv_936 = Identity(%onnx::Conv_915) %onnx::Conv_933 = Identity(%onnx::Conv_915) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_915) %onnx::Conv_921 = Identity(%onnx::Conv_915) %onnx::Conv_918 = Identity(%onnx::Conv_915) %onnx::Conv_912 = Identity(%onnx::Conv_909) %onnx::Conv_906 = Identity(%onnx::Conv_867) %onnx::Conv_903 = Identity(%onnx::Conv_867) %onnx::Conv_900 = Identity(%onnx::Conv_855) %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_867) %onnx::Conv_885 = Identity(%onnx::Conv_867) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_867) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_851, %onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %849 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %849 }
val_accuracy
92.86859
657,742,080
2,151,576
{'zcp_epe_nas': 147.4222382581827, 'zcp_fisher': 0.748509645462036, 'zcp_flops': 10523873280.0, 'zcp_grad_norm': 19.901355743408203, 'zcp_grasp': 0.20368576049804601, 'zcp_jacov': -16.058525325420227, 'zcp_l2_norm': 959.0910034179688, 'zcp_nwot': 218.74726589249434, 'zcp_params': 2151576.0, 'zcp_plain': -0.016516154631972, 'zcp_snip': 100.071044921875, 'zcp_synflow': 101.32758302638258, 'zcp_zen': 84.05183410644531, 'zcp_val_accuracy': 0.8748998641967771}
NASBench101_411255
NASBench101
411255
f87d780e2945fbce33f8967daad5092f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x64x3x3] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x1x1] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x64x3x3] %onnx::Conv_692[FLOAT, 64x128x1x1] %onnx::Conv_695[FLOAT, 64x64x1x1] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x64x3x3] %onnx::Conv_704[FLOAT, 64x128x1x1] %onnx::Conv_707[FLOAT, 64x64x1x1] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x128x3x3] %onnx::Conv_728[FLOAT, 128x256x1x1] %onnx::Conv_731[FLOAT, 128x128x1x1] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x128x3x3] %onnx::Conv_740[FLOAT, 128x256x1x1] %onnx::Conv_743[FLOAT, 128x128x1x1] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_747[FLOAT, 256] %onnx::Conv_749[FLOAT, 256x256x3x3] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x256x3x3] %onnx::Conv_764[FLOAT, 256x512x1x1] %onnx::Conv_767[FLOAT, 256x256x1x1] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x256x3x3] %onnx::Conv_776[FLOAT, 256x512x1x1] %onnx::Conv_779[FLOAT, 256x256x1x1] ) { %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_672) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_672) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_720 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
91.526443
1,042,556,928
3,468,426
{'zcp_epe_nas': 93.43854797022338, 'zcp_fisher': 36.90062713623047, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 89.25079345703125, 'zcp_grasp': -4.58447265625, 'zcp_jacov': -16.054152614897514, 'zcp_l2_norm': 694.295166015625, 'zcp_nwot': 218.51012722418363, 'zcp_params': 3468426.0, 'zcp_plain': 0.014366896823048002, 'zcp_snip': 547.9926147460938, 'zcp_synflow': 90.91510133135174, 'zcp_zen': 71.37274169921875, 'zcp_val_accuracy': 0.907852590084075}
NASBench101_421141
NASBench101
421141
fe7c967b69a3c1ddea42c416a77fdabd
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x64x3x3] %onnx::Conv_680[FLOAT, 64x64x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x64x3x3] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x64x3x3] %onnx::Conv_704[FLOAT, 64x64x1x1] %onnx::Conv_707[FLOAT, 64x64x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x128x3x3] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x128x3x3] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_747[FLOAT, 256] %onnx::Conv_749[FLOAT, 256x256x3x3] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x256x3x3] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x256x3x3] %onnx::Conv_776[FLOAT, 256x256x1x1] %onnx::Conv_779[FLOAT, 256x256x3x3] ) { %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_672) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_672) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_720 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
89.89383
1,587,816,448
5,356,682
{'zcp_epe_nas': 141.95329063215402, 'zcp_fisher': 207.63787841796875, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 217.02203369140625, 'zcp_grasp': 9.89404296875, 'zcp_jacov': -16.06230911283495, 'zcp_l2_norm': 648.256591796875, 'zcp_nwot': 218.21630551240037, 'zcp_params': 5356682.0, 'zcp_plain': 0.029882974922657003, 'zcp_snip': 1306.6961669921875, 'zcp_synflow': 117.96779400538162, 'zcp_zen': 75.31053161621094, 'zcp_val_accuracy': 0.912760436534881}
NASBench101_352648
NASBench101
352648
d52950a5fb01ac8bbfee6fe0ef32e2aa
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x3x3] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x3x3] %onnx::Conv_803[FLOAT, 128x128x3x3] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x3x3] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x128x3x3] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 256x128x1x1] %onnx::Conv_837[FLOAT, 256] %onnx::Conv_839[FLOAT, 256x256x3x3] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x3x3] %onnx::Conv_848[FLOAT, 256x256x3x3] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 256x256x3x3] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x256x3x3] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x256x3x3] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x256x3x3] %onnx::Conv_881[FLOAT, 512x256x1x1] %onnx::Conv_882[FLOAT, 512] %onnx::Conv_884[FLOAT, 512x512x3x3] %onnx::Conv_887[FLOAT, 512x512x1x1] %onnx::Conv_890[FLOAT, 512x512x3x3] %onnx::Conv_893[FLOAT, 512x512x3x3] %onnx::Conv_896[FLOAT, 512x512x1x1] %onnx::Conv_899[FLOAT, 512x512x3x3] %onnx::Conv_902[FLOAT, 512x512x1x1] %onnx::Conv_905[FLOAT, 512x512x3x3] %onnx::Conv_908[FLOAT, 512x512x3x3] %onnx::Conv_911[FLOAT, 512x512x1x1] %onnx::Conv_914[FLOAT, 512x512x3x3] %onnx::Conv_917[FLOAT, 512x512x1x1] %onnx::Conv_920[FLOAT, 512x512x3x3] %onnx::Conv_923[FLOAT, 512x512x3x3] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_837) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_837) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %onnx::Conv_834 = Identity(%onnx::Conv_789) %onnx::Conv_831 = Identity(%onnx::Conv_789) %onnx::Conv_828 = Identity(%onnx::Conv_789) %onnx::Conv_825 = Identity(%onnx::Conv_789) %onnx::Conv_822 = Identity(%onnx::Conv_789) %onnx::Conv_819 = Identity(%onnx::Conv_789) %onnx::Conv_816 = Identity(%onnx::Conv_789) %onnx::Conv_813 = Identity(%onnx::Conv_789) %onnx::Conv_810 = Identity(%onnx::Conv_789) %onnx::Conv_807 = Identity(%onnx::Conv_789) %onnx::Conv_804 = Identity(%onnx::Conv_789) %onnx::Conv_801 = Identity(%onnx::Conv_789) %onnx::Conv_798 = Identity(%onnx::Conv_789) %onnx::Conv_795 = Identity(%onnx::Conv_789) %onnx::Conv_792 = Identity(%onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_7_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_7_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_7_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_7_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_7_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_7_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_7_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_7_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_7_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
89.493191
8,759,814,144
29,805,450
{'zcp_epe_nas': 73.63356345277583, 'zcp_fisher': 8089.79638671875, 'zcp_flops': 140157026304.0, 'zcp_grad_norm': 1354.278564453125, 'zcp_grasp': -1447.4375, 'zcp_jacov': -16.06756544374499, 'zcp_l2_norm': 1046.7904052734375, 'zcp_nwot': 232.03588116140412, 'zcp_params': 29805450.0, 'zcp_plain': 0.03335190936923, 'zcp_snip': 10682.0263671875, 'zcp_synflow': 166.40269892764405, 'zcp_zen': 111.41748046875, 'zcp_val_accuracy': 0.8851161599159241}
NASBench101_265231
NASBench101
265231
a098c69df9ff820ef591327fd4df7ab5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_635[FLOAT, 128x3x3x3] %onnx::Conv_636[FLOAT, 128] %onnx::Conv_638[FLOAT, 128x128x1x1] %onnx::Conv_641[FLOAT, 128x128x1x1] %onnx::Conv_644[FLOAT, 128x128x1x1] %onnx::Conv_647[FLOAT, 128x128x1x1] %onnx::Conv_650[FLOAT, 128x128x1x1] %onnx::Conv_653[FLOAT, 128x128x1x1] %onnx::Conv_656[FLOAT, 128x128x1x1] %onnx::Conv_659[FLOAT, 128x128x1x1] %onnx::Conv_662[FLOAT, 128x128x1x1] %onnx::Conv_665[FLOAT, 128x128x1x1] %onnx::Conv_668[FLOAT, 128x128x1x1] %onnx::Conv_671[FLOAT, 128x128x1x1] %onnx::Conv_674[FLOAT, 256x128x1x1] %onnx::Conv_675[FLOAT, 256] %onnx::Conv_677[FLOAT, 256x256x1x1] %onnx::Conv_680[FLOAT, 256x128x1x1] %onnx::Conv_683[FLOAT, 256x256x1x1] %onnx::Conv_686[FLOAT, 256x256x1x1] %onnx::Conv_689[FLOAT, 256x256x1x1] %onnx::Conv_692[FLOAT, 256x256x1x1] %onnx::Conv_695[FLOAT, 256x256x1x1] %onnx::Conv_698[FLOAT, 256x256x1x1] %onnx::Conv_701[FLOAT, 256x256x1x1] %onnx::Conv_704[FLOAT, 256x256x1x1] %onnx::Conv_707[FLOAT, 256x256x1x1] %onnx::Conv_710[FLOAT, 512x256x1x1] %onnx::Conv_711[FLOAT, 512] %onnx::Conv_713[FLOAT, 512x512x1x1] %onnx::Conv_716[FLOAT, 512x256x1x1] %onnx::Conv_719[FLOAT, 512x512x1x1] %onnx::Conv_722[FLOAT, 512x512x1x1] %onnx::Conv_725[FLOAT, 512x512x1x1] %onnx::Conv_728[FLOAT, 512x512x1x1] %onnx::Conv_731[FLOAT, 512x512x1x1] %onnx::Conv_734[FLOAT, 512x512x1x1] %onnx::Conv_737[FLOAT, 512x512x1x1] %onnx::Conv_740[FLOAT, 512x512x1x1] %onnx::Conv_743[FLOAT, 512x512x1x1] ) { %onnx::Conv_744 = Identity(%onnx::Conv_711) %onnx::Conv_741 = Identity(%onnx::Conv_711) %onnx::Conv_738 = Identity(%onnx::Conv_711) %onnx::Conv_735 = Identity(%onnx::Conv_711) %onnx::Conv_732 = Identity(%onnx::Conv_711) %onnx::Conv_729 = Identity(%onnx::Conv_711) %onnx::Conv_726 = Identity(%onnx::Conv_711) %onnx::Conv_723 = Identity(%onnx::Conv_711) %onnx::Conv_720 = Identity(%onnx::Conv_711) %onnx::Conv_717 = Identity(%onnx::Conv_711) %onnx::Conv_714 = Identity(%onnx::Conv_711) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %onnx::Conv_672 = Identity(%onnx::Conv_636) %onnx::Conv_669 = Identity(%onnx::Conv_636) %onnx::Conv_666 = Identity(%onnx::Conv_636) %onnx::Conv_663 = Identity(%onnx::Conv_636) %onnx::Conv_660 = Identity(%onnx::Conv_636) %onnx::Conv_657 = Identity(%onnx::Conv_636) %onnx::Conv_654 = Identity(%onnx::Conv_636) %onnx::Conv_651 = Identity(%onnx::Conv_636) %onnx::Conv_648 = Identity(%onnx::Conv_636) %onnx::Conv_645 = Identity(%onnx::Conv_636) %onnx::Conv_642 = Identity(%onnx::Conv_636) %onnx::Conv_639 = Identity(%onnx::Conv_636) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_635, %onnx::Conv_636) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %633 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %633 }
val_accuracy
89.713544
1,171,007,488
3,831,434
{'zcp_epe_nas': 164.22565042538452, 'zcp_fisher': 14.190656661987305, 'zcp_flops': 18736119808.0, 'zcp_grad_norm': 63.81367874145508, 'zcp_grasp': -8.08245849609375, 'zcp_jacov': -16.053445448403664, 'zcp_l2_norm': 818.7735595703125, 'zcp_nwot': 229.19717972856097, 'zcp_params': 3831434.0, 'zcp_plain': 0.029391195625066, 'zcp_snip': 486.8576965332031, 'zcp_synflow': 90.41002038511733, 'zcp_zen': 70.51300048828125, 'zcp_val_accuracy': 0.906049668788909}
NASBench101_31249
NASBench101
31249
12e2f4edc260af533e833d52af17a270
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_635[FLOAT, 128x3x3x3] %onnx::Conv_636[FLOAT, 128] %onnx::Conv_638[FLOAT, 64x128x1x1] %onnx::Conv_639[FLOAT, 64] %onnx::Conv_641[FLOAT, 64x64x3x3] %onnx::Conv_644[FLOAT, 64x128x1x1] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x128x1x1] %onnx::Conv_653[FLOAT, 64x64x3x3] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x128x1x1] %onnx::Conv_665[FLOAT, 64x64x3x3] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 128x128x1x1] %onnx::Conv_677[FLOAT, 128x128x3x3] %onnx::Conv_680[FLOAT, 128x128x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x256x1x1] %onnx::Conv_689[FLOAT, 128x128x3x3] %onnx::Conv_692[FLOAT, 128x256x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x256x1x1] %onnx::Conv_701[FLOAT, 128x128x3x3] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 256x256x1x1] %onnx::Conv_711[FLOAT, 256] %onnx::Conv_713[FLOAT, 256x256x3x3] %onnx::Conv_716[FLOAT, 256x256x1x1] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x512x1x1] %onnx::Conv_725[FLOAT, 256x256x3x3] %onnx::Conv_728[FLOAT, 256x512x1x1] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x512x1x1] %onnx::Conv_737[FLOAT, 256x256x3x3] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] ) { %onnx::Conv_744 = Identity(%onnx::Conv_711) %onnx::Conv_741 = Identity(%onnx::Conv_711) %onnx::Conv_738 = Identity(%onnx::Conv_711) %onnx::Conv_735 = Identity(%onnx::Conv_711) %onnx::Conv_732 = Identity(%onnx::Conv_711) %onnx::Conv_729 = Identity(%onnx::Conv_711) %onnx::Conv_726 = Identity(%onnx::Conv_711) %onnx::Conv_723 = Identity(%onnx::Conv_711) %onnx::Conv_720 = Identity(%onnx::Conv_711) %onnx::Conv_717 = Identity(%onnx::Conv_711) %onnx::Conv_714 = Identity(%onnx::Conv_711) %onnx::Conv_708 = Identity(%onnx::Conv_636) %onnx::Conv_705 = Identity(%onnx::Conv_636) %onnx::Conv_702 = Identity(%onnx::Conv_636) %onnx::Conv_699 = Identity(%onnx::Conv_636) %onnx::Conv_696 = Identity(%onnx::Conv_636) %onnx::Conv_693 = Identity(%onnx::Conv_636) %onnx::Conv_690 = Identity(%onnx::Conv_636) %onnx::Conv_687 = Identity(%onnx::Conv_636) %onnx::Conv_684 = Identity(%onnx::Conv_636) %onnx::Conv_681 = Identity(%onnx::Conv_636) %onnx::Conv_678 = Identity(%onnx::Conv_636) %onnx::Conv_675 = Identity(%onnx::Conv_636) %onnx::Conv_672 = Identity(%onnx::Conv_639) %onnx::Conv_669 = Identity(%onnx::Conv_639) %onnx::Conv_666 = Identity(%onnx::Conv_639) %onnx::Conv_663 = Identity(%onnx::Conv_639) %onnx::Conv_660 = Identity(%onnx::Conv_639) %onnx::Conv_657 = Identity(%onnx::Conv_639) %onnx::Conv_654 = Identity(%onnx::Conv_639) %onnx::Conv_651 = Identity(%onnx::Conv_639) %onnx::Conv_648 = Identity(%onnx::Conv_639) %onnx::Conv_645 = Identity(%onnx::Conv_639) %onnx::Conv_642 = Identity(%onnx::Conv_639) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_635, %onnx::Conv_636) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %633 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %633 }
val_accuracy
90.835339
1,042,556,928
3,468,426
{'zcp_epe_nas': 120.39031847642389, 'zcp_fisher': 6.906013488769531, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 50.666038513183594, 'zcp_grasp': 1.01202392578125, 'zcp_jacov': -16.057209183721326, 'zcp_l2_norm': 694.5264282226562, 'zcp_nwot': 218.44230857847674, 'zcp_params': 3468426.0, 'zcp_plain': -0.05645540356636, 'zcp_snip': 314.5456848144531, 'zcp_synflow': 63.391346216969175, 'zcp_zen': 65.42066955566406, 'zcp_val_accuracy': 0.929387032985687}
NASBench101_351833
NASBench101
351833
d4b195d7093e08d1e6f6dacd8917d3c9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_815[FLOAT, 128x3x3x3] %onnx::Conv_816[FLOAT, 128] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x128x3x3] %onnx::Conv_854[FLOAT, 128x128x1x1] %onnx::Conv_857[FLOAT, 128x128x1x1] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 128x128x3x3] %onnx::Conv_866[FLOAT, 128x128x1x1] %onnx::Conv_869[FLOAT, 128x128x3x3] %onnx::Conv_872[FLOAT, 256x128x1x1] %onnx::Conv_873[FLOAT, 256] %onnx::Conv_875[FLOAT, 256x128x1x1] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 256x128x1x1] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] %onnx::Conv_899[FLOAT, 256x256x3x3] %onnx::Conv_902[FLOAT, 256x256x1x1] %onnx::Conv_905[FLOAT, 256x256x3x3] %onnx::Conv_908[FLOAT, 256x256x1x1] %onnx::Conv_911[FLOAT, 256x256x1x1] %onnx::Conv_914[FLOAT, 256x256x1x1] %onnx::Conv_917[FLOAT, 256x256x3x3] %onnx::Conv_920[FLOAT, 256x256x1x1] %onnx::Conv_923[FLOAT, 256x256x3x3] %onnx::Conv_926[FLOAT, 512x256x1x1] %onnx::Conv_927[FLOAT, 512] %onnx::Conv_929[FLOAT, 512x256x1x1] %onnx::Conv_932[FLOAT, 512x512x1x1] %onnx::Conv_935[FLOAT, 512x512x3x3] %onnx::Conv_938[FLOAT, 512x256x1x1] %onnx::Conv_941[FLOAT, 512x512x3x3] %onnx::Conv_944[FLOAT, 512x512x1x1] %onnx::Conv_947[FLOAT, 512x512x1x1] %onnx::Conv_950[FLOAT, 512x512x1x1] %onnx::Conv_953[FLOAT, 512x512x3x3] %onnx::Conv_956[FLOAT, 512x512x1x1] %onnx::Conv_959[FLOAT, 512x512x3x3] %onnx::Conv_962[FLOAT, 512x512x1x1] %onnx::Conv_965[FLOAT, 512x512x1x1] %onnx::Conv_968[FLOAT, 512x512x1x1] %onnx::Conv_971[FLOAT, 512x512x3x3] %onnx::Conv_974[FLOAT, 512x512x1x1] %onnx::Conv_977[FLOAT, 512x512x3x3] ) { %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %onnx::Conv_924 = Identity(%onnx::Conv_873) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_816) %onnx::Conv_867 = Identity(%onnx::Conv_816) %onnx::Conv_864 = Identity(%onnx::Conv_816) %onnx::Conv_861 = Identity(%onnx::Conv_816) %onnx::Conv_858 = Identity(%onnx::Conv_816) %onnx::Conv_855 = Identity(%onnx::Conv_816) %onnx::Conv_852 = Identity(%onnx::Conv_816) %onnx::Conv_849 = Identity(%onnx::Conv_816) %onnx::Conv_846 = Identity(%onnx::Conv_816) %onnx::Conv_843 = Identity(%onnx::Conv_816) %onnx::Conv_840 = Identity(%onnx::Conv_816) %onnx::Conv_837 = Identity(%onnx::Conv_816) %onnx::Conv_834 = Identity(%onnx::Conv_816) %onnx::Conv_831 = Identity(%onnx::Conv_816) %onnx::Conv_828 = Identity(%onnx::Conv_816) %onnx::Conv_825 = Identity(%onnx::Conv_816) %onnx::Conv_822 = Identity(%onnx::Conv_816) %onnx::Conv_819 = Identity(%onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_815, %onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %813 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %813 }
val_accuracy
93.108976
6,584,281,088
22,257,802
{'zcp_epe_nas': 121.75970536477222, 'zcp_fisher': 14.04415225982666, 'zcp_flops': 105348497408.0, 'zcp_grad_norm': 65.46479034423828, 'zcp_grasp': 0.0433349609375, 'zcp_jacov': -16.046646335160297, 'zcp_l2_norm': 1226.18310546875, 'zcp_nwot': 234.6909115794465, 'zcp_params': 22257802.0, 'zcp_plain': 0.017493927851319, 'zcp_snip': 579.3690795898438, 'zcp_synflow': 135.4999414956613, 'zcp_zen': 112.95751190185547, 'zcp_val_accuracy': 0.906951129436492}
NASBench101_104712
NASBench101
104712
3f536f002356795543ee91d6799ad358
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x64x1x1] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x64x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x64x1x1] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x3x3] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x256x1x1] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x3x3] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
93.028843
1,744,316,416
5,878,154
{'zcp_epe_nas': 72.48466147868115, 'zcp_fisher': 10.071513175964355, 'zcp_flops': 27909062656.0, 'zcp_grad_norm': 72.81314086914062, 'zcp_grasp': -8.9632568359375, 'zcp_jacov': -16.05100303337607, 'zcp_l2_norm': 948.1002197265625, 'zcp_nwot': 224.77525918428572, 'zcp_params': 5878154.0, 'zcp_plain': 0.022175967693328, 'zcp_snip': 390.7329406738281, 'zcp_synflow': 139.8891015776078, 'zcp_zen': 92.8908920288086, 'zcp_val_accuracy': 0.9238781929016111}
NASBench101_33149
NASBench101
33149
1410fc833ccbe6773c7241e3692ef586
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x3x3] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x128x1x1] %onnx::Conv_692[FLOAT, 64x64x3x3] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x128x1x1] %onnx::Conv_704[FLOAT, 64x64x3x3] %onnx::Conv_707[FLOAT, 64x64x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x3x3] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x256x1x1] %onnx::Conv_728[FLOAT, 128x128x3x3] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x256x1x1] %onnx::Conv_740[FLOAT, 128x128x3x3] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_747[FLOAT, 256] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x3x3] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x512x1x1] %onnx::Conv_764[FLOAT, 256x256x3x3] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x512x1x1] %onnx::Conv_776[FLOAT, 256x256x3x3] %onnx::Conv_779[FLOAT, 256x256x3x3] ) { %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_672) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_672) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_720 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
91.005611
1,646,536,704
5,532,810
{'zcp_epe_nas': 58.71149078503317, 'zcp_fisher': 21.359968185424805, 'zcp_flops': 26344587264.0, 'zcp_grad_norm': 72.99847412109375, 'zcp_grasp': 2.025299072265625, 'zcp_jacov': -16.051546208205295, 'zcp_l2_norm': 693.95263671875, 'zcp_nwot': 218.07800255216523, 'zcp_params': 5532810.0, 'zcp_plain': 0.051549777388572006, 'zcp_snip': 501.04620361328125, 'zcp_synflow': 100.62638243024577, 'zcp_zen': 82.99877166748047, 'zcp_val_accuracy': 0.919471144676208}
NASBench101_379093
NASBench101
379093
e53a25ff6dde6e5520372ca534650138
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_572[FLOAT, 128x3x3x3] %onnx::Conv_573[FLOAT, 128] %onnx::Conv_575[FLOAT, 64x128x1x1] %onnx::Conv_576[FLOAT, 64] %onnx::Conv_578[FLOAT, 64x64x1x1] %onnx::Conv_581[FLOAT, 64x64x3x3] %onnx::Conv_584[FLOAT, 64x128x1x1] %onnx::Conv_587[FLOAT, 64x64x1x1] %onnx::Conv_590[FLOAT, 64x64x3x3] %onnx::Conv_593[FLOAT, 64x128x1x1] %onnx::Conv_596[FLOAT, 64x64x1x1] %onnx::Conv_599[FLOAT, 64x64x3x3] %onnx::Conv_602[FLOAT, 128x128x1x1] %onnx::Conv_605[FLOAT, 128x128x1x1] %onnx::Conv_608[FLOAT, 128x128x3x3] %onnx::Conv_611[FLOAT, 128x256x1x1] %onnx::Conv_614[FLOAT, 128x128x1x1] %onnx::Conv_617[FLOAT, 128x128x3x3] %onnx::Conv_620[FLOAT, 128x256x1x1] %onnx::Conv_623[FLOAT, 128x128x1x1] %onnx::Conv_626[FLOAT, 128x128x3x3] %onnx::Conv_629[FLOAT, 256x256x1x1] %onnx::Conv_630[FLOAT, 256] %onnx::Conv_632[FLOAT, 256x256x1x1] %onnx::Conv_635[FLOAT, 256x256x3x3] %onnx::Conv_638[FLOAT, 256x512x1x1] %onnx::Conv_641[FLOAT, 256x256x1x1] %onnx::Conv_644[FLOAT, 256x256x3x3] %onnx::Conv_647[FLOAT, 256x512x1x1] %onnx::Conv_650[FLOAT, 256x256x1x1] %onnx::Conv_653[FLOAT, 256x256x3x3] ) { %onnx::Conv_654 = Identity(%onnx::Conv_630) %onnx::Conv_651 = Identity(%onnx::Conv_630) %onnx::Conv_648 = Identity(%onnx::Conv_630) %onnx::Conv_645 = Identity(%onnx::Conv_630) %onnx::Conv_642 = Identity(%onnx::Conv_630) %onnx::Conv_639 = Identity(%onnx::Conv_630) %onnx::Conv_636 = Identity(%onnx::Conv_630) %onnx::Conv_633 = Identity(%onnx::Conv_630) %onnx::Conv_627 = Identity(%onnx::Conv_573) %onnx::Conv_624 = Identity(%onnx::Conv_573) %onnx::Conv_621 = Identity(%onnx::Conv_573) %onnx::Conv_618 = Identity(%onnx::Conv_573) %onnx::Conv_615 = Identity(%onnx::Conv_573) %onnx::Conv_612 = Identity(%onnx::Conv_573) %onnx::Conv_609 = Identity(%onnx::Conv_573) %onnx::Conv_606 = Identity(%onnx::Conv_573) %onnx::Conv_603 = Identity(%onnx::Conv_573) %onnx::Conv_600 = Identity(%onnx::Conv_576) %onnx::Conv_597 = Identity(%onnx::Conv_576) %onnx::Conv_594 = Identity(%onnx::Conv_576) %onnx::Conv_591 = Identity(%onnx::Conv_576) %onnx::Conv_588 = Identity(%onnx::Conv_576) %onnx::Conv_585 = Identity(%onnx::Conv_576) %onnx::Conv_582 = Identity(%onnx::Conv_576) %onnx::Conv_579 = Identity(%onnx::Conv_576) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_572, %onnx::Conv_573) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %570 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %570 }
val_accuracy
89.222759
905,586,688
3,031,562
{'zcp_epe_nas': 99.73791243666268, 'zcp_fisher': 27.621950149536133, 'zcp_flops': 14489387008.0, 'zcp_grad_norm': 85.28934478759766, 'zcp_grasp': -17.6744384765625, 'zcp_jacov': -16.06046046941205, 'zcp_l2_norm': 498.5760803222656, 'zcp_nwot': 213.69965187431472, 'zcp_params': 3031562.0, 'zcp_plain': 0.21757522225379902, 'zcp_snip': 517.0213012695312, 'zcp_synflow': 85.19547123825839, 'zcp_zen': 60.85684585571289, 'zcp_val_accuracy': 0.919571340084075}
NASBench101_339346
NASBench101
339346
cd3527b047bc09cc06dc6a2b60175b75
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_644[FLOAT, 128x3x3x3] %onnx::Conv_645[FLOAT, 128] %onnx::Conv_647[FLOAT, 64x128x1x1] %onnx::Conv_648[FLOAT, 64] %onnx::Conv_650[FLOAT, 64x64x1x1] %onnx::Conv_653[FLOAT, 64x128x1x1] %onnx::Conv_656[FLOAT, 64x64x3x3] %onnx::Conv_659[FLOAT, 64x128x1x1] %onnx::Conv_662[FLOAT, 64x64x1x1] %onnx::Conv_665[FLOAT, 64x128x1x1] %onnx::Conv_668[FLOAT, 64x64x3x3] %onnx::Conv_671[FLOAT, 64x128x1x1] %onnx::Conv_674[FLOAT, 64x64x1x1] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x3x3] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x128x1x1] %onnx::Conv_689[FLOAT, 128x128x1x1] %onnx::Conv_692[FLOAT, 128x128x3x3] %onnx::Conv_695[FLOAT, 128x256x1x1] %onnx::Conv_698[FLOAT, 128x128x1x1] %onnx::Conv_701[FLOAT, 128x256x1x1] %onnx::Conv_704[FLOAT, 128x128x3x3] %onnx::Conv_707[FLOAT, 128x256x1x1] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x256x1x1] %onnx::Conv_716[FLOAT, 128x128x3x3] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_720[FLOAT, 256] %onnx::Conv_722[FLOAT, 256x256x1x1] %onnx::Conv_725[FLOAT, 256x256x1x1] %onnx::Conv_728[FLOAT, 256x256x3x3] %onnx::Conv_731[FLOAT, 256x512x1x1] %onnx::Conv_734[FLOAT, 256x256x1x1] %onnx::Conv_737[FLOAT, 256x512x1x1] %onnx::Conv_740[FLOAT, 256x256x3x3] %onnx::Conv_743[FLOAT, 256x512x1x1] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x512x1x1] %onnx::Conv_752[FLOAT, 256x256x3x3] ) { %onnx::Conv_753 = Identity(%onnx::Conv_720) %onnx::Conv_750 = Identity(%onnx::Conv_720) %onnx::Conv_747 = Identity(%onnx::Conv_720) %onnx::Conv_744 = Identity(%onnx::Conv_720) %onnx::Conv_741 = Identity(%onnx::Conv_720) %onnx::Conv_738 = Identity(%onnx::Conv_720) %onnx::Conv_735 = Identity(%onnx::Conv_720) %onnx::Conv_732 = Identity(%onnx::Conv_720) %onnx::Conv_729 = Identity(%onnx::Conv_720) %onnx::Conv_726 = Identity(%onnx::Conv_720) %onnx::Conv_723 = Identity(%onnx::Conv_720) %onnx::Conv_717 = Identity(%onnx::Conv_645) %onnx::Conv_714 = Identity(%onnx::Conv_645) %onnx::Conv_711 = Identity(%onnx::Conv_645) %onnx::Conv_708 = Identity(%onnx::Conv_645) %onnx::Conv_705 = Identity(%onnx::Conv_645) %onnx::Conv_702 = Identity(%onnx::Conv_645) %onnx::Conv_699 = Identity(%onnx::Conv_645) %onnx::Conv_696 = Identity(%onnx::Conv_645) %onnx::Conv_693 = Identity(%onnx::Conv_645) %onnx::Conv_690 = Identity(%onnx::Conv_645) %onnx::Conv_687 = Identity(%onnx::Conv_645) %onnx::Conv_684 = Identity(%onnx::Conv_645) %onnx::Conv_681 = Identity(%onnx::Conv_648) %onnx::Conv_678 = Identity(%onnx::Conv_648) %onnx::Conv_675 = Identity(%onnx::Conv_648) %onnx::Conv_672 = Identity(%onnx::Conv_648) %onnx::Conv_669 = Identity(%onnx::Conv_648) %onnx::Conv_666 = Identity(%onnx::Conv_648) %onnx::Conv_663 = Identity(%onnx::Conv_648) %onnx::Conv_660 = Identity(%onnx::Conv_648) %onnx::Conv_657 = Identity(%onnx::Conv_648) %onnx::Conv_654 = Identity(%onnx::Conv_648) %onnx::Conv_651 = Identity(%onnx::Conv_648) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_644, %onnx::Conv_645) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %642 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %642 }
val_accuracy
90.594953
1,042,556,928
3,468,426
{'zcp_epe_nas': 97.79197290881896, 'zcp_fisher': 57.635379791259766, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 134.94558715820312, 'zcp_grasp': -31.98583984375, 'zcp_jacov': -16.07462891274301, 'zcp_l2_norm': 695.6890258789062, 'zcp_nwot': 218.55303455281765, 'zcp_params': 3468426.0, 'zcp_plain': 0.060897253453731, 'zcp_snip': 748.457275390625, 'zcp_synflow': 85.39847663556395, 'zcp_zen': 69.18266296386719, 'zcp_val_accuracy': 0.9063501358032221}
NASBench101_91279
NASBench101
91279
373ef2fc84b52d7ee3962b5ab0ddcccf
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_657[FLOAT, 64] %onnx::Conv_659[FLOAT, 64x64x3x3] %onnx::Conv_662[FLOAT, 64x64x3x3] %onnx::Conv_665[FLOAT, 64x64x3x3] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x3x3] %onnx::Conv_674[FLOAT, 64x64x3x3] %onnx::Conv_677[FLOAT, 64x64x3x3] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 64x64x3x3] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x3x3] %onnx::Conv_698[FLOAT, 128x128x3x3] %onnx::Conv_701[FLOAT, 128x128x3x3] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 128x256x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x3x3] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x3x3] %onnx::Conv_734[FLOAT, 256x256x3x3] %onnx::Conv_737[FLOAT, 256x256x3x3] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x3x3] %onnx::Conv_752[FLOAT, 256x512x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x3x3] ) { %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_654) %onnx::Conv_723 = Identity(%onnx::Conv_654) %onnx::Conv_720 = Identity(%onnx::Conv_654) %onnx::Conv_717 = Identity(%onnx::Conv_654) %onnx::Conv_714 = Identity(%onnx::Conv_654) %onnx::Conv_711 = Identity(%onnx::Conv_654) %onnx::Conv_708 = Identity(%onnx::Conv_654) %onnx::Conv_705 = Identity(%onnx::Conv_654) %onnx::Conv_702 = Identity(%onnx::Conv_654) %onnx::Conv_699 = Identity(%onnx::Conv_654) %onnx::Conv_696 = Identity(%onnx::Conv_654) %onnx::Conv_693 = Identity(%onnx::Conv_654) %onnx::Conv_690 = Identity(%onnx::Conv_657) %onnx::Conv_687 = Identity(%onnx::Conv_657) %onnx::Conv_684 = Identity(%onnx::Conv_657) %onnx::Conv_681 = Identity(%onnx::Conv_657) %onnx::Conv_678 = Identity(%onnx::Conv_657) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_657) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_657) %onnx::Conv_663 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
91.175884
2,191,796,224
7,421,066
{'zcp_epe_nas': 99.40032135593323, 'zcp_fisher': 33.8288688659668, 'zcp_flops': 35068739584.0, 'zcp_grad_norm': 98.75955963134766, 'zcp_grasp': -5.42706298828125, 'zcp_jacov': -16.060836200598786, 'zcp_l2_norm': 648.7487182617188, 'zcp_nwot': 218.08536053941208, 'zcp_params': 7421066.0, 'zcp_plain': 0.038425423204898, 'zcp_snip': 620.4310302734375, 'zcp_synflow': 133.04301557261502, 'zcp_zen': 84.66390991210938, 'zcp_val_accuracy': 0.936097741127014}
NASBench101_248987
NASBench101
248987
96b7e54561b87d673558768eb2acea35
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_938[FLOAT, 128x3x3x3] %onnx::Conv_939[FLOAT, 128] %onnx::Conv_941[FLOAT, 43x128x1x1] %onnx::Conv_942[FLOAT, 43] %onnx::Conv_944[FLOAT, 43x43x1x1] %onnx::Conv_947[FLOAT, 43x128x1x1] %onnx::Conv_950[FLOAT, 43x43x1x1] %onnx::Conv_953[FLOAT, 43x43x1x1] %onnx::Conv_956[FLOAT, 43x43x3x3] %onnx::Conv_959[FLOAT, 43x128x1x1] %onnx::Conv_962[FLOAT, 43x43x1x1] %onnx::Conv_965[FLOAT, 43x128x1x1] %onnx::Conv_968[FLOAT, 43x43x1x1] %onnx::Conv_971[FLOAT, 43x43x1x1] %onnx::Conv_974[FLOAT, 43x43x3x3] %onnx::Conv_977[FLOAT, 43x128x1x1] %onnx::Conv_980[FLOAT, 43x43x1x1] %onnx::Conv_983[FLOAT, 43x128x1x1] %onnx::Conv_986[FLOAT, 43x43x1x1] %onnx::Conv_989[FLOAT, 43x43x1x1] %onnx::Conv_992[FLOAT, 43x43x3x3] %onnx::Conv_995[FLOAT, 86x128x1x1] %onnx::Conv_996[FLOAT, 86] %onnx::Conv_998[FLOAT, 86x86x1x1] %onnx::Conv_1001[FLOAT, 85x128x1x1] %onnx::Conv_1002[FLOAT, 85] %onnx::Conv_1004[FLOAT, 85x85x1x1] %onnx::Conv_1007[FLOAT, 85x85x1x1] %onnx::Conv_1010[FLOAT, 85x85x3x3] %onnx::Conv_1013[FLOAT, 86x256x1x1] %onnx::Conv_1016[FLOAT, 86x86x1x1] %onnx::Conv_1019[FLOAT, 85x256x1x1] %onnx::Conv_1022[FLOAT, 85x85x1x1] %onnx::Conv_1025[FLOAT, 85x85x1x1] %onnx::Conv_1028[FLOAT, 85x85x3x3] %onnx::Conv_1031[FLOAT, 86x256x1x1] %onnx::Conv_1034[FLOAT, 86x86x1x1] %onnx::Conv_1037[FLOAT, 85x256x1x1] %onnx::Conv_1040[FLOAT, 85x85x1x1] %onnx::Conv_1043[FLOAT, 85x85x1x1] %onnx::Conv_1046[FLOAT, 85x85x3x3] %onnx::Conv_1049[FLOAT, 171x256x1x1] %onnx::Conv_1050[FLOAT, 171] %onnx::Conv_1052[FLOAT, 171x171x1x1] %onnx::Conv_1055[FLOAT, 171x256x1x1] %onnx::Conv_1058[FLOAT, 171x171x1x1] %onnx::Conv_1061[FLOAT, 171x171x1x1] %onnx::Conv_1064[FLOAT, 171x171x3x3] %onnx::Conv_1067[FLOAT, 171x512x1x1] %onnx::Conv_1070[FLOAT, 171x171x1x1] %onnx::Conv_1073[FLOAT, 171x512x1x1] %onnx::Conv_1076[FLOAT, 171x171x1x1] %onnx::Conv_1079[FLOAT, 171x171x1x1] %onnx::Conv_1082[FLOAT, 171x171x3x3] %onnx::Conv_1085[FLOAT, 171x512x1x1] %onnx::Conv_1088[FLOAT, 171x171x1x1] %onnx::Conv_1091[FLOAT, 171x512x1x1] %onnx::Conv_1094[FLOAT, 171x171x1x1] %onnx::Conv_1097[FLOAT, 171x171x1x1] %onnx::Conv_1100[FLOAT, 171x171x3x3] ) { %onnx::Conv_1101 = Identity(%onnx::Conv_1050) %onnx::Conv_1098 = Identity(%onnx::Conv_1050) %onnx::Conv_1095 = Identity(%onnx::Conv_1050) %onnx::Conv_1092 = Identity(%onnx::Conv_1050) %onnx::Conv_1089 = Identity(%onnx::Conv_1050) %onnx::Conv_1086 = Identity(%onnx::Conv_1050) %onnx::Conv_1083 = Identity(%onnx::Conv_1050) %onnx::Conv_1080 = Identity(%onnx::Conv_1050) %onnx::Conv_1077 = Identity(%onnx::Conv_1050) %onnx::Conv_1074 = Identity(%onnx::Conv_1050) %onnx::Conv_1071 = Identity(%onnx::Conv_1050) %onnx::Conv_1068 = Identity(%onnx::Conv_1050) %onnx::Conv_1065 = Identity(%onnx::Conv_1050) %onnx::Conv_1062 = Identity(%onnx::Conv_1050) %onnx::Conv_1059 = Identity(%onnx::Conv_1050) %onnx::Conv_1056 = Identity(%onnx::Conv_1050) %onnx::Conv_1053 = Identity(%onnx::Conv_1050) %onnx::Conv_1047 = Identity(%onnx::Conv_1002) %onnx::Conv_1044 = Identity(%onnx::Conv_1002) %onnx::Conv_1041 = Identity(%onnx::Conv_1002) %onnx::Conv_1038 = Identity(%onnx::Conv_1002) %onnx::Conv_1035 = Identity(%onnx::Conv_996) %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_1002) %onnx::Conv_1026 = Identity(%onnx::Conv_1002) %onnx::Conv_1023 = Identity(%onnx::Conv_1002) %onnx::Conv_1020 = Identity(%onnx::Conv_1002) %onnx::Conv_1017 = Identity(%onnx::Conv_996) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_1002) %onnx::Conv_1008 = Identity(%onnx::Conv_1002) %onnx::Conv_1005 = Identity(%onnx::Conv_1002) %onnx::Conv_999 = Identity(%onnx::Conv_996) %onnx::Conv_993 = Identity(%onnx::Conv_942) %onnx::Conv_990 = Identity(%onnx::Conv_942) %onnx::Conv_987 = Identity(%onnx::Conv_942) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_942) %onnx::Conv_972 = Identity(%onnx::Conv_942) %onnx::Conv_969 = Identity(%onnx::Conv_942) %onnx::Conv_966 = Identity(%onnx::Conv_942) %onnx::Conv_963 = Identity(%onnx::Conv_942) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_942) %onnx::Conv_954 = Identity(%onnx::Conv_942) %onnx::Conv_951 = Identity(%onnx::Conv_942) %onnx::Conv_948 = Identity(%onnx::Conv_942) %onnx::Conv_945 = Identity(%onnx::Conv_942) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_938, %onnx::Conv_939) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_10_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_11_output_0) %/layers.1/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_12_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/Slice_1_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_10_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_11_output_0) %/layers.2/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_12_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/Slice_1_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_10_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_11_output_0) %/layers.3/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_12_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/Slice_1_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_10_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_11_output_0) %/layers.9/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_12_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/Slice_1_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_10_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_11_output_0) %/layers.10/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_12_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/Slice_1_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_10_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_11_output_0) %/layers.11/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_12_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/Slice_1_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %936 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %936 }
val_accuracy
89.172679
603,398,144
1,979,695
{'zcp_epe_nas': 76.04150810245437, 'zcp_fisher': 149.85777282714844, 'zcp_flops': 9654370304.0, 'zcp_grad_norm': 248.05300903320312, 'zcp_grasp': 319.5673828125, 'zcp_jacov': -16.056541532746913, 'zcp_l2_norm': 883.7949829101562, 'zcp_nwot': 218.72102568798263, 'zcp_params': 1979695.0, 'zcp_plain': 0.022841626778244, 'zcp_snip': 1073.5782470703125, 'zcp_synflow': 106.12765536809202, 'zcp_zen': 78.63294219970703, 'zcp_val_accuracy': 0.9408053159713741}
NASBench101_290255
NASBench101
290255
afb4fa26d3b14dffb4a8794c9a2bceef
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_821[FLOAT, 128x3x3x3] %onnx::Conv_822[FLOAT, 128] %onnx::Conv_824[FLOAT, 43x128x1x1] %onnx::Conv_825[FLOAT, 43] %onnx::Conv_827[FLOAT, 43x43x1x1] %onnx::Conv_830[FLOAT, 43x128x1x1] %onnx::Conv_833[FLOAT, 43x43x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 43x128x1x1] %onnx::Conv_842[FLOAT, 43x43x1x1] %onnx::Conv_845[FLOAT, 43x128x1x1] %onnx::Conv_848[FLOAT, 43x43x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 43x128x1x1] %onnx::Conv_857[FLOAT, 43x43x1x1] %onnx::Conv_860[FLOAT, 43x128x1x1] %onnx::Conv_863[FLOAT, 43x43x1x1] %onnx::Conv_866[FLOAT, 128x128x1x1] %onnx::Conv_869[FLOAT, 86x128x1x1] %onnx::Conv_870[FLOAT, 86] %onnx::Conv_872[FLOAT, 86x86x1x1] %onnx::Conv_875[FLOAT, 86x128x1x1] %onnx::Conv_878[FLOAT, 86x86x1x1] %onnx::Conv_881[FLOAT, 256x128x1x1] %onnx::Conv_882[FLOAT, 256] %onnx::Conv_884[FLOAT, 86x256x1x1] %onnx::Conv_887[FLOAT, 86x86x1x1] %onnx::Conv_890[FLOAT, 86x256x1x1] %onnx::Conv_893[FLOAT, 86x86x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] %onnx::Conv_899[FLOAT, 86x256x1x1] %onnx::Conv_902[FLOAT, 86x86x1x1] %onnx::Conv_905[FLOAT, 86x256x1x1] %onnx::Conv_908[FLOAT, 86x86x1x1] %onnx::Conv_911[FLOAT, 256x256x1x1] %onnx::Conv_914[FLOAT, 171x256x1x1] %onnx::Conv_915[FLOAT, 171] %onnx::Conv_917[FLOAT, 171x171x1x1] %onnx::Conv_920[FLOAT, 171x256x1x1] %onnx::Conv_923[FLOAT, 171x171x1x1] %onnx::Conv_926[FLOAT, 512x256x1x1] %onnx::Conv_927[FLOAT, 512] %onnx::Conv_929[FLOAT, 171x512x1x1] %onnx::Conv_932[FLOAT, 171x171x1x1] %onnx::Conv_935[FLOAT, 171x512x1x1] %onnx::Conv_938[FLOAT, 171x171x1x1] %onnx::Conv_941[FLOAT, 512x512x1x1] %onnx::Conv_944[FLOAT, 171x512x1x1] %onnx::Conv_947[FLOAT, 171x171x1x1] %onnx::Conv_950[FLOAT, 171x512x1x1] %onnx::Conv_953[FLOAT, 171x171x1x1] %onnx::Conv_956[FLOAT, 512x512x1x1] ) { %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_915) %onnx::Conv_951 = Identity(%onnx::Conv_915) %onnx::Conv_948 = Identity(%onnx::Conv_915) %onnx::Conv_945 = Identity(%onnx::Conv_915) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_915) %onnx::Conv_936 = Identity(%onnx::Conv_915) %onnx::Conv_933 = Identity(%onnx::Conv_915) %onnx::Conv_930 = Identity(%onnx::Conv_915) %onnx::Conv_924 = Identity(%onnx::Conv_915) %onnx::Conv_921 = Identity(%onnx::Conv_915) %onnx::Conv_918 = Identity(%onnx::Conv_915) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_870) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_870) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_879 = Identity(%onnx::Conv_870) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %onnx::Conv_867 = Identity(%onnx::Conv_822) %onnx::Conv_864 = Identity(%onnx::Conv_825) %onnx::Conv_861 = Identity(%onnx::Conv_825) %onnx::Conv_858 = Identity(%onnx::Conv_825) %onnx::Conv_855 = Identity(%onnx::Conv_825) %onnx::Conv_852 = Identity(%onnx::Conv_822) %onnx::Conv_849 = Identity(%onnx::Conv_825) %onnx::Conv_846 = Identity(%onnx::Conv_825) %onnx::Conv_843 = Identity(%onnx::Conv_825) %onnx::Conv_840 = Identity(%onnx::Conv_825) %onnx::Conv_837 = Identity(%onnx::Conv_822) %onnx::Conv_834 = Identity(%onnx::Conv_825) %onnx::Conv_831 = Identity(%onnx::Conv_825) %onnx::Conv_828 = Identity(%onnx::Conv_825) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_821, %onnx::Conv_822) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_11_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_11_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_11_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %819 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %819 }
val_accuracy
89.202726
537,393,920
1,701,550
{'zcp_epe_nas': 108.82921121601379, 'zcp_fisher': 2.893261432647705, 'zcp_flops': 8598302720.0, 'zcp_grad_norm': 43.81520462036133, 'zcp_grasp': -8.165008544921875, 'zcp_jacov': -16.04693163473005, 'zcp_l2_norm': 834.9368896484375, 'zcp_nwot': 220.97772971853854, 'zcp_params': 1701550.0, 'zcp_plain': 0.090169697999954, 'zcp_snip': 215.03485107421875, 'zcp_synflow': 71.24814333739536, 'zcp_zen': 73.63092803955078, 'zcp_val_accuracy': 0.8646835088729851}
NASBench101_346795
NASBench101
346795
d1a44eb6d934379cdca63c30fa935749
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_899[FLOAT, 128x3x3x3] %onnx::Conv_900[FLOAT, 128] %onnx::Conv_902[FLOAT, 43x128x1x1] %onnx::Conv_903[FLOAT, 43] %onnx::Conv_905[FLOAT, 43x43x3x3] %onnx::Conv_908[FLOAT, 43x128x1x1] %onnx::Conv_911[FLOAT, 43x43x3x3] %onnx::Conv_914[FLOAT, 42x42x3x3] %onnx::Conv_915[FLOAT, 42] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 43x128x1x1] %onnx::Conv_923[FLOAT, 43x43x3x3] %onnx::Conv_926[FLOAT, 43x128x1x1] %onnx::Conv_929[FLOAT, 43x43x3x3] %onnx::Conv_932[FLOAT, 42x42x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 43x128x1x1] %onnx::Conv_941[FLOAT, 43x43x3x3] %onnx::Conv_944[FLOAT, 43x128x1x1] %onnx::Conv_947[FLOAT, 43x43x3x3] %onnx::Conv_950[FLOAT, 42x42x3x3] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 86x128x1x1] %onnx::Conv_957[FLOAT, 86] %onnx::Conv_959[FLOAT, 86x86x3x3] %onnx::Conv_962[FLOAT, 85x128x1x1] %onnx::Conv_963[FLOAT, 85] %onnx::Conv_965[FLOAT, 85x85x3x3] %onnx::Conv_968[FLOAT, 85x85x3x3] %onnx::Conv_971[FLOAT, 256x128x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 86x256x1x1] %onnx::Conv_977[FLOAT, 86x86x3x3] %onnx::Conv_980[FLOAT, 85x256x1x1] %onnx::Conv_983[FLOAT, 85x85x3x3] %onnx::Conv_986[FLOAT, 85x85x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 86x256x1x1] %onnx::Conv_995[FLOAT, 86x86x3x3] %onnx::Conv_998[FLOAT, 85x256x1x1] %onnx::Conv_1001[FLOAT, 85x85x3x3] %onnx::Conv_1004[FLOAT, 85x85x3x3] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 171x256x1x1] %onnx::Conv_1011[FLOAT, 171] %onnx::Conv_1013[FLOAT, 171x171x3x3] %onnx::Conv_1016[FLOAT, 171x256x1x1] %onnx::Conv_1019[FLOAT, 171x171x3x3] %onnx::Conv_1022[FLOAT, 170x170x3x3] %onnx::Conv_1023[FLOAT, 170] %onnx::Conv_1025[FLOAT, 512x256x1x1] %onnx::Conv_1026[FLOAT, 512] %onnx::Conv_1028[FLOAT, 171x512x1x1] %onnx::Conv_1031[FLOAT, 171x171x3x3] %onnx::Conv_1034[FLOAT, 171x512x1x1] %onnx::Conv_1037[FLOAT, 171x171x3x3] %onnx::Conv_1040[FLOAT, 170x170x3x3] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 171x512x1x1] %onnx::Conv_1049[FLOAT, 171x171x3x3] %onnx::Conv_1052[FLOAT, 171x512x1x1] %onnx::Conv_1055[FLOAT, 171x171x3x3] %onnx::Conv_1058[FLOAT, 170x170x3x3] %onnx::Conv_1061[FLOAT, 512x512x1x1] ) { %onnx::Conv_1062 = Identity(%onnx::Conv_1026) %onnx::Conv_1059 = Identity(%onnx::Conv_1023) %onnx::Conv_1056 = Identity(%onnx::Conv_1011) %onnx::Conv_1053 = Identity(%onnx::Conv_1011) %onnx::Conv_1050 = Identity(%onnx::Conv_1011) %onnx::Conv_1047 = Identity(%onnx::Conv_1011) %onnx::Conv_1044 = Identity(%onnx::Conv_1026) %onnx::Conv_1041 = Identity(%onnx::Conv_1023) %onnx::Conv_1038 = Identity(%onnx::Conv_1011) %onnx::Conv_1035 = Identity(%onnx::Conv_1011) %onnx::Conv_1032 = Identity(%onnx::Conv_1011) %onnx::Conv_1029 = Identity(%onnx::Conv_1011) %onnx::Conv_1020 = Identity(%onnx::Conv_1011) %onnx::Conv_1017 = Identity(%onnx::Conv_1011) %onnx::Conv_1014 = Identity(%onnx::Conv_1011) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_963) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_957) %onnx::Conv_993 = Identity(%onnx::Conv_957) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_963) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_957) %onnx::Conv_975 = Identity(%onnx::Conv_957) %onnx::Conv_969 = Identity(%onnx::Conv_963) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_957) %onnx::Conv_954 = Identity(%onnx::Conv_900) %onnx::Conv_951 = Identity(%onnx::Conv_915) %onnx::Conv_948 = Identity(%onnx::Conv_903) %onnx::Conv_945 = Identity(%onnx::Conv_903) %onnx::Conv_942 = Identity(%onnx::Conv_903) %onnx::Conv_939 = Identity(%onnx::Conv_903) %onnx::Conv_936 = Identity(%onnx::Conv_900) %onnx::Conv_933 = Identity(%onnx::Conv_915) %onnx::Conv_930 = Identity(%onnx::Conv_903) %onnx::Conv_927 = Identity(%onnx::Conv_903) %onnx::Conv_924 = Identity(%onnx::Conv_903) %onnx::Conv_921 = Identity(%onnx::Conv_903) %onnx::Conv_918 = Identity(%onnx::Conv_900) %onnx::Conv_912 = Identity(%onnx::Conv_903) %onnx::Conv_909 = Identity(%onnx::Conv_903) %onnx::Conv_906 = Identity(%onnx::Conv_903) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_899, %onnx::Conv_900) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %897 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %897 }
val_accuracy
93.169069
1,376,989,440
4,568,394
{'zcp_epe_nas': 163.70190648687154, 'zcp_fisher': 2.789305686950683, 'zcp_flops': 22031831040.0, 'zcp_grad_norm': 44.214744567871094, 'zcp_grasp': -11.505195617675781, 'zcp_jacov': -16.054663631209543, 'zcp_l2_norm': 958.0176391601562, 'zcp_nwot': 222.47383033238145, 'zcp_params': 4568394.0, 'zcp_plain': 0.227366164326667, 'zcp_snip': 241.88314819335938, 'zcp_synflow': 88.88287230202864, 'zcp_zen': 107.0600814819336, 'zcp_val_accuracy': 0.8809094429016111}
NASBench101_141389
NASBench101
141389
5582bde212b2a0293e4f4cb8005ae9ad
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x1x1] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
92.417866
2,485,266,432
8,379,402
{'zcp_epe_nas': 126.11916737122077, 'zcp_fisher': 80.0896224975586, 'zcp_flops': 39764262912.0, 'zcp_grad_norm': 190.85943603515625, 'zcp_grasp': 47.66064453125, 'zcp_jacov': -16.053322596943907, 'zcp_l2_norm': 1142.9508056640625, 'zcp_nwot': 226.7801412950848, 'zcp_params': 8379402.0, 'zcp_plain': -0.013494350016117, 'zcp_snip': 1043.626708984375, 'zcp_synflow': 145.87622597398845, 'zcp_zen': 116.42481231689453, 'zcp_val_accuracy': 0.909755587577819}
NASBench101_45337
NASBench101
45337
1b83bedcd1150587a730075efc63a28f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x3x3] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x3x3] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x128x1x1] %onnx::Conv_953[FLOAT, 256x256x3x3] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x3x3] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x256x1x1] %onnx::Conv_1007[FLOAT, 512x512x3x3] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x3x3] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x3x3] %onnx::Conv_1046[FLOAT, 512x512x3x3] %onnx::Conv_1049[FLOAT, 512x512x3x3] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
91.576523
11,449,673,728
38,936,714
{'zcp_epe_nas': 137.94158828588212, 'zcp_fisher': 143.9772491455078, 'zcp_flops': 183194779648.0, 'zcp_grad_norm': 200.53248596191406, 'zcp_grasp': -29.455810546875, 'zcp_jacov': -16.05372487439553, 'zcp_l2_norm': 1242.3385009765625, 'zcp_nwot': 234.23251833510872, 'zcp_params': 38936714.0, 'zcp_plain': 0.073835045099258, 'zcp_snip': 1756.7269287109375, 'zcp_synflow': 144.918843092456, 'zcp_zen': 131.25367736816406, 'zcp_val_accuracy': 0.9191706776618951}
NASBench101_231463
NASBench101
231463
8c26406db8adcbd4c4688ba7b26d94c1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1004[FLOAT, 128x3x3x3] %onnx::Conv_1005[FLOAT, 128] %onnx::Conv_1007[FLOAT, 43x128x1x1] %onnx::Conv_1008[FLOAT, 43] %onnx::Conv_1010[FLOAT, 43x43x3x3] %onnx::Conv_1013[FLOAT, 43x128x1x1] %onnx::Conv_1016[FLOAT, 43x43x1x1] %onnx::Conv_1019[FLOAT, 42x42x1x1] %onnx::Conv_1020[FLOAT, 42] %onnx::Conv_1022[FLOAT, 42x42x1x1] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 43x128x1x1] %onnx::Conv_1031[FLOAT, 43x43x3x3] %onnx::Conv_1034[FLOAT, 43x128x1x1] %onnx::Conv_1037[FLOAT, 43x43x1x1] %onnx::Conv_1040[FLOAT, 42x42x1x1] %onnx::Conv_1043[FLOAT, 42x42x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 43x128x1x1] %onnx::Conv_1052[FLOAT, 43x43x3x3] %onnx::Conv_1055[FLOAT, 43x128x1x1] %onnx::Conv_1058[FLOAT, 43x43x1x1] %onnx::Conv_1061[FLOAT, 42x42x1x1] %onnx::Conv_1064[FLOAT, 42x42x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 86x128x1x1] %onnx::Conv_1071[FLOAT, 86] %onnx::Conv_1073[FLOAT, 86x86x3x3] %onnx::Conv_1076[FLOAT, 85x128x1x1] %onnx::Conv_1077[FLOAT, 85] %onnx::Conv_1079[FLOAT, 85x85x1x1] %onnx::Conv_1082[FLOAT, 85x85x1x1] %onnx::Conv_1085[FLOAT, 85x85x1x1] %onnx::Conv_1088[FLOAT, 256x128x1x1] %onnx::Conv_1089[FLOAT, 256] %onnx::Conv_1091[FLOAT, 86x256x1x1] %onnx::Conv_1094[FLOAT, 86x86x3x3] %onnx::Conv_1097[FLOAT, 85x256x1x1] %onnx::Conv_1100[FLOAT, 85x85x1x1] %onnx::Conv_1103[FLOAT, 85x85x1x1] %onnx::Conv_1106[FLOAT, 85x85x1x1] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 86x256x1x1] %onnx::Conv_1115[FLOAT, 86x86x3x3] %onnx::Conv_1118[FLOAT, 85x256x1x1] %onnx::Conv_1121[FLOAT, 85x85x1x1] %onnx::Conv_1124[FLOAT, 85x85x1x1] %onnx::Conv_1127[FLOAT, 85x85x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 171x256x1x1] %onnx::Conv_1134[FLOAT, 171] %onnx::Conv_1136[FLOAT, 171x171x3x3] %onnx::Conv_1139[FLOAT, 171x256x1x1] %onnx::Conv_1142[FLOAT, 171x171x1x1] %onnx::Conv_1145[FLOAT, 170x170x1x1] %onnx::Conv_1146[FLOAT, 170] %onnx::Conv_1148[FLOAT, 170x170x1x1] %onnx::Conv_1151[FLOAT, 512x256x1x1] %onnx::Conv_1152[FLOAT, 512] %onnx::Conv_1154[FLOAT, 171x512x1x1] %onnx::Conv_1157[FLOAT, 171x171x3x3] %onnx::Conv_1160[FLOAT, 171x512x1x1] %onnx::Conv_1163[FLOAT, 171x171x1x1] %onnx::Conv_1166[FLOAT, 170x170x1x1] %onnx::Conv_1169[FLOAT, 170x170x1x1] %onnx::Conv_1172[FLOAT, 512x512x1x1] %onnx::Conv_1175[FLOAT, 171x512x1x1] %onnx::Conv_1178[FLOAT, 171x171x3x3] %onnx::Conv_1181[FLOAT, 171x512x1x1] %onnx::Conv_1184[FLOAT, 171x171x1x1] %onnx::Conv_1187[FLOAT, 170x170x1x1] %onnx::Conv_1190[FLOAT, 170x170x1x1] %onnx::Conv_1193[FLOAT, 512x512x1x1] ) { %onnx::Conv_1194 = Identity(%onnx::Conv_1152) %onnx::Conv_1191 = Identity(%onnx::Conv_1146) %onnx::Conv_1188 = Identity(%onnx::Conv_1146) %onnx::Conv_1185 = Identity(%onnx::Conv_1134) %onnx::Conv_1182 = Identity(%onnx::Conv_1134) %onnx::Conv_1179 = Identity(%onnx::Conv_1134) %onnx::Conv_1176 = Identity(%onnx::Conv_1134) %onnx::Conv_1173 = Identity(%onnx::Conv_1152) %onnx::Conv_1170 = Identity(%onnx::Conv_1146) %onnx::Conv_1167 = Identity(%onnx::Conv_1146) %onnx::Conv_1164 = Identity(%onnx::Conv_1134) %onnx::Conv_1161 = Identity(%onnx::Conv_1134) %onnx::Conv_1158 = Identity(%onnx::Conv_1134) %onnx::Conv_1155 = Identity(%onnx::Conv_1134) %onnx::Conv_1149 = Identity(%onnx::Conv_1146) %onnx::Conv_1143 = Identity(%onnx::Conv_1134) %onnx::Conv_1140 = Identity(%onnx::Conv_1134) %onnx::Conv_1137 = Identity(%onnx::Conv_1134) %onnx::Conv_1131 = Identity(%onnx::Conv_1089) %onnx::Conv_1128 = Identity(%onnx::Conv_1077) %onnx::Conv_1125 = Identity(%onnx::Conv_1077) %onnx::Conv_1122 = Identity(%onnx::Conv_1077) %onnx::Conv_1119 = Identity(%onnx::Conv_1077) %onnx::Conv_1116 = Identity(%onnx::Conv_1071) %onnx::Conv_1113 = Identity(%onnx::Conv_1071) %onnx::Conv_1110 = Identity(%onnx::Conv_1089) %onnx::Conv_1107 = Identity(%onnx::Conv_1077) %onnx::Conv_1104 = Identity(%onnx::Conv_1077) %onnx::Conv_1101 = Identity(%onnx::Conv_1077) %onnx::Conv_1098 = Identity(%onnx::Conv_1077) %onnx::Conv_1095 = Identity(%onnx::Conv_1071) %onnx::Conv_1092 = Identity(%onnx::Conv_1071) %onnx::Conv_1086 = Identity(%onnx::Conv_1077) %onnx::Conv_1083 = Identity(%onnx::Conv_1077) %onnx::Conv_1080 = Identity(%onnx::Conv_1077) %onnx::Conv_1074 = Identity(%onnx::Conv_1071) %onnx::Conv_1068 = Identity(%onnx::Conv_1005) %onnx::Conv_1065 = Identity(%onnx::Conv_1020) %onnx::Conv_1062 = Identity(%onnx::Conv_1020) %onnx::Conv_1059 = Identity(%onnx::Conv_1008) %onnx::Conv_1056 = Identity(%onnx::Conv_1008) %onnx::Conv_1053 = Identity(%onnx::Conv_1008) %onnx::Conv_1050 = Identity(%onnx::Conv_1008) %onnx::Conv_1047 = Identity(%onnx::Conv_1005) %onnx::Conv_1044 = Identity(%onnx::Conv_1020) %onnx::Conv_1041 = Identity(%onnx::Conv_1020) %onnx::Conv_1038 = Identity(%onnx::Conv_1008) %onnx::Conv_1035 = Identity(%onnx::Conv_1008) %onnx::Conv_1032 = Identity(%onnx::Conv_1008) %onnx::Conv_1029 = Identity(%onnx::Conv_1008) %onnx::Conv_1026 = Identity(%onnx::Conv_1005) %onnx::Conv_1023 = Identity(%onnx::Conv_1020) %onnx::Conv_1017 = Identity(%onnx::Conv_1008) %onnx::Conv_1014 = Identity(%onnx::Conv_1008) %onnx::Conv_1011 = Identity(%onnx::Conv_1008) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %1002 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1002 }
val_accuracy
93.419468
878,081,280
2,854,947
{'zcp_epe_nas': 165.602090466238, 'zcp_fisher': 2.751776456832885, 'zcp_flops': 14049300480.0, 'zcp_grad_norm': 42.635650634765625, 'zcp_grasp': 2.521240234375, 'zcp_jacov': -16.053457280294054, 'zcp_l2_norm': 1080.1593017578125, 'zcp_nwot': 224.552547679998, 'zcp_params': 2854947.0, 'zcp_plain': -0.055571846663951006, 'zcp_snip': 232.9479217529297, 'zcp_synflow': 100.2396862502291, 'zcp_zen': 95.9420166015625, 'zcp_val_accuracy': 0.8969351053237911}
NASBench101_242778
NASBench101
242778
92f31c0e73268fb8ae141b16a2e8d9c1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x128x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x128x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x128x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x128x1x1] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x256x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x256x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x256x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x256x1x1] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_981[FLOAT, 256] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x512x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x512x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x512x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x512x1x1] %onnx::Conv_1031[FLOAT, 256x256x3x3] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_870) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_870) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_942 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_873) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
92.227566
1,257,777,152
4,166,026
{'zcp_epe_nas': 108.17274093150138, 'zcp_fisher': 9.757062911987305, 'zcp_flops': 20124434432.0, 'zcp_grad_norm': 65.82183074951172, 'zcp_grasp': -3.997222900390625, 'zcp_jacov': -16.041405984234657, 'zcp_l2_norm': 1039.9443359375, 'zcp_nwot': 224.43947147422358, 'zcp_params': 4166026.0, 'zcp_plain': 0.013460225425660001, 'zcp_snip': 404.0404357910156, 'zcp_synflow': 84.97829972407101, 'zcp_zen': 91.21478271484375, 'zcp_val_accuracy': 0.8879206776618951}
NASBench101_165593
NASBench101
165593
6444e0241b00e2026cdcc56074af53cc
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x3x3] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 128x128x3x3] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x3x3] %onnx::Conv_1004[FLOAT, 128x128x3x3] %onnx::Conv_1007[FLOAT, 128x128x3x3] %onnx::Conv_1010[FLOAT, 128x128x3x3] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x3x3] %onnx::Conv_1025[FLOAT, 128x128x3x3] %onnx::Conv_1028[FLOAT, 128x128x3x3] %onnx::Conv_1031[FLOAT, 128x128x3x3] %onnx::Conv_1034[FLOAT, 256x128x1x1] %onnx::Conv_1035[FLOAT, 256] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x128x1x1] %onnx::Conv_1043[FLOAT, 256x256x3x3] %onnx::Conv_1046[FLOAT, 256x256x3x3] %onnx::Conv_1049[FLOAT, 256x256x3x3] %onnx::Conv_1052[FLOAT, 256x256x3x3] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x256x3x3] %onnx::Conv_1067[FLOAT, 256x256x3x3] %onnx::Conv_1070[FLOAT, 256x256x3x3] %onnx::Conv_1073[FLOAT, 256x256x3x3] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x3x3] %onnx::Conv_1088[FLOAT, 256x256x3x3] %onnx::Conv_1091[FLOAT, 256x256x3x3] %onnx::Conv_1094[FLOAT, 256x256x3x3] %onnx::Conv_1097[FLOAT, 512x256x1x1] %onnx::Conv_1098[FLOAT, 512] %onnx::Conv_1100[FLOAT, 512x512x1x1] %onnx::Conv_1103[FLOAT, 512x256x1x1] %onnx::Conv_1106[FLOAT, 512x512x3x3] %onnx::Conv_1109[FLOAT, 512x512x3x3] %onnx::Conv_1112[FLOAT, 512x512x3x3] %onnx::Conv_1115[FLOAT, 512x512x3x3] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x512x3x3] %onnx::Conv_1130[FLOAT, 512x512x3x3] %onnx::Conv_1133[FLOAT, 512x512x3x3] %onnx::Conv_1136[FLOAT, 512x512x3x3] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x3x3] %onnx::Conv_1151[FLOAT, 512x512x3x3] %onnx::Conv_1154[FLOAT, 512x512x3x3] %onnx::Conv_1157[FLOAT, 512x512x3x3] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1098) %onnx::Conv_1155 = Identity(%onnx::Conv_1098) %onnx::Conv_1152 = Identity(%onnx::Conv_1098) %onnx::Conv_1149 = Identity(%onnx::Conv_1098) %onnx::Conv_1146 = Identity(%onnx::Conv_1098) %onnx::Conv_1143 = Identity(%onnx::Conv_1098) %onnx::Conv_1140 = Identity(%onnx::Conv_1098) %onnx::Conv_1137 = Identity(%onnx::Conv_1098) %onnx::Conv_1134 = Identity(%onnx::Conv_1098) %onnx::Conv_1131 = Identity(%onnx::Conv_1098) %onnx::Conv_1128 = Identity(%onnx::Conv_1098) %onnx::Conv_1125 = Identity(%onnx::Conv_1098) %onnx::Conv_1122 = Identity(%onnx::Conv_1098) %onnx::Conv_1119 = Identity(%onnx::Conv_1098) %onnx::Conv_1116 = Identity(%onnx::Conv_1098) %onnx::Conv_1113 = Identity(%onnx::Conv_1098) %onnx::Conv_1110 = Identity(%onnx::Conv_1098) %onnx::Conv_1107 = Identity(%onnx::Conv_1098) %onnx::Conv_1104 = Identity(%onnx::Conv_1098) %onnx::Conv_1101 = Identity(%onnx::Conv_1098) %onnx::Conv_1095 = Identity(%onnx::Conv_1035) %onnx::Conv_1092 = Identity(%onnx::Conv_1035) %onnx::Conv_1089 = Identity(%onnx::Conv_1035) %onnx::Conv_1086 = Identity(%onnx::Conv_1035) %onnx::Conv_1083 = Identity(%onnx::Conv_1035) %onnx::Conv_1080 = Identity(%onnx::Conv_1035) %onnx::Conv_1077 = Identity(%onnx::Conv_1035) %onnx::Conv_1074 = Identity(%onnx::Conv_1035) %onnx::Conv_1071 = Identity(%onnx::Conv_1035) %onnx::Conv_1068 = Identity(%onnx::Conv_1035) %onnx::Conv_1065 = Identity(%onnx::Conv_1035) %onnx::Conv_1062 = Identity(%onnx::Conv_1035) %onnx::Conv_1059 = Identity(%onnx::Conv_1035) %onnx::Conv_1056 = Identity(%onnx::Conv_1035) %onnx::Conv_1053 = Identity(%onnx::Conv_1035) %onnx::Conv_1050 = Identity(%onnx::Conv_1035) %onnx::Conv_1047 = Identity(%onnx::Conv_1035) %onnx::Conv_1044 = Identity(%onnx::Conv_1035) %onnx::Conv_1041 = Identity(%onnx::Conv_1035) %onnx::Conv_1038 = Identity(%onnx::Conv_1035) %onnx::Conv_1032 = Identity(%onnx::Conv_969) %onnx::Conv_1029 = Identity(%onnx::Conv_969) %onnx::Conv_1026 = Identity(%onnx::Conv_969) %onnx::Conv_1023 = Identity(%onnx::Conv_969) %onnx::Conv_1020 = Identity(%onnx::Conv_969) %onnx::Conv_1017 = Identity(%onnx::Conv_969) %onnx::Conv_1014 = Identity(%onnx::Conv_969) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_969) %onnx::Conv_999 = Identity(%onnx::Conv_969) %onnx::Conv_996 = Identity(%onnx::Conv_969) %onnx::Conv_993 = Identity(%onnx::Conv_969) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_969) %onnx::Conv_981 = Identity(%onnx::Conv_969) %onnx::Conv_978 = Identity(%onnx::Conv_969) %onnx::Conv_975 = Identity(%onnx::Conv_969) %onnx::Conv_972 = Identity(%onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
86.81891
11,757,168,640
39,974,282
{'zcp_epe_nas': 125.06337094659277, 'zcp_fisher': 3423.445068359375, 'zcp_flops': 188114698240.0, 'zcp_grad_norm': 971.2588500976562, 'zcp_grasp': -2137.9453125, 'zcp_jacov': -16.05736768174195, 'zcp_l2_norm': 1454.1593017578125, 'zcp_nwot': 236.93292323266743, 'zcp_params': 39974282.0, 'zcp_plain': -0.0022845035418860003, 'zcp_snip': 7977.283203125, 'zcp_synflow': 201.2069487299581, 'zcp_zen': 141.2057647705078, 'zcp_val_accuracy': 0.9074519276618951}
NASBench101_14706
NASBench101
14706
08d7a215e126736707eddb306f6fde49
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x128x1x1] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x128x1x1] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x128x1x1] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 64x128x1x1] %onnx::Conv_1046[FLOAT, 64x64x1x1] %onnx::Conv_1049[FLOAT, 64x64x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x128x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x256x1x1] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x256x1x1] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 128x256x1x1] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1116[FLOAT, 256] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x256x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x512x1x1] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x512x1x1] %onnx::Conv_1166[FLOAT, 256x256x3x3] %onnx::Conv_1169[FLOAT, 256x512x1x1] %onnx::Conv_1172[FLOAT, 256x256x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_987) %onnx::Conv_1110 = Identity(%onnx::Conv_987) %onnx::Conv_1107 = Identity(%onnx::Conv_987) %onnx::Conv_1104 = Identity(%onnx::Conv_987) %onnx::Conv_1101 = Identity(%onnx::Conv_987) %onnx::Conv_1098 = Identity(%onnx::Conv_987) %onnx::Conv_1095 = Identity(%onnx::Conv_987) %onnx::Conv_1092 = Identity(%onnx::Conv_987) %onnx::Conv_1089 = Identity(%onnx::Conv_987) %onnx::Conv_1086 = Identity(%onnx::Conv_987) %onnx::Conv_1083 = Identity(%onnx::Conv_987) %onnx::Conv_1080 = Identity(%onnx::Conv_987) %onnx::Conv_1077 = Identity(%onnx::Conv_987) %onnx::Conv_1074 = Identity(%onnx::Conv_987) %onnx::Conv_1071 = Identity(%onnx::Conv_987) %onnx::Conv_1068 = Identity(%onnx::Conv_987) %onnx::Conv_1065 = Identity(%onnx::Conv_987) %onnx::Conv_1062 = Identity(%onnx::Conv_987) %onnx::Conv_1059 = Identity(%onnx::Conv_987) %onnx::Conv_1056 = Identity(%onnx::Conv_987) %onnx::Conv_1053 = Identity(%onnx::Conv_987) %onnx::Conv_1050 = Identity(%onnx::Conv_990) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
93.990386
1,940,006,912
6,491,146
{'zcp_epe_nas': 159.81101310170482, 'zcp_fisher': 6.237904548645019, 'zcp_flops': 31040110592.0, 'zcp_grad_norm': 55.80195617675781, 'zcp_grasp': -3.62384033203125, 'zcp_jacov': -16.05578151394912, 'zcp_l2_norm': 1190.21923828125, 'zcp_nwot': 226.89075733126802, 'zcp_params': 6491146.0, 'zcp_plain': 0.035013258457183005, 'zcp_snip': 364.0924377441406, 'zcp_synflow': 95.49554801921589, 'zcp_zen': 112.07539367675781, 'zcp_val_accuracy': 0.9251803159713741}
NASBench101_120890
NASBench101
120890
4908cb4076e3f9b9666adffed367dcf1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x3x3] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x3x3] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 256x128x1x1] %onnx::Conv_810[FLOAT, 256] %onnx::Conv_812[FLOAT, 256x128x1x1] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x128x1x1] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x3x3] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x3x3] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 512x256x1x1] %onnx::Conv_855[FLOAT, 512] %onnx::Conv_857[FLOAT, 512x256x1x1] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x256x1x1] %onnx::Conv_869[FLOAT, 512x512x1x1] %onnx::Conv_872[FLOAT, 512x512x1x1] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x3x3] %onnx::Conv_881[FLOAT, 512x512x1x1] %onnx::Conv_884[FLOAT, 512x512x1x1] %onnx::Conv_887[FLOAT, 512x512x1x1] %onnx::Conv_890[FLOAT, 512x512x1x1] %onnx::Conv_893[FLOAT, 512x512x3x3] %onnx::Conv_896[FLOAT, 512x512x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_810) %onnx::Conv_849 = Identity(%onnx::Conv_810) %onnx::Conv_846 = Identity(%onnx::Conv_810) %onnx::Conv_843 = Identity(%onnx::Conv_810) %onnx::Conv_840 = Identity(%onnx::Conv_810) %onnx::Conv_837 = Identity(%onnx::Conv_810) %onnx::Conv_834 = Identity(%onnx::Conv_810) %onnx::Conv_831 = Identity(%onnx::Conv_810) %onnx::Conv_828 = Identity(%onnx::Conv_810) %onnx::Conv_825 = Identity(%onnx::Conv_810) %onnx::Conv_822 = Identity(%onnx::Conv_810) %onnx::Conv_819 = Identity(%onnx::Conv_810) %onnx::Conv_816 = Identity(%onnx::Conv_810) %onnx::Conv_813 = Identity(%onnx::Conv_810) %onnx::Conv_807 = Identity(%onnx::Conv_762) %onnx::Conv_804 = Identity(%onnx::Conv_762) %onnx::Conv_801 = Identity(%onnx::Conv_762) %onnx::Conv_798 = Identity(%onnx::Conv_762) %onnx::Conv_795 = Identity(%onnx::Conv_762) %onnx::Conv_792 = Identity(%onnx::Conv_762) %onnx::Conv_789 = Identity(%onnx::Conv_762) %onnx::Conv_786 = Identity(%onnx::Conv_762) %onnx::Conv_783 = Identity(%onnx::Conv_762) %onnx::Conv_780 = Identity(%onnx::Conv_762) %onnx::Conv_777 = Identity(%onnx::Conv_762) %onnx::Conv_774 = Identity(%onnx::Conv_762) %onnx::Conv_771 = Identity(%onnx::Conv_762) %onnx::Conv_768 = Identity(%onnx::Conv_762) %onnx::Conv_765 = Identity(%onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.5/maxpool/MaxPool_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.5/maxpool/MaxPool_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.5/maxpool/MaxPool_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
91.997194
3,860,867,072
12,962,698
{'zcp_epe_nas': 111.25058257339512, 'zcp_fisher': 68.39105224609375, 'zcp_flops': 61773873152.0, 'zcp_grad_norm': 151.58473205566406, 'zcp_grasp': -25.55419921875, 'zcp_jacov': -16.053248814397506, 'zcp_l2_norm': 1014.63623046875, 'zcp_nwot': 232.03441475954523, 'zcp_params': 12962698.0, 'zcp_plain': 0.048283923417329004, 'zcp_snip': 1223.6650390625, 'zcp_synflow': 99.81315964585923, 'zcp_zen': 97.63346862792969, 'zcp_val_accuracy': 0.930488765239715}
NASBench101_206354
NASBench101
206354
7cf4e107b838eb45caab1f336012dc3f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x128x1x1] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 128x128x3x3] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x3x3] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 256x128x1x1] %onnx::Conv_918[FLOAT, 256] %onnx::Conv_920[FLOAT, 256x128x1x1] %onnx::Conv_923[FLOAT, 256x256x1x1] %onnx::Conv_926[FLOAT, 256x256x3x3] %onnx::Conv_929[FLOAT, 256x256x1x1] %onnx::Conv_932[FLOAT, 256x128x1x1] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x1x1] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 256x256x3x3] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 512x256x1x1] %onnx::Conv_972[FLOAT, 512] %onnx::Conv_974[FLOAT, 512x256x1x1] %onnx::Conv_977[FLOAT, 512x512x1x1] %onnx::Conv_980[FLOAT, 512x512x3x3] %onnx::Conv_983[FLOAT, 512x512x1x1] %onnx::Conv_986[FLOAT, 512x256x1x1] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x1x1] %onnx::Conv_995[FLOAT, 512x512x1x1] %onnx::Conv_998[FLOAT, 512x512x3x3] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x3x3] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_861) %onnx::Conv_912 = Identity(%onnx::Conv_861) %onnx::Conv_909 = Identity(%onnx::Conv_861) %onnx::Conv_906 = Identity(%onnx::Conv_861) %onnx::Conv_903 = Identity(%onnx::Conv_861) %onnx::Conv_900 = Identity(%onnx::Conv_861) %onnx::Conv_897 = Identity(%onnx::Conv_861) %onnx::Conv_894 = Identity(%onnx::Conv_861) %onnx::Conv_891 = Identity(%onnx::Conv_861) %onnx::Conv_888 = Identity(%onnx::Conv_861) %onnx::Conv_885 = Identity(%onnx::Conv_861) %onnx::Conv_882 = Identity(%onnx::Conv_861) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_861) %onnx::Conv_873 = Identity(%onnx::Conv_861) %onnx::Conv_870 = Identity(%onnx::Conv_861) %onnx::Conv_867 = Identity(%onnx::Conv_861) %onnx::Conv_864 = Identity(%onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
90.905446
4,168,361,984
14,000,266
{'zcp_epe_nas': 77.47202831916377, 'zcp_fisher': 93.68069458007812, 'zcp_flops': 66693791744.0, 'zcp_grad_norm': 179.63092041015625, 'zcp_grasp': -26.8609619140625, 'zcp_jacov': -16.037943427334, 'zcp_l2_norm': 1226.12744140625, 'zcp_nwot': 234.9876929897966, 'zcp_params': 14000266.0, 'zcp_plain': 0.157852187752723, 'zcp_snip': 1558.053955078125, 'zcp_synflow': 120.40222535539489, 'zcp_zen': 113.00009155273438, 'zcp_val_accuracy': 0.9295873641967771}
NASBench101_127656
NASBench101
127656
4d22911c85cd167805a34e36b8204e17
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_959[FLOAT, 128x3x3x3] %onnx::Conv_960[FLOAT, 128] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x3x3] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 256x128x1x1] %onnx::Conv_1026[FLOAT, 256] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x128x1x1] %onnx::Conv_1034[FLOAT, 256x256x1x1] %onnx::Conv_1037[FLOAT, 256x128x1x1] %onnx::Conv_1040[FLOAT, 256x128x1x1] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 256x256x3x3] %onnx::Conv_1052[FLOAT, 256x256x1x1] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x3x3] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 512x256x1x1] %onnx::Conv_1089[FLOAT, 512] %onnx::Conv_1091[FLOAT, 512x512x3x3] %onnx::Conv_1094[FLOAT, 512x256x1x1] %onnx::Conv_1097[FLOAT, 512x512x1x1] %onnx::Conv_1100[FLOAT, 512x256x1x1] %onnx::Conv_1103[FLOAT, 512x256x1x1] %onnx::Conv_1106[FLOAT, 512x512x1x1] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 512x512x3x3] %onnx::Conv_1115[FLOAT, 512x512x1x1] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x3x3] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] ) { %onnx::Conv_1149 = Identity(%onnx::Conv_1089) %onnx::Conv_1146 = Identity(%onnx::Conv_1089) %onnx::Conv_1143 = Identity(%onnx::Conv_1089) %onnx::Conv_1140 = Identity(%onnx::Conv_1089) %onnx::Conv_1137 = Identity(%onnx::Conv_1089) %onnx::Conv_1134 = Identity(%onnx::Conv_1089) %onnx::Conv_1131 = Identity(%onnx::Conv_1089) %onnx::Conv_1128 = Identity(%onnx::Conv_1089) %onnx::Conv_1125 = Identity(%onnx::Conv_1089) %onnx::Conv_1122 = Identity(%onnx::Conv_1089) %onnx::Conv_1119 = Identity(%onnx::Conv_1089) %onnx::Conv_1116 = Identity(%onnx::Conv_1089) %onnx::Conv_1113 = Identity(%onnx::Conv_1089) %onnx::Conv_1110 = Identity(%onnx::Conv_1089) %onnx::Conv_1107 = Identity(%onnx::Conv_1089) %onnx::Conv_1104 = Identity(%onnx::Conv_1089) %onnx::Conv_1101 = Identity(%onnx::Conv_1089) %onnx::Conv_1098 = Identity(%onnx::Conv_1089) %onnx::Conv_1095 = Identity(%onnx::Conv_1089) %onnx::Conv_1092 = Identity(%onnx::Conv_1089) %onnx::Conv_1086 = Identity(%onnx::Conv_1026) %onnx::Conv_1083 = Identity(%onnx::Conv_1026) %onnx::Conv_1080 = Identity(%onnx::Conv_1026) %onnx::Conv_1077 = Identity(%onnx::Conv_1026) %onnx::Conv_1074 = Identity(%onnx::Conv_1026) %onnx::Conv_1071 = Identity(%onnx::Conv_1026) %onnx::Conv_1068 = Identity(%onnx::Conv_1026) %onnx::Conv_1065 = Identity(%onnx::Conv_1026) %onnx::Conv_1062 = Identity(%onnx::Conv_1026) %onnx::Conv_1059 = Identity(%onnx::Conv_1026) %onnx::Conv_1056 = Identity(%onnx::Conv_1026) %onnx::Conv_1053 = Identity(%onnx::Conv_1026) %onnx::Conv_1050 = Identity(%onnx::Conv_1026) %onnx::Conv_1047 = Identity(%onnx::Conv_1026) %onnx::Conv_1044 = Identity(%onnx::Conv_1026) %onnx::Conv_1041 = Identity(%onnx::Conv_1026) %onnx::Conv_1038 = Identity(%onnx::Conv_1026) %onnx::Conv_1035 = Identity(%onnx::Conv_1026) %onnx::Conv_1032 = Identity(%onnx::Conv_1026) %onnx::Conv_1029 = Identity(%onnx::Conv_1026) %onnx::Conv_1023 = Identity(%onnx::Conv_960) %onnx::Conv_1020 = Identity(%onnx::Conv_960) %onnx::Conv_1017 = Identity(%onnx::Conv_960) %onnx::Conv_1014 = Identity(%onnx::Conv_960) %onnx::Conv_1011 = Identity(%onnx::Conv_960) %onnx::Conv_1008 = Identity(%onnx::Conv_960) %onnx::Conv_1005 = Identity(%onnx::Conv_960) %onnx::Conv_1002 = Identity(%onnx::Conv_960) %onnx::Conv_999 = Identity(%onnx::Conv_960) %onnx::Conv_996 = Identity(%onnx::Conv_960) %onnx::Conv_993 = Identity(%onnx::Conv_960) %onnx::Conv_990 = Identity(%onnx::Conv_960) %onnx::Conv_987 = Identity(%onnx::Conv_960) %onnx::Conv_984 = Identity(%onnx::Conv_960) %onnx::Conv_981 = Identity(%onnx::Conv_960) %onnx::Conv_978 = Identity(%onnx::Conv_960) %onnx::Conv_975 = Identity(%onnx::Conv_960) %onnx::Conv_972 = Identity(%onnx::Conv_960) %onnx::Conv_969 = Identity(%onnx::Conv_960) %onnx::Conv_966 = Identity(%onnx::Conv_960) %onnx::Conv_963 = Identity(%onnx::Conv_960) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_959, %onnx::Conv_960) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %957 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %957 }
val_accuracy
91.155851
4,442,302,464
14,873,994
{'zcp_epe_nas': 103.38380710088654, 'zcp_fisher': 174.0679168701172, 'zcp_flops': 71076839424.0, 'zcp_grad_norm': 241.6417999267578, 'zcp_grasp': -45.31494140625, 'zcp_jacov': -16.04997504170975, 'zcp_l2_norm': 1422.6962890625, 'zcp_nwot': 237.77232008820553, 'zcp_params': 14873994.0, 'zcp_plain': 0.037308029830455, 'zcp_snip': 1945.20556640625, 'zcp_synflow': 96.4656578788934, 'zcp_zen': 112.43310546875, 'zcp_val_accuracy': 0.8869190812110901}
NASBench101_297653
NASBench101
297653
b4273059c12d279fba490d8c74fbe312
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_992[FLOAT, 128x3x3x3] %onnx::Conv_993[FLOAT, 128] %onnx::Conv_995[FLOAT, 43x128x1x1] %onnx::Conv_996[FLOAT, 43] %onnx::Conv_998[FLOAT, 43x43x1x1] %onnx::Conv_1001[FLOAT, 43x43x3x3] %onnx::Conv_1004[FLOAT, 43x128x1x1] %onnx::Conv_1007[FLOAT, 43x43x3x3] %onnx::Conv_1010[FLOAT, 42x128x1x1] %onnx::Conv_1011[FLOAT, 42] %onnx::Conv_1013[FLOAT, 42x42x1x1] %onnx::Conv_1016[FLOAT, 43x128x1x1] %onnx::Conv_1019[FLOAT, 43x43x1x1] %onnx::Conv_1022[FLOAT, 43x43x3x3] %onnx::Conv_1025[FLOAT, 43x128x1x1] %onnx::Conv_1028[FLOAT, 43x43x3x3] %onnx::Conv_1031[FLOAT, 42x128x1x1] %onnx::Conv_1034[FLOAT, 42x42x1x1] %onnx::Conv_1037[FLOAT, 43x128x1x1] %onnx::Conv_1040[FLOAT, 43x43x1x1] %onnx::Conv_1043[FLOAT, 43x43x3x3] %onnx::Conv_1046[FLOAT, 43x128x1x1] %onnx::Conv_1049[FLOAT, 43x43x3x3] %onnx::Conv_1052[FLOAT, 42x128x1x1] %onnx::Conv_1055[FLOAT, 42x42x1x1] %onnx::Conv_1058[FLOAT, 86x128x1x1] %onnx::Conv_1059[FLOAT, 86] %onnx::Conv_1061[FLOAT, 86x86x1x1] %onnx::Conv_1064[FLOAT, 85x85x3x3] %onnx::Conv_1065[FLOAT, 85] %onnx::Conv_1067[FLOAT, 85x128x1x1] %onnx::Conv_1070[FLOAT, 85x85x3x3] %onnx::Conv_1073[FLOAT, 85x128x1x1] %onnx::Conv_1076[FLOAT, 85x85x1x1] %onnx::Conv_1079[FLOAT, 86x256x1x1] %onnx::Conv_1082[FLOAT, 86x86x1x1] %onnx::Conv_1085[FLOAT, 85x85x3x3] %onnx::Conv_1088[FLOAT, 85x256x1x1] %onnx::Conv_1091[FLOAT, 85x85x3x3] %onnx::Conv_1094[FLOAT, 85x256x1x1] %onnx::Conv_1097[FLOAT, 85x85x1x1] %onnx::Conv_1100[FLOAT, 86x256x1x1] %onnx::Conv_1103[FLOAT, 86x86x1x1] %onnx::Conv_1106[FLOAT, 85x85x3x3] %onnx::Conv_1109[FLOAT, 85x256x1x1] %onnx::Conv_1112[FLOAT, 85x85x3x3] %onnx::Conv_1115[FLOAT, 85x256x1x1] %onnx::Conv_1118[FLOAT, 85x85x1x1] %onnx::Conv_1121[FLOAT, 171x256x1x1] %onnx::Conv_1122[FLOAT, 171] %onnx::Conv_1124[FLOAT, 171x171x1x1] %onnx::Conv_1127[FLOAT, 171x171x3x3] %onnx::Conv_1130[FLOAT, 171x256x1x1] %onnx::Conv_1133[FLOAT, 171x171x3x3] %onnx::Conv_1136[FLOAT, 170x256x1x1] %onnx::Conv_1137[FLOAT, 170] %onnx::Conv_1139[FLOAT, 170x170x1x1] %onnx::Conv_1142[FLOAT, 171x512x1x1] %onnx::Conv_1145[FLOAT, 171x171x1x1] %onnx::Conv_1148[FLOAT, 171x171x3x3] %onnx::Conv_1151[FLOAT, 171x512x1x1] %onnx::Conv_1154[FLOAT, 171x171x3x3] %onnx::Conv_1157[FLOAT, 170x512x1x1] %onnx::Conv_1160[FLOAT, 170x170x1x1] %onnx::Conv_1163[FLOAT, 171x512x1x1] %onnx::Conv_1166[FLOAT, 171x171x1x1] %onnx::Conv_1169[FLOAT, 171x171x3x3] %onnx::Conv_1172[FLOAT, 171x512x1x1] %onnx::Conv_1175[FLOAT, 171x171x3x3] %onnx::Conv_1178[FLOAT, 170x512x1x1] %onnx::Conv_1181[FLOAT, 170x170x1x1] ) { %onnx::Conv_1182 = Identity(%onnx::Conv_1137) %onnx::Conv_1179 = Identity(%onnx::Conv_1137) %onnx::Conv_1176 = Identity(%onnx::Conv_1122) %onnx::Conv_1173 = Identity(%onnx::Conv_1122) %onnx::Conv_1170 = Identity(%onnx::Conv_1122) %onnx::Conv_1167 = Identity(%onnx::Conv_1122) %onnx::Conv_1164 = Identity(%onnx::Conv_1122) %onnx::Conv_1161 = Identity(%onnx::Conv_1137) %onnx::Conv_1158 = Identity(%onnx::Conv_1137) %onnx::Conv_1155 = Identity(%onnx::Conv_1122) %onnx::Conv_1152 = Identity(%onnx::Conv_1122) %onnx::Conv_1149 = Identity(%onnx::Conv_1122) %onnx::Conv_1146 = Identity(%onnx::Conv_1122) %onnx::Conv_1143 = Identity(%onnx::Conv_1122) %onnx::Conv_1140 = Identity(%onnx::Conv_1137) %onnx::Conv_1134 = Identity(%onnx::Conv_1122) %onnx::Conv_1131 = Identity(%onnx::Conv_1122) %onnx::Conv_1128 = Identity(%onnx::Conv_1122) %onnx::Conv_1125 = Identity(%onnx::Conv_1122) %onnx::Conv_1119 = Identity(%onnx::Conv_1065) %onnx::Conv_1116 = Identity(%onnx::Conv_1065) %onnx::Conv_1113 = Identity(%onnx::Conv_1065) %onnx::Conv_1110 = Identity(%onnx::Conv_1065) %onnx::Conv_1107 = Identity(%onnx::Conv_1065) %onnx::Conv_1104 = Identity(%onnx::Conv_1059) %onnx::Conv_1101 = Identity(%onnx::Conv_1059) %onnx::Conv_1098 = Identity(%onnx::Conv_1065) %onnx::Conv_1095 = Identity(%onnx::Conv_1065) %onnx::Conv_1092 = Identity(%onnx::Conv_1065) %onnx::Conv_1089 = Identity(%onnx::Conv_1065) %onnx::Conv_1086 = Identity(%onnx::Conv_1065) %onnx::Conv_1083 = Identity(%onnx::Conv_1059) %onnx::Conv_1080 = Identity(%onnx::Conv_1059) %onnx::Conv_1077 = Identity(%onnx::Conv_1065) %onnx::Conv_1074 = Identity(%onnx::Conv_1065) %onnx::Conv_1071 = Identity(%onnx::Conv_1065) %onnx::Conv_1068 = Identity(%onnx::Conv_1065) %onnx::Conv_1062 = Identity(%onnx::Conv_1059) %onnx::Conv_1056 = Identity(%onnx::Conv_1011) %onnx::Conv_1053 = Identity(%onnx::Conv_1011) %onnx::Conv_1050 = Identity(%onnx::Conv_996) %onnx::Conv_1047 = Identity(%onnx::Conv_996) %onnx::Conv_1044 = Identity(%onnx::Conv_996) %onnx::Conv_1041 = Identity(%onnx::Conv_996) %onnx::Conv_1038 = Identity(%onnx::Conv_996) %onnx::Conv_1035 = Identity(%onnx::Conv_1011) %onnx::Conv_1032 = Identity(%onnx::Conv_1011) %onnx::Conv_1029 = Identity(%onnx::Conv_996) %onnx::Conv_1026 = Identity(%onnx::Conv_996) %onnx::Conv_1023 = Identity(%onnx::Conv_996) %onnx::Conv_1020 = Identity(%onnx::Conv_996) %onnx::Conv_1017 = Identity(%onnx::Conv_996) %onnx::Conv_1014 = Identity(%onnx::Conv_1011) %onnx::Conv_1008 = Identity(%onnx::Conv_996) %onnx::Conv_1005 = Identity(%onnx::Conv_996) %onnx::Conv_1002 = Identity(%onnx::Conv_996) %onnx::Conv_999 = Identity(%onnx::Conv_996) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_992, %onnx::Conv_993) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %990 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %990 }
val_accuracy
92.86859
962,761,344
3,187,875
{'zcp_epe_nas': 108.65287961463798, 'zcp_fisher': 7.651325702667236, 'zcp_flops': 15404181504.0, 'zcp_grad_norm': 66.62973022460938, 'zcp_grasp': -2.17950439453125, 'zcp_jacov': -16.040342183860027, 'zcp_l2_norm': 1080.6290283203125, 'zcp_nwot': 220.83112329305632, 'zcp_params': 3187875.0, 'zcp_plain': 0.059159561991691006, 'zcp_snip': 348.5299987792969, 'zcp_synflow': 109.2557140280291, 'zcp_zen': 100.84124755859375, 'zcp_val_accuracy': 0.9377003312110901}
NASBench101_158252
NASBench101
158252
5fcb2042706c08ce2099cbf59cedd206
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_518[FLOAT, 128x3x3x3] %onnx::Conv_519[FLOAT, 128] %onnx::Conv_521[FLOAT, 64x128x1x1] %onnx::Conv_522[FLOAT, 64] %onnx::Conv_524[FLOAT, 64x64x1x1] %onnx::Conv_527[FLOAT, 64x128x1x1] %onnx::Conv_530[FLOAT, 64x128x1x1] %onnx::Conv_533[FLOAT, 64x64x1x1] %onnx::Conv_536[FLOAT, 64x128x1x1] %onnx::Conv_539[FLOAT, 64x128x1x1] %onnx::Conv_542[FLOAT, 64x64x1x1] %onnx::Conv_545[FLOAT, 64x128x1x1] %onnx::Conv_548[FLOAT, 128x128x1x1] %onnx::Conv_551[FLOAT, 128x128x1x1] %onnx::Conv_554[FLOAT, 128x128x1x1] %onnx::Conv_557[FLOAT, 128x256x1x1] %onnx::Conv_560[FLOAT, 128x128x1x1] %onnx::Conv_563[FLOAT, 128x256x1x1] %onnx::Conv_566[FLOAT, 128x256x1x1] %onnx::Conv_569[FLOAT, 128x128x1x1] %onnx::Conv_572[FLOAT, 128x256x1x1] %onnx::Conv_575[FLOAT, 256x256x1x1] %onnx::Conv_576[FLOAT, 256] %onnx::Conv_578[FLOAT, 256x256x1x1] %onnx::Conv_581[FLOAT, 256x256x1x1] %onnx::Conv_584[FLOAT, 256x512x1x1] %onnx::Conv_587[FLOAT, 256x256x1x1] %onnx::Conv_590[FLOAT, 256x512x1x1] %onnx::Conv_593[FLOAT, 256x512x1x1] %onnx::Conv_596[FLOAT, 256x256x1x1] %onnx::Conv_599[FLOAT, 256x512x1x1] ) { %onnx::Conv_600 = Identity(%onnx::Conv_576) %onnx::Conv_597 = Identity(%onnx::Conv_576) %onnx::Conv_594 = Identity(%onnx::Conv_576) %onnx::Conv_591 = Identity(%onnx::Conv_576) %onnx::Conv_588 = Identity(%onnx::Conv_576) %onnx::Conv_585 = Identity(%onnx::Conv_576) %onnx::Conv_582 = Identity(%onnx::Conv_576) %onnx::Conv_579 = Identity(%onnx::Conv_576) %onnx::Conv_573 = Identity(%onnx::Conv_519) %onnx::Conv_570 = Identity(%onnx::Conv_519) %onnx::Conv_567 = Identity(%onnx::Conv_519) %onnx::Conv_564 = Identity(%onnx::Conv_519) %onnx::Conv_561 = Identity(%onnx::Conv_519) %onnx::Conv_558 = Identity(%onnx::Conv_519) %onnx::Conv_555 = Identity(%onnx::Conv_519) %onnx::Conv_552 = Identity(%onnx::Conv_519) %onnx::Conv_549 = Identity(%onnx::Conv_519) %onnx::Conv_546 = Identity(%onnx::Conv_522) %onnx::Conv_543 = Identity(%onnx::Conv_522) %onnx::Conv_540 = Identity(%onnx::Conv_522) %onnx::Conv_537 = Identity(%onnx::Conv_522) %onnx::Conv_534 = Identity(%onnx::Conv_522) %onnx::Conv_531 = Identity(%onnx::Conv_522) %onnx::Conv_528 = Identity(%onnx::Conv_522) %onnx::Conv_525 = Identity(%onnx::Conv_522) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_518, %onnx::Conv_519) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_521, %onnx::Conv_522) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_524, %onnx::Conv_525) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_527, %onnx::Conv_528) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_530, %onnx::Conv_531) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_533, %onnx::Conv_534) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_536, %onnx::Conv_537) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_539, %onnx::Conv_540) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_542, %onnx::Conv_543) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_545, %onnx::Conv_546) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_548, %onnx::Conv_549) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_551, %onnx::Conv_552) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_554, %onnx::Conv_555) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_557, %onnx::Conv_558) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_560, %onnx::Conv_561) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_563, %onnx::Conv_564) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %516 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %516 }
val_accuracy
87.560093
360,327,168
1,143,306
{'zcp_epe_nas': 77.21878434913808, 'zcp_fisher': 7.627819061279297, 'zcp_flops': 5765234688.0, 'zcp_grad_norm': 48.14265441894531, 'zcp_grasp': -27.2294921875, 'zcp_jacov': -16.050312080438708, 'zcp_l2_norm': 544.6140747070312, 'zcp_nwot': 213.9824685892974, 'zcp_params': 1143306.0, 'zcp_plain': 0.23009285330772403, 'zcp_snip': 248.478271484375, 'zcp_synflow': 52.937908979519165, 'zcp_zen': 50.5800666809082, 'zcp_val_accuracy': 0.833834111690521}
NASBench101_317741
NASBench101
317741
c03ef2adacfaaa2a88f5ae42f335e217
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x64x1x1] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 64x128x1x1] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x64x1x1] %onnx::Conv_704[FLOAT, 64x128x1x1] %onnx::Conv_707[FLOAT, 64x64x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x256x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x256x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_747[FLOAT, 256] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x512x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x256x1x1] %onnx::Conv_776[FLOAT, 256x512x1x1] %onnx::Conv_779[FLOAT, 256x256x3x3] ) { %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_672) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_672) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_720 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
89.623398
1,042,556,928
3,468,426
{'zcp_epe_nas': 104.38060103374139, 'zcp_fisher': 18.314701080322266, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 81.81378173828125, 'zcp_grasp': 4.05194091796875, 'zcp_jacov': -16.065690250347117, 'zcp_l2_norm': 693.5285034179688, 'zcp_nwot': 218.368690371779, 'zcp_params': 3468426.0, 'zcp_plain': 0.017797932028770003, 'zcp_snip': 459.7616882324219, 'zcp_synflow': 90.72193984879402, 'zcp_zen': 74.75809478759766, 'zcp_val_accuracy': 0.9261819124221801}
NASBench101_382797
NASBench101
382797
e76f44864b4310328f765b35335ebec0
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x3x3] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 256x128x1x1] %onnx::Conv_936[FLOAT, 256] %onnx::Conv_938[FLOAT, 256x256x1x1] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_944[FLOAT, 256x256x3x3] %onnx::Conv_947[FLOAT, 256x128x1x1] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 512x256x1x1] %onnx::Conv_990[FLOAT, 512] %onnx::Conv_992[FLOAT, 512x512x1x1] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_998[FLOAT, 512x512x3x3] %onnx::Conv_1001[FLOAT, 512x256x1x1] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x3x3] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x3x3] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x3x3] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_936) %onnx::Conv_984 = Identity(%onnx::Conv_936) %onnx::Conv_981 = Identity(%onnx::Conv_936) %onnx::Conv_978 = Identity(%onnx::Conv_936) %onnx::Conv_975 = Identity(%onnx::Conv_936) %onnx::Conv_972 = Identity(%onnx::Conv_936) %onnx::Conv_969 = Identity(%onnx::Conv_936) %onnx::Conv_966 = Identity(%onnx::Conv_936) %onnx::Conv_963 = Identity(%onnx::Conv_936) %onnx::Conv_960 = Identity(%onnx::Conv_936) %onnx::Conv_957 = Identity(%onnx::Conv_936) %onnx::Conv_954 = Identity(%onnx::Conv_936) %onnx::Conv_951 = Identity(%onnx::Conv_936) %onnx::Conv_948 = Identity(%onnx::Conv_936) %onnx::Conv_945 = Identity(%onnx::Conv_936) %onnx::Conv_942 = Identity(%onnx::Conv_936) %onnx::Conv_939 = Identity(%onnx::Conv_936) %onnx::Conv_933 = Identity(%onnx::Conv_879) %onnx::Conv_930 = Identity(%onnx::Conv_879) %onnx::Conv_927 = Identity(%onnx::Conv_879) %onnx::Conv_924 = Identity(%onnx::Conv_879) %onnx::Conv_921 = Identity(%onnx::Conv_879) %onnx::Conv_918 = Identity(%onnx::Conv_879) %onnx::Conv_915 = Identity(%onnx::Conv_879) %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_879) %onnx::Conv_903 = Identity(%onnx::Conv_879) %onnx::Conv_900 = Identity(%onnx::Conv_879) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_891 = Identity(%onnx::Conv_879) %onnx::Conv_888 = Identity(%onnx::Conv_879) %onnx::Conv_885 = Identity(%onnx::Conv_879) %onnx::Conv_882 = Identity(%onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
91.856968
6,584,281,088
22,257,802
{'zcp_epe_nas': 97.56509607683688, 'zcp_fisher': 473.06658935546875, 'zcp_flops': 105348497408.0, 'zcp_grad_norm': 329.8537292480469, 'zcp_grasp': -182.24609375, 'zcp_jacov': -16.04641256653582, 'zcp_l2_norm': 1226.390380859375, 'zcp_nwot': 234.62852137769488, 'zcp_params': 22257802.0, 'zcp_plain': 0.10365433990955301, 'zcp_snip': 2842.734619140625, 'zcp_synflow': 130.42599611129, 'zcp_zen': 121.84465789794922, 'zcp_val_accuracy': 0.934194684028625}
NASBench101_16891
NASBench101
16891
0a2ab93ab8df4f5c8e9035b3e3e7358b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_743[FLOAT, 128x3x3x3] %onnx::Conv_744[FLOAT, 128] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x1x1] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 128x128x1x1] %onnx::Conv_758[FLOAT, 128x128x3x3] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x3x3] %onnx::Conv_791[FLOAT, 256x128x1x1] %onnx::Conv_792[FLOAT, 256] %onnx::Conv_794[FLOAT, 256x128x1x1] %onnx::Conv_797[FLOAT, 256x128x1x1] %onnx::Conv_800[FLOAT, 256x256x1x1] %onnx::Conv_803[FLOAT, 256x256x3x3] %onnx::Conv_806[FLOAT, 256x256x1x1] %onnx::Conv_809[FLOAT, 256x256x1x1] %onnx::Conv_812[FLOAT, 256x256x1x1] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x3x3] %onnx::Conv_836[FLOAT, 512x256x1x1] %onnx::Conv_837[FLOAT, 512] %onnx::Conv_839[FLOAT, 512x256x1x1] %onnx::Conv_842[FLOAT, 512x256x1x1] %onnx::Conv_845[FLOAT, 512x512x1x1] %onnx::Conv_848[FLOAT, 512x512x3x3] %onnx::Conv_851[FLOAT, 512x512x1x1] %onnx::Conv_854[FLOAT, 512x512x1x1] %onnx::Conv_857[FLOAT, 512x512x1x1] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x512x1x1] %onnx::Conv_869[FLOAT, 512x512x1x1] %onnx::Conv_872[FLOAT, 512x512x1x1] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x3x3] ) { %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_837) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_837) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %onnx::Conv_789 = Identity(%onnx::Conv_744) %onnx::Conv_786 = Identity(%onnx::Conv_744) %onnx::Conv_783 = Identity(%onnx::Conv_744) %onnx::Conv_780 = Identity(%onnx::Conv_744) %onnx::Conv_777 = Identity(%onnx::Conv_744) %onnx::Conv_774 = Identity(%onnx::Conv_744) %onnx::Conv_771 = Identity(%onnx::Conv_744) %onnx::Conv_768 = Identity(%onnx::Conv_744) %onnx::Conv_765 = Identity(%onnx::Conv_744) %onnx::Conv_762 = Identity(%onnx::Conv_744) %onnx::Conv_759 = Identity(%onnx::Conv_744) %onnx::Conv_756 = Identity(%onnx::Conv_744) %onnx::Conv_753 = Identity(%onnx::Conv_744) %onnx::Conv_750 = Identity(%onnx::Conv_744) %onnx::Conv_747 = Identity(%onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_743, %onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %741 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %741 }
val_accuracy
88.501602
3,860,867,072
12,962,698
{'zcp_epe_nas': 123.90386179927332, 'zcp_fisher': 207.5336456298828, 'zcp_flops': 61773873152.0, 'zcp_grad_norm': 227.6407012939453, 'zcp_grasp': -35.62060546875, 'zcp_jacov': -16.05687947011252, 'zcp_l2_norm': 1014.7161865234375, 'zcp_nwot': 232.28428489517304, 'zcp_params': 12962698.0, 'zcp_plain': -0.031372584402561, 'zcp_snip': 1768.603515625, 'zcp_synflow': 103.26941494461065, 'zcp_zen': 86.9952621459961, 'zcp_val_accuracy': 0.9385015964508051}
NASBench101_228321
NASBench101
228321
8a4c5dba18b4f60e2762c2ff17acd427
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_770[FLOAT, 128x3x3x3] %onnx::Conv_771[FLOAT, 128] %onnx::Conv_773[FLOAT, 32x128x1x1] %onnx::Conv_774[FLOAT, 32] %onnx::Conv_776[FLOAT, 32x32x3x3] %onnx::Conv_779[FLOAT, 32x32x1x1] %onnx::Conv_782[FLOAT, 32x32x1x1] %onnx::Conv_785[FLOAT, 32x32x3x3] %onnx::Conv_788[FLOAT, 32x128x1x1] %onnx::Conv_791[FLOAT, 32x32x3x3] %onnx::Conv_794[FLOAT, 32x32x1x1] %onnx::Conv_797[FLOAT, 32x32x1x1] %onnx::Conv_800[FLOAT, 32x32x3x3] %onnx::Conv_803[FLOAT, 32x128x1x1] %onnx::Conv_806[FLOAT, 32x32x3x3] %onnx::Conv_809[FLOAT, 32x32x1x1] %onnx::Conv_812[FLOAT, 32x32x1x1] %onnx::Conv_815[FLOAT, 32x32x3x3] %onnx::Conv_818[FLOAT, 64x128x1x1] %onnx::Conv_819[FLOAT, 64] %onnx::Conv_821[FLOAT, 64x64x3x3] %onnx::Conv_824[FLOAT, 64x64x1x1] %onnx::Conv_827[FLOAT, 64x64x1x1] %onnx::Conv_830[FLOAT, 64x64x3x3] %onnx::Conv_833[FLOAT, 64x256x1x1] %onnx::Conv_836[FLOAT, 64x64x3x3] %onnx::Conv_839[FLOAT, 64x64x1x1] %onnx::Conv_842[FLOAT, 64x64x1x1] %onnx::Conv_845[FLOAT, 64x64x3x3] %onnx::Conv_848[FLOAT, 64x256x1x1] %onnx::Conv_851[FLOAT, 64x64x3x3] %onnx::Conv_854[FLOAT, 64x64x1x1] %onnx::Conv_857[FLOAT, 64x64x1x1] %onnx::Conv_860[FLOAT, 64x64x3x3] %onnx::Conv_863[FLOAT, 128x256x1x1] %onnx::Conv_866[FLOAT, 128x128x3x3] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x3x3] %onnx::Conv_878[FLOAT, 128x512x1x1] %onnx::Conv_881[FLOAT, 128x128x3x3] %onnx::Conv_884[FLOAT, 128x128x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x3x3] %onnx::Conv_893[FLOAT, 128x512x1x1] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x3x3] ) { %onnx::Conv_906 = Identity(%onnx::Conv_771) %onnx::Conv_903 = Identity(%onnx::Conv_771) %onnx::Conv_900 = Identity(%onnx::Conv_771) %onnx::Conv_897 = Identity(%onnx::Conv_771) %onnx::Conv_894 = Identity(%onnx::Conv_771) %onnx::Conv_891 = Identity(%onnx::Conv_771) %onnx::Conv_888 = Identity(%onnx::Conv_771) %onnx::Conv_885 = Identity(%onnx::Conv_771) %onnx::Conv_882 = Identity(%onnx::Conv_771) %onnx::Conv_879 = Identity(%onnx::Conv_771) %onnx::Conv_876 = Identity(%onnx::Conv_771) %onnx::Conv_873 = Identity(%onnx::Conv_771) %onnx::Conv_870 = Identity(%onnx::Conv_771) %onnx::Conv_867 = Identity(%onnx::Conv_771) %onnx::Conv_864 = Identity(%onnx::Conv_771) %onnx::Conv_861 = Identity(%onnx::Conv_819) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_819) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_774) %onnx::Conv_813 = Identity(%onnx::Conv_774) %onnx::Conv_810 = Identity(%onnx::Conv_774) %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_770, %onnx::Conv_771) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %768 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %768 }
val_accuracy
90.705127
459,614,208
1,522,890
{'zcp_epe_nas': 76.99105469277008, 'zcp_fisher': 416.5586853027344, 'zcp_flops': 7353827328.0, 'zcp_grad_norm': 336.0780334472656, 'zcp_grasp': 186.1171875, 'zcp_jacov': -16.0530862865851, 'zcp_l2_norm': 622.2319946289062, 'zcp_nwot': 211.79751406494753, 'zcp_params': 1522890.0, 'zcp_plain': -0.016064204275608, 'zcp_snip': 1287.1278076171875, 'zcp_synflow': 108.89573900686975, 'zcp_zen': 67.74977111816406, 'zcp_val_accuracy': 0.926482379436492}
NASBench101_234931
NASBench101
234931
8e3036e84f541f9be21574f7626fa832
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_572[FLOAT, 128x3x3x3] %onnx::Conv_573[FLOAT, 128] %onnx::Conv_575[FLOAT, 32x128x1x1] %onnx::Conv_576[FLOAT, 32] %onnx::Conv_578[FLOAT, 32x32x1x1] %onnx::Conv_581[FLOAT, 32x32x1x1] %onnx::Conv_584[FLOAT, 32x128x1x1] %onnx::Conv_587[FLOAT, 32x32x1x1] %onnx::Conv_590[FLOAT, 32x32x1x1] %onnx::Conv_593[FLOAT, 32x128x1x1] %onnx::Conv_596[FLOAT, 32x32x1x1] %onnx::Conv_599[FLOAT, 32x32x1x1] %onnx::Conv_602[FLOAT, 64x128x1x1] %onnx::Conv_603[FLOAT, 64] %onnx::Conv_605[FLOAT, 64x64x1x1] %onnx::Conv_608[FLOAT, 64x64x1x1] %onnx::Conv_611[FLOAT, 64x256x1x1] %onnx::Conv_614[FLOAT, 64x64x1x1] %onnx::Conv_617[FLOAT, 64x64x1x1] %onnx::Conv_620[FLOAT, 64x256x1x1] %onnx::Conv_623[FLOAT, 64x64x1x1] %onnx::Conv_626[FLOAT, 64x64x1x1] %onnx::Conv_629[FLOAT, 128x256x1x1] %onnx::Conv_632[FLOAT, 128x128x1x1] %onnx::Conv_635[FLOAT, 128x128x1x1] %onnx::Conv_638[FLOAT, 128x512x1x1] %onnx::Conv_641[FLOAT, 128x128x1x1] %onnx::Conv_644[FLOAT, 128x128x1x1] %onnx::Conv_647[FLOAT, 128x512x1x1] %onnx::Conv_650[FLOAT, 128x128x1x1] %onnx::Conv_653[FLOAT, 128x128x1x1] ) { %onnx::Conv_654 = Identity(%onnx::Conv_573) %onnx::Conv_651 = Identity(%onnx::Conv_573) %onnx::Conv_648 = Identity(%onnx::Conv_573) %onnx::Conv_645 = Identity(%onnx::Conv_573) %onnx::Conv_642 = Identity(%onnx::Conv_573) %onnx::Conv_639 = Identity(%onnx::Conv_573) %onnx::Conv_636 = Identity(%onnx::Conv_573) %onnx::Conv_633 = Identity(%onnx::Conv_573) %onnx::Conv_630 = Identity(%onnx::Conv_573) %onnx::Conv_627 = Identity(%onnx::Conv_603) %onnx::Conv_624 = Identity(%onnx::Conv_603) %onnx::Conv_621 = Identity(%onnx::Conv_603) %onnx::Conv_618 = Identity(%onnx::Conv_603) %onnx::Conv_615 = Identity(%onnx::Conv_603) %onnx::Conv_612 = Identity(%onnx::Conv_603) %onnx::Conv_609 = Identity(%onnx::Conv_603) %onnx::Conv_606 = Identity(%onnx::Conv_603) %onnx::Conv_600 = Identity(%onnx::Conv_576) %onnx::Conv_597 = Identity(%onnx::Conv_576) %onnx::Conv_594 = Identity(%onnx::Conv_576) %onnx::Conv_591 = Identity(%onnx::Conv_576) %onnx::Conv_588 = Identity(%onnx::Conv_576) %onnx::Conv_585 = Identity(%onnx::Conv_576) %onnx::Conv_582 = Identity(%onnx::Conv_576) %onnx::Conv_579 = Identity(%onnx::Conv_576) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_572, %onnx::Conv_573) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %570 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %570 }
val_accuracy
85.266429
117,123,072
358,986
{'zcp_epe_nas': 114.67432484899443, 'zcp_fisher': 76.4357681274414, 'zcp_flops': 1873969152.0, 'zcp_grad_norm': 189.12025451660156, 'zcp_grasp': -57.5625, 'zcp_jacov': -16.064917667872553, 'zcp_l2_norm': 409.91741943359375, 'zcp_nwot': 205.05072519794382, 'zcp_params': 358986.0, 'zcp_plain': 0.007619571406394, 'zcp_snip': 608.0919799804688, 'zcp_synflow': 75.19067582215878, 'zcp_zen': 36.673561096191406, 'zcp_val_accuracy': 0.919671475887298}
NASBench101_312200
NASBench101
312200
bce3459a38e36f24b0e709964f6350e0
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_662[FLOAT, 128x3x3x3] %onnx::Conv_663[FLOAT, 128] %onnx::Conv_665[FLOAT, 64x128x1x1] %onnx::Conv_666[FLOAT, 64] %onnx::Conv_668[FLOAT, 64x64x1x1] %onnx::Conv_671[FLOAT, 64x64x3x3] %onnx::Conv_674[FLOAT, 64x64x1x1] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x64x1x1] %onnx::Conv_689[FLOAT, 64x128x1x1] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x64x1x1] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x256x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x256x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x512x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x512x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x256x1x1] ) { %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_663) %onnx::Conv_732 = Identity(%onnx::Conv_663) %onnx::Conv_729 = Identity(%onnx::Conv_663) %onnx::Conv_726 = Identity(%onnx::Conv_663) %onnx::Conv_723 = Identity(%onnx::Conv_663) %onnx::Conv_720 = Identity(%onnx::Conv_663) %onnx::Conv_717 = Identity(%onnx::Conv_663) %onnx::Conv_714 = Identity(%onnx::Conv_663) %onnx::Conv_711 = Identity(%onnx::Conv_663) %onnx::Conv_708 = Identity(%onnx::Conv_663) %onnx::Conv_705 = Identity(%onnx::Conv_663) %onnx::Conv_702 = Identity(%onnx::Conv_663) %onnx::Conv_699 = Identity(%onnx::Conv_666) %onnx::Conv_696 = Identity(%onnx::Conv_666) %onnx::Conv_693 = Identity(%onnx::Conv_666) %onnx::Conv_690 = Identity(%onnx::Conv_666) %onnx::Conv_687 = Identity(%onnx::Conv_666) %onnx::Conv_684 = Identity(%onnx::Conv_666) %onnx::Conv_681 = Identity(%onnx::Conv_666) %onnx::Conv_678 = Identity(%onnx::Conv_666) %onnx::Conv_675 = Identity(%onnx::Conv_666) %onnx::Conv_672 = Identity(%onnx::Conv_666) %onnx::Conv_669 = Identity(%onnx::Conv_666) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_662, %onnx::Conv_663) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %660 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %660 }
val_accuracy
88.461536
983,836,672
3,292,298
{'zcp_epe_nas': 213.06773348112168, 'zcp_fisher': 78.53095245361328, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 158.07553100585938, 'zcp_grasp': -53.517333984375, 'zcp_jacov': -16.056534196494958, 'zcp_l2_norm': 648.2179565429688, 'zcp_nwot': 218.5030169317757, 'zcp_params': 3292298.0, 'zcp_plain': 0.252552241086959, 'zcp_snip': 823.1563720703125, 'zcp_synflow': 85.3278900260488, 'zcp_zen': 66.63748168945312, 'zcp_val_accuracy': 0.9389022588729851}
NASBench101_383919
NASBench101
383919
e81b9eb31066fd92a2a12f9895234dbc
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 32x128x1x1] %onnx::Conv_864[FLOAT, 32] %onnx::Conv_866[FLOAT, 32x32x3x3] %onnx::Conv_869[FLOAT, 32x32x3x3] %onnx::Conv_872[FLOAT, 32x32x3x3] %onnx::Conv_875[FLOAT, 32x32x3x3] %onnx::Conv_878[FLOAT, 32x32x1x1] %onnx::Conv_881[FLOAT, 32x128x1x1] %onnx::Conv_884[FLOAT, 32x32x3x3] %onnx::Conv_887[FLOAT, 32x32x3x3] %onnx::Conv_890[FLOAT, 32x32x3x3] %onnx::Conv_893[FLOAT, 32x32x3x3] %onnx::Conv_896[FLOAT, 32x32x1x1] %onnx::Conv_899[FLOAT, 32x128x1x1] %onnx::Conv_902[FLOAT, 32x32x3x3] %onnx::Conv_905[FLOAT, 32x32x3x3] %onnx::Conv_908[FLOAT, 32x32x3x3] %onnx::Conv_911[FLOAT, 32x32x3x3] %onnx::Conv_914[FLOAT, 32x32x1x1] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_918[FLOAT, 64] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 64x64x3x3] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 64x256x1x1] %onnx::Conv_938[FLOAT, 64x64x3x3] %onnx::Conv_941[FLOAT, 64x64x3x3] %onnx::Conv_944[FLOAT, 64x64x3x3] %onnx::Conv_947[FLOAT, 64x64x3x3] %onnx::Conv_950[FLOAT, 64x64x1x1] %onnx::Conv_953[FLOAT, 64x256x1x1] %onnx::Conv_956[FLOAT, 64x64x3x3] %onnx::Conv_959[FLOAT, 64x64x3x3] %onnx::Conv_962[FLOAT, 64x64x3x3] %onnx::Conv_965[FLOAT, 64x64x3x3] %onnx::Conv_968[FLOAT, 64x64x1x1] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x3x3] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x512x1x1] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x128x3x3] %onnx::Conv_998[FLOAT, 128x128x3x3] %onnx::Conv_1001[FLOAT, 128x128x3x3] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x512x1x1] %onnx::Conv_1010[FLOAT, 128x128x3x3] %onnx::Conv_1013[FLOAT, 128x128x3x3] %onnx::Conv_1016[FLOAT, 128x128x3x3] %onnx::Conv_1019[FLOAT, 128x128x3x3] %onnx::Conv_1022[FLOAT, 128x128x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_861) %onnx::Conv_1020 = Identity(%onnx::Conv_861) %onnx::Conv_1017 = Identity(%onnx::Conv_861) %onnx::Conv_1014 = Identity(%onnx::Conv_861) %onnx::Conv_1011 = Identity(%onnx::Conv_861) %onnx::Conv_1008 = Identity(%onnx::Conv_861) %onnx::Conv_1005 = Identity(%onnx::Conv_861) %onnx::Conv_1002 = Identity(%onnx::Conv_861) %onnx::Conv_999 = Identity(%onnx::Conv_861) %onnx::Conv_996 = Identity(%onnx::Conv_861) %onnx::Conv_993 = Identity(%onnx::Conv_861) %onnx::Conv_990 = Identity(%onnx::Conv_861) %onnx::Conv_987 = Identity(%onnx::Conv_861) %onnx::Conv_984 = Identity(%onnx::Conv_861) %onnx::Conv_981 = Identity(%onnx::Conv_861) %onnx::Conv_978 = Identity(%onnx::Conv_861) %onnx::Conv_975 = Identity(%onnx::Conv_861) %onnx::Conv_972 = Identity(%onnx::Conv_861) %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
90.995592
781,854,720
2,620,938
{'zcp_epe_nas': 95.66837249400616, 'zcp_fisher': 99.8343505859375, 'zcp_flops': 12509675520.0, 'zcp_grad_norm': 206.8919677734375, 'zcp_grasp': -197.7451171875, 'zcp_jacov': -16.069570590722293, 'zcp_l2_norm': 728.0237426757812, 'zcp_nwot': 214.0873788557627, 'zcp_params': 2620938.0, 'zcp_plain': 0.021368596702814, 'zcp_snip': 803.7235717773438, 'zcp_synflow': 143.52488467871356, 'zcp_zen': 91.56503295898438, 'zcp_val_accuracy': 0.8935296535491941}
NASBench101_155247
NASBench101
155247
5df5a3d93f9c0088cddfbd7cd992635f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1067[FLOAT, 128x3x3x3] %onnx::Conv_1068[FLOAT, 128] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x3x3] %onnx::Conv_1076[FLOAT, 128x128x1x1] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x3x3] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x1x1] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 128x128x3x3] %onnx::Conv_1118[FLOAT, 128x128x1x1] %onnx::Conv_1121[FLOAT, 128x128x3x3] %onnx::Conv_1124[FLOAT, 128x128x1x1] %onnx::Conv_1127[FLOAT, 128x128x1x1] %onnx::Conv_1130[FLOAT, 128x128x1x1] %onnx::Conv_1133[FLOAT, 128x128x1x1] %onnx::Conv_1136[FLOAT, 128x128x1x1] %onnx::Conv_1139[FLOAT, 128x128x3x3] %onnx::Conv_1142[FLOAT, 256x128x1x1] %onnx::Conv_1143[FLOAT, 256] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x128x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x128x1x1] %onnx::Conv_1157[FLOAT, 256x128x1x1] %onnx::Conv_1160[FLOAT, 256x256x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x1x1] %onnx::Conv_1169[FLOAT, 256x256x3x3] %onnx::Conv_1172[FLOAT, 256x256x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] %onnx::Conv_1178[FLOAT, 256x256x1x1] %onnx::Conv_1181[FLOAT, 256x256x1x1] %onnx::Conv_1184[FLOAT, 256x256x1x1] %onnx::Conv_1187[FLOAT, 256x256x3x3] %onnx::Conv_1190[FLOAT, 256x256x1x1] %onnx::Conv_1193[FLOAT, 256x256x3x3] %onnx::Conv_1196[FLOAT, 256x256x1x1] %onnx::Conv_1199[FLOAT, 256x256x1x1] %onnx::Conv_1202[FLOAT, 256x256x1x1] %onnx::Conv_1205[FLOAT, 256x256x1x1] %onnx::Conv_1208[FLOAT, 256x256x1x1] %onnx::Conv_1211[FLOAT, 256x256x3x3] %onnx::Conv_1214[FLOAT, 512x256x1x1] %onnx::Conv_1215[FLOAT, 512] %onnx::Conv_1217[FLOAT, 512x512x3x3] %onnx::Conv_1220[FLOAT, 512x256x1x1] %onnx::Conv_1223[FLOAT, 512x512x1x1] %onnx::Conv_1226[FLOAT, 512x256x1x1] %onnx::Conv_1229[FLOAT, 512x256x1x1] %onnx::Conv_1232[FLOAT, 512x512x1x1] %onnx::Conv_1235[FLOAT, 512x512x3x3] %onnx::Conv_1238[FLOAT, 512x512x1x1] %onnx::Conv_1241[FLOAT, 512x512x3x3] %onnx::Conv_1244[FLOAT, 512x512x1x1] %onnx::Conv_1247[FLOAT, 512x512x1x1] %onnx::Conv_1250[FLOAT, 512x512x1x1] %onnx::Conv_1253[FLOAT, 512x512x1x1] %onnx::Conv_1256[FLOAT, 512x512x1x1] %onnx::Conv_1259[FLOAT, 512x512x3x3] %onnx::Conv_1262[FLOAT, 512x512x1x1] %onnx::Conv_1265[FLOAT, 512x512x3x3] %onnx::Conv_1268[FLOAT, 512x512x1x1] %onnx::Conv_1271[FLOAT, 512x512x1x1] %onnx::Conv_1274[FLOAT, 512x512x1x1] %onnx::Conv_1277[FLOAT, 512x512x1x1] %onnx::Conv_1280[FLOAT, 512x512x1x1] %onnx::Conv_1283[FLOAT, 512x512x3x3] ) { %onnx::Conv_1284 = Identity(%onnx::Conv_1215) %onnx::Conv_1281 = Identity(%onnx::Conv_1215) %onnx::Conv_1278 = Identity(%onnx::Conv_1215) %onnx::Conv_1275 = Identity(%onnx::Conv_1215) %onnx::Conv_1272 = Identity(%onnx::Conv_1215) %onnx::Conv_1269 = Identity(%onnx::Conv_1215) %onnx::Conv_1266 = Identity(%onnx::Conv_1215) %onnx::Conv_1263 = Identity(%onnx::Conv_1215) %onnx::Conv_1260 = Identity(%onnx::Conv_1215) %onnx::Conv_1257 = Identity(%onnx::Conv_1215) %onnx::Conv_1254 = Identity(%onnx::Conv_1215) %onnx::Conv_1251 = Identity(%onnx::Conv_1215) %onnx::Conv_1248 = Identity(%onnx::Conv_1215) %onnx::Conv_1245 = Identity(%onnx::Conv_1215) %onnx::Conv_1242 = Identity(%onnx::Conv_1215) %onnx::Conv_1239 = Identity(%onnx::Conv_1215) %onnx::Conv_1236 = Identity(%onnx::Conv_1215) %onnx::Conv_1233 = Identity(%onnx::Conv_1215) %onnx::Conv_1230 = Identity(%onnx::Conv_1215) %onnx::Conv_1227 = Identity(%onnx::Conv_1215) %onnx::Conv_1224 = Identity(%onnx::Conv_1215) %onnx::Conv_1221 = Identity(%onnx::Conv_1215) %onnx::Conv_1218 = Identity(%onnx::Conv_1215) %onnx::Conv_1212 = Identity(%onnx::Conv_1143) %onnx::Conv_1209 = Identity(%onnx::Conv_1143) %onnx::Conv_1206 = Identity(%onnx::Conv_1143) %onnx::Conv_1203 = Identity(%onnx::Conv_1143) %onnx::Conv_1200 = Identity(%onnx::Conv_1143) %onnx::Conv_1197 = Identity(%onnx::Conv_1143) %onnx::Conv_1194 = Identity(%onnx::Conv_1143) %onnx::Conv_1191 = Identity(%onnx::Conv_1143) %onnx::Conv_1188 = Identity(%onnx::Conv_1143) %onnx::Conv_1185 = Identity(%onnx::Conv_1143) %onnx::Conv_1182 = Identity(%onnx::Conv_1143) %onnx::Conv_1179 = Identity(%onnx::Conv_1143) %onnx::Conv_1176 = Identity(%onnx::Conv_1143) %onnx::Conv_1173 = Identity(%onnx::Conv_1143) %onnx::Conv_1170 = Identity(%onnx::Conv_1143) %onnx::Conv_1167 = Identity(%onnx::Conv_1143) %onnx::Conv_1164 = Identity(%onnx::Conv_1143) %onnx::Conv_1161 = Identity(%onnx::Conv_1143) %onnx::Conv_1158 = Identity(%onnx::Conv_1143) %onnx::Conv_1155 = Identity(%onnx::Conv_1143) %onnx::Conv_1152 = Identity(%onnx::Conv_1143) %onnx::Conv_1149 = Identity(%onnx::Conv_1143) %onnx::Conv_1146 = Identity(%onnx::Conv_1143) %onnx::Conv_1140 = Identity(%onnx::Conv_1068) %onnx::Conv_1137 = Identity(%onnx::Conv_1068) %onnx::Conv_1134 = Identity(%onnx::Conv_1068) %onnx::Conv_1131 = Identity(%onnx::Conv_1068) %onnx::Conv_1128 = Identity(%onnx::Conv_1068) %onnx::Conv_1125 = Identity(%onnx::Conv_1068) %onnx::Conv_1122 = Identity(%onnx::Conv_1068) %onnx::Conv_1119 = Identity(%onnx::Conv_1068) %onnx::Conv_1116 = Identity(%onnx::Conv_1068) %onnx::Conv_1113 = Identity(%onnx::Conv_1068) %onnx::Conv_1110 = Identity(%onnx::Conv_1068) %onnx::Conv_1107 = Identity(%onnx::Conv_1068) %onnx::Conv_1104 = Identity(%onnx::Conv_1068) %onnx::Conv_1101 = Identity(%onnx::Conv_1068) %onnx::Conv_1098 = Identity(%onnx::Conv_1068) %onnx::Conv_1095 = Identity(%onnx::Conv_1068) %onnx::Conv_1092 = Identity(%onnx::Conv_1068) %onnx::Conv_1089 = Identity(%onnx::Conv_1068) %onnx::Conv_1086 = Identity(%onnx::Conv_1068) %onnx::Conv_1083 = Identity(%onnx::Conv_1068) %onnx::Conv_1080 = Identity(%onnx::Conv_1068) %onnx::Conv_1077 = Identity(%onnx::Conv_1068) %onnx::Conv_1074 = Identity(%onnx::Conv_1068) %onnx::Conv_1071 = Identity(%onnx::Conv_1068) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %1065 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1065 }
val_accuracy
92.778444
7,165,716,480
24,169,098
{'zcp_epe_nas': 87.56803222129074, 'zcp_fisher': 52.31648254394531, 'zcp_flops': 114651463680.0, 'zcp_grad_norm': 145.38368225097656, 'zcp_grasp': -5.633544921875, 'zcp_jacov': -16.040031345494903, 'zcp_l2_norm': 1633.8719482421875, 'zcp_nwot': 239.6388107863611, 'zcp_params': 24169098.0, 'zcp_plain': -0.024022297933697003, 'zcp_snip': 1225.226806640625, 'zcp_synflow': 129.44086341715146, 'zcp_zen': 138.19741821289062, 'zcp_val_accuracy': 0.910957515239715}
NASBench101_207151
NASBench101
207151
7d6a6a2729adb289c7fb35fbf5ea5b28
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_815[FLOAT, 128x3x3x3] %onnx::Conv_816[FLOAT, 128] %onnx::Conv_818[FLOAT, 43x128x1x1] %onnx::Conv_819[FLOAT, 43] %onnx::Conv_821[FLOAT, 43x43x1x1] %onnx::Conv_824[FLOAT, 43x128x1x1] %onnx::Conv_827[FLOAT, 43x43x3x3] %onnx::Conv_830[FLOAT, 42x42x1x1] %onnx::Conv_831[FLOAT, 42] %onnx::Conv_833[FLOAT, 43x128x1x1] %onnx::Conv_836[FLOAT, 43x43x1x1] %onnx::Conv_839[FLOAT, 43x128x1x1] %onnx::Conv_842[FLOAT, 43x43x3x3] %onnx::Conv_845[FLOAT, 42x42x1x1] %onnx::Conv_848[FLOAT, 43x128x1x1] %onnx::Conv_851[FLOAT, 43x43x1x1] %onnx::Conv_854[FLOAT, 43x128x1x1] %onnx::Conv_857[FLOAT, 43x43x3x3] %onnx::Conv_860[FLOAT, 42x42x1x1] %onnx::Conv_863[FLOAT, 86x128x1x1] %onnx::Conv_864[FLOAT, 86] %onnx::Conv_866[FLOAT, 86x86x1x1] %onnx::Conv_869[FLOAT, 85x128x1x1] %onnx::Conv_870[FLOAT, 85] %onnx::Conv_872[FLOAT, 85x85x3x3] %onnx::Conv_875[FLOAT, 85x85x1x1] %onnx::Conv_878[FLOAT, 86x256x1x1] %onnx::Conv_881[FLOAT, 86x86x1x1] %onnx::Conv_884[FLOAT, 85x256x1x1] %onnx::Conv_887[FLOAT, 85x85x3x3] %onnx::Conv_890[FLOAT, 85x85x1x1] %onnx::Conv_893[FLOAT, 86x256x1x1] %onnx::Conv_896[FLOAT, 86x86x1x1] %onnx::Conv_899[FLOAT, 85x256x1x1] %onnx::Conv_902[FLOAT, 85x85x3x3] %onnx::Conv_905[FLOAT, 85x85x1x1] %onnx::Conv_908[FLOAT, 171x256x1x1] %onnx::Conv_909[FLOAT, 171] %onnx::Conv_911[FLOAT, 171x171x1x1] %onnx::Conv_914[FLOAT, 171x256x1x1] %onnx::Conv_917[FLOAT, 171x171x3x3] %onnx::Conv_920[FLOAT, 170x170x1x1] %onnx::Conv_921[FLOAT, 170] %onnx::Conv_923[FLOAT, 171x512x1x1] %onnx::Conv_926[FLOAT, 171x171x1x1] %onnx::Conv_929[FLOAT, 171x512x1x1] %onnx::Conv_932[FLOAT, 171x171x3x3] %onnx::Conv_935[FLOAT, 170x170x1x1] %onnx::Conv_938[FLOAT, 171x512x1x1] %onnx::Conv_941[FLOAT, 171x171x1x1] %onnx::Conv_944[FLOAT, 171x512x1x1] %onnx::Conv_947[FLOAT, 171x171x3x3] %onnx::Conv_950[FLOAT, 170x170x1x1] ) { %onnx::Conv_951 = Identity(%onnx::Conv_921) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_909) %onnx::Conv_939 = Identity(%onnx::Conv_909) %onnx::Conv_936 = Identity(%onnx::Conv_921) %onnx::Conv_933 = Identity(%onnx::Conv_909) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_909) %onnx::Conv_918 = Identity(%onnx::Conv_909) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_831) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_831) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_815, %onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %813 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %813 }
val_accuracy
91.536456
567,190,784
1,861,666
{'zcp_epe_nas': 114.56347884294358, 'zcp_fisher': 138.00865173339844, 'zcp_flops': 9075052544.0, 'zcp_grad_norm': 204.6251983642578, 'zcp_grasp': -157.423828125, 'zcp_jacov': -16.057878515558947, 'zcp_l2_norm': 760.7783203125, 'zcp_nwot': 215.95036141600215, 'zcp_params': 1861666.0, 'zcp_plain': 0.05440418794751101, 'zcp_snip': 982.3115234375, 'zcp_synflow': 101.64536359437524, 'zcp_zen': 74.62777709960938, 'zcp_val_accuracy': 0.9105569124221801}
NASBench101_357348
NASBench101
357348
d7fba5b616adeb366a0233c5cb5872bd
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_842[FLOAT, 128x3x3x3] %onnx::Conv_843[FLOAT, 128] %onnx::Conv_845[FLOAT, 64x128x1x1] %onnx::Conv_846[FLOAT, 64] %onnx::Conv_848[FLOAT, 64x64x3x3] %onnx::Conv_851[FLOAT, 64x128x1x1] %onnx::Conv_854[FLOAT, 64x64x1x1] %onnx::Conv_857[FLOAT, 64x64x1x1] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x1x1] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 256x128x1x1] %onnx::Conv_915[FLOAT, 256] %onnx::Conv_917[FLOAT, 128x256x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x256x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 256x256x1x1] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 512x256x1x1] %onnx::Conv_969[FLOAT, 512] %onnx::Conv_971[FLOAT, 256x512x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x512x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 512x512x1x1] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] ) { %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_915) %onnx::Conv_999 = Identity(%onnx::Conv_915) %onnx::Conv_996 = Identity(%onnx::Conv_915) %onnx::Conv_993 = Identity(%onnx::Conv_915) %onnx::Conv_990 = Identity(%onnx::Conv_915) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_915) %onnx::Conv_981 = Identity(%onnx::Conv_915) %onnx::Conv_978 = Identity(%onnx::Conv_915) %onnx::Conv_975 = Identity(%onnx::Conv_915) %onnx::Conv_972 = Identity(%onnx::Conv_915) %onnx::Conv_966 = Identity(%onnx::Conv_915) %onnx::Conv_963 = Identity(%onnx::Conv_915) %onnx::Conv_960 = Identity(%onnx::Conv_915) %onnx::Conv_957 = Identity(%onnx::Conv_915) %onnx::Conv_954 = Identity(%onnx::Conv_915) %onnx::Conv_951 = Identity(%onnx::Conv_915) %onnx::Conv_948 = Identity(%onnx::Conv_843) %onnx::Conv_945 = Identity(%onnx::Conv_843) %onnx::Conv_942 = Identity(%onnx::Conv_843) %onnx::Conv_939 = Identity(%onnx::Conv_843) %onnx::Conv_936 = Identity(%onnx::Conv_843) %onnx::Conv_933 = Identity(%onnx::Conv_915) %onnx::Conv_930 = Identity(%onnx::Conv_843) %onnx::Conv_927 = Identity(%onnx::Conv_843) %onnx::Conv_924 = Identity(%onnx::Conv_843) %onnx::Conv_921 = Identity(%onnx::Conv_843) %onnx::Conv_918 = Identity(%onnx::Conv_843) %onnx::Conv_912 = Identity(%onnx::Conv_843) %onnx::Conv_909 = Identity(%onnx::Conv_843) %onnx::Conv_906 = Identity(%onnx::Conv_843) %onnx::Conv_903 = Identity(%onnx::Conv_843) %onnx::Conv_900 = Identity(%onnx::Conv_843) %onnx::Conv_897 = Identity(%onnx::Conv_843) %onnx::Conv_894 = Identity(%onnx::Conv_846) %onnx::Conv_891 = Identity(%onnx::Conv_846) %onnx::Conv_888 = Identity(%onnx::Conv_846) %onnx::Conv_885 = Identity(%onnx::Conv_846) %onnx::Conv_882 = Identity(%onnx::Conv_846) %onnx::Conv_879 = Identity(%onnx::Conv_843) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_846) %onnx::Conv_870 = Identity(%onnx::Conv_846) %onnx::Conv_867 = Identity(%onnx::Conv_846) %onnx::Conv_864 = Identity(%onnx::Conv_846) %onnx::Conv_861 = Identity(%onnx::Conv_843) %onnx::Conv_858 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_846) %onnx::Conv_852 = Identity(%onnx::Conv_846) %onnx::Conv_849 = Identity(%onnx::Conv_846) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_842, %onnx::Conv_843) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %840 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %840 }
val_accuracy
92.558092
1,394,747,392
4,602,890
{'zcp_epe_nas': 140.82737467116743, 'zcp_fisher': 2.6349737644195548, 'zcp_flops': 22315958272.0, 'zcp_grad_norm': 37.40929412841797, 'zcp_grasp': 0.9865570068359371, 'zcp_jacov': -16.064784283802588, 'zcp_l2_norm': 1040.721923828125, 'zcp_nwot': 226.65283854026433, 'zcp_params': 4602890.0, 'zcp_plain': -0.031604219228029, 'zcp_snip': 239.49253845214844, 'zcp_synflow': 108.77339574538398, 'zcp_zen': 99.4268569946289, 'zcp_val_accuracy': 0.9363982081413261}
NASBench101_135065
NASBench101
135065
51b532ded333b6b78371cdc310634c71
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x3x3] %onnx::Conv_770[FLOAT, 64x64x1x1] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_776[FLOAT, 64x64x3x3] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x3x3] %onnx::Conv_785[FLOAT, 64x64x1x1] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x3x3] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x3x3] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x3x3] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x3x3] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x3x3] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x128x3x3] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x3x3] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x3x3] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x3x3] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x3x3] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x3x3] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x3x3] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
92.1875
1,724,786,688
5,793,546
{'zcp_epe_nas': 95.67854533239989, 'zcp_fisher': 53.270938873291016, 'zcp_flops': 27596587008.0, 'zcp_grad_norm': 115.04466247558594, 'zcp_grasp': 3.649658203125, 'zcp_jacov': -16.06113149718601, 'zcp_l2_norm': 843.641357421875, 'zcp_nwot': 221.4300628957602, 'zcp_params': 5793546.0, 'zcp_plain': 0.0037432678509500003, 'zcp_snip': 709.8758544921875, 'zcp_synflow': 117.7557283400326, 'zcp_zen': 91.09510803222656, 'zcp_val_accuracy': 0.9299879670143121}
NASBench101_228251
NASBench101
228251
8a439a954edd2f3165474408f02c35cb
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_923[FLOAT, 128x3x3x3] %onnx::Conv_924[FLOAT, 128] %onnx::Conv_926[FLOAT, 32x128x1x1] %onnx::Conv_927[FLOAT, 32] %onnx::Conv_929[FLOAT, 32x32x1x1] %onnx::Conv_932[FLOAT, 32x32x3x3] %onnx::Conv_935[FLOAT, 32x128x1x1] %onnx::Conv_938[FLOAT, 32x32x1x1] %onnx::Conv_941[FLOAT, 32x128x1x1] %onnx::Conv_944[FLOAT, 32x32x1x1] %onnx::Conv_947[FLOAT, 32x128x1x1] %onnx::Conv_950[FLOAT, 32x32x1x1] %onnx::Conv_953[FLOAT, 32x32x3x3] %onnx::Conv_956[FLOAT, 32x128x1x1] %onnx::Conv_959[FLOAT, 32x32x1x1] %onnx::Conv_962[FLOAT, 32x128x1x1] %onnx::Conv_965[FLOAT, 32x32x1x1] %onnx::Conv_968[FLOAT, 32x128x1x1] %onnx::Conv_971[FLOAT, 32x32x1x1] %onnx::Conv_974[FLOAT, 32x32x3x3] %onnx::Conv_977[FLOAT, 32x128x1x1] %onnx::Conv_980[FLOAT, 32x32x1x1] %onnx::Conv_983[FLOAT, 32x128x1x1] %onnx::Conv_986[FLOAT, 32x32x1x1] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x128x1x1] %onnx::Conv_1001[FLOAT, 64x64x1x1] %onnx::Conv_1004[FLOAT, 64x128x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x256x1x1] %onnx::Conv_1013[FLOAT, 64x64x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x256x1x1] %onnx::Conv_1022[FLOAT, 64x64x1x1] %onnx::Conv_1025[FLOAT, 64x256x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x256x1x1] %onnx::Conv_1034[FLOAT, 64x64x1x1] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x256x1x1] %onnx::Conv_1043[FLOAT, 64x64x1x1] %onnx::Conv_1046[FLOAT, 64x256x1x1] %onnx::Conv_1049[FLOAT, 64x64x1x1] %onnx::Conv_1052[FLOAT, 128x256x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x256x1x1] %onnx::Conv_1064[FLOAT, 128x128x1x1] %onnx::Conv_1067[FLOAT, 128x256x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x512x1x1] %onnx::Conv_1076[FLOAT, 128x128x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x512x1x1] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x512x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x512x1x1] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x512x1x1] %onnx::Conv_1106[FLOAT, 128x128x1x1] %onnx::Conv_1109[FLOAT, 128x512x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] ) { %onnx::Conv_1113 = Identity(%onnx::Conv_924) %onnx::Conv_1110 = Identity(%onnx::Conv_924) %onnx::Conv_1107 = Identity(%onnx::Conv_924) %onnx::Conv_1104 = Identity(%onnx::Conv_924) %onnx::Conv_1101 = Identity(%onnx::Conv_924) %onnx::Conv_1098 = Identity(%onnx::Conv_924) %onnx::Conv_1095 = Identity(%onnx::Conv_924) %onnx::Conv_1092 = Identity(%onnx::Conv_924) %onnx::Conv_1089 = Identity(%onnx::Conv_924) %onnx::Conv_1086 = Identity(%onnx::Conv_924) %onnx::Conv_1083 = Identity(%onnx::Conv_924) %onnx::Conv_1080 = Identity(%onnx::Conv_924) %onnx::Conv_1077 = Identity(%onnx::Conv_924) %onnx::Conv_1074 = Identity(%onnx::Conv_924) %onnx::Conv_1071 = Identity(%onnx::Conv_924) %onnx::Conv_1068 = Identity(%onnx::Conv_924) %onnx::Conv_1065 = Identity(%onnx::Conv_924) %onnx::Conv_1062 = Identity(%onnx::Conv_924) %onnx::Conv_1059 = Identity(%onnx::Conv_924) %onnx::Conv_1056 = Identity(%onnx::Conv_924) %onnx::Conv_1053 = Identity(%onnx::Conv_924) %onnx::Conv_1050 = Identity(%onnx::Conv_990) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_927) %onnx::Conv_984 = Identity(%onnx::Conv_927) %onnx::Conv_981 = Identity(%onnx::Conv_927) %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_923, %onnx::Conv_924) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %921 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %921 }
val_accuracy
92.558092
445,589,504
1,443,658
{'zcp_epe_nas': 148.20437525627983, 'zcp_fisher': 0.577668845653533, 'zcp_flops': 7129432064.0, 'zcp_grad_norm': 19.987491607666016, 'zcp_grasp': -0.6199760437011711, 'zcp_jacov': -16.05312609289257, 'zcp_l2_norm': 1014.6351928710938, 'zcp_nwot': 216.7835009731781, 'zcp_params': 1443658.0, 'zcp_plain': 0.033068861812353, 'zcp_snip': 89.50173950195312, 'zcp_synflow': 75.46018166713272, 'zcp_zen': 81.6324462890625, 'zcp_val_accuracy': 0.9066506624221801}
NASBench101_34224
NASBench101
34224
14ba7ba8fff34789ef858938cfbf7120
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_891[FLOAT, 64] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x64x3x3] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 64x64x3x3] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x128x1x1] %onnx::Conv_926[FLOAT, 64x128x1x1] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x3x3] %onnx::Conv_935[FLOAT, 64x64x3x3] %onnx::Conv_938[FLOAT, 64x64x3x3] %onnx::Conv_941[FLOAT, 64x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x128x3x3] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x128x3x3] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x256x1x1] %onnx::Conv_980[FLOAT, 128x256x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 128x128x3x3] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_999[FLOAT, 256] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x256x3x3] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x3x3] %onnx::Conv_1025[FLOAT, 256x256x3x3] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x512x1x1] %onnx::Conv_1034[FLOAT, 256x512x1x1] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x3x3] %onnx::Conv_1043[FLOAT, 256x256x3x3] %onnx::Conv_1046[FLOAT, 256x256x3x3] %onnx::Conv_1049[FLOAT, 256x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_888) %onnx::Conv_993 = Identity(%onnx::Conv_888) %onnx::Conv_990 = Identity(%onnx::Conv_888) %onnx::Conv_987 = Identity(%onnx::Conv_888) %onnx::Conv_984 = Identity(%onnx::Conv_888) %onnx::Conv_981 = Identity(%onnx::Conv_888) %onnx::Conv_978 = Identity(%onnx::Conv_888) %onnx::Conv_975 = Identity(%onnx::Conv_888) %onnx::Conv_972 = Identity(%onnx::Conv_888) %onnx::Conv_969 = Identity(%onnx::Conv_888) %onnx::Conv_966 = Identity(%onnx::Conv_888) %onnx::Conv_963 = Identity(%onnx::Conv_888) %onnx::Conv_960 = Identity(%onnx::Conv_888) %onnx::Conv_957 = Identity(%onnx::Conv_888) %onnx::Conv_954 = Identity(%onnx::Conv_888) %onnx::Conv_951 = Identity(%onnx::Conv_888) %onnx::Conv_948 = Identity(%onnx::Conv_888) %onnx::Conv_945 = Identity(%onnx::Conv_888) %onnx::Conv_942 = Identity(%onnx::Conv_891) %onnx::Conv_939 = Identity(%onnx::Conv_891) %onnx::Conv_936 = Identity(%onnx::Conv_891) %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
91.095752
3,010,996,224
10,183,050
{'zcp_epe_nas': 65.3303903747995, 'zcp_fisher': 1186.618896484375, 'zcp_flops': 48175939584.0, 'zcp_grad_norm': 672.46337890625, 'zcp_grasp': 748.5859375, 'zcp_jacov': -16.053763509148304, 'zcp_l2_norm': 994.2223510742188, 'zcp_nwot': 224.3162556507526, 'zcp_params': 10183050.0, 'zcp_plain': 0.042403176426887006, 'zcp_snip': 3950.830322265625, 'zcp_synflow': 160.08497346558136, 'zcp_zen': 117.68927001953125, 'zcp_val_accuracy': 0.9052484035491941}
NASBench101_11517
NASBench101
11517
06eb569aa649cf303a4991cf28788113
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_884[FLOAT, 128x3x3x3] %onnx::Conv_885[FLOAT, 128] %onnx::Conv_887[FLOAT, 43x128x1x1] %onnx::Conv_888[FLOAT, 43] %onnx::Conv_890[FLOAT, 43x43x1x1] %onnx::Conv_893[FLOAT, 43x128x1x1] %onnx::Conv_896[FLOAT, 43x43x1x1] %onnx::Conv_899[FLOAT, 43x43x3x3] %onnx::Conv_902[FLOAT, 42x128x1x1] %onnx::Conv_903[FLOAT, 42] %onnx::Conv_905[FLOAT, 43x128x1x1] %onnx::Conv_908[FLOAT, 43x43x1x1] %onnx::Conv_911[FLOAT, 43x128x1x1] %onnx::Conv_914[FLOAT, 43x43x1x1] %onnx::Conv_917[FLOAT, 43x43x3x3] %onnx::Conv_920[FLOAT, 42x128x1x1] %onnx::Conv_923[FLOAT, 43x128x1x1] %onnx::Conv_926[FLOAT, 43x43x1x1] %onnx::Conv_929[FLOAT, 43x128x1x1] %onnx::Conv_932[FLOAT, 43x43x1x1] %onnx::Conv_935[FLOAT, 43x43x3x3] %onnx::Conv_938[FLOAT, 42x128x1x1] %onnx::Conv_941[FLOAT, 86x128x1x1] %onnx::Conv_942[FLOAT, 86] %onnx::Conv_944[FLOAT, 86x86x1x1] %onnx::Conv_947[FLOAT, 85x128x1x1] %onnx::Conv_948[FLOAT, 85] %onnx::Conv_950[FLOAT, 85x85x1x1] %onnx::Conv_953[FLOAT, 85x85x3x3] %onnx::Conv_956[FLOAT, 85x128x1x1] %onnx::Conv_959[FLOAT, 86x256x1x1] %onnx::Conv_962[FLOAT, 86x86x1x1] %onnx::Conv_965[FLOAT, 85x256x1x1] %onnx::Conv_968[FLOAT, 85x85x1x1] %onnx::Conv_971[FLOAT, 85x85x3x3] %onnx::Conv_974[FLOAT, 85x256x1x1] %onnx::Conv_977[FLOAT, 86x256x1x1] %onnx::Conv_980[FLOAT, 86x86x1x1] %onnx::Conv_983[FLOAT, 85x256x1x1] %onnx::Conv_986[FLOAT, 85x85x1x1] %onnx::Conv_989[FLOAT, 85x85x3x3] %onnx::Conv_992[FLOAT, 85x256x1x1] %onnx::Conv_995[FLOAT, 171x256x1x1] %onnx::Conv_996[FLOAT, 171] %onnx::Conv_998[FLOAT, 171x171x1x1] %onnx::Conv_1001[FLOAT, 171x256x1x1] %onnx::Conv_1004[FLOAT, 171x171x1x1] %onnx::Conv_1007[FLOAT, 171x171x3x3] %onnx::Conv_1010[FLOAT, 170x256x1x1] %onnx::Conv_1011[FLOAT, 170] %onnx::Conv_1013[FLOAT, 171x512x1x1] %onnx::Conv_1016[FLOAT, 171x171x1x1] %onnx::Conv_1019[FLOAT, 171x512x1x1] %onnx::Conv_1022[FLOAT, 171x171x1x1] %onnx::Conv_1025[FLOAT, 171x171x3x3] %onnx::Conv_1028[FLOAT, 170x512x1x1] %onnx::Conv_1031[FLOAT, 171x512x1x1] %onnx::Conv_1034[FLOAT, 171x171x1x1] %onnx::Conv_1037[FLOAT, 171x512x1x1] %onnx::Conv_1040[FLOAT, 171x171x1x1] %onnx::Conv_1043[FLOAT, 171x171x3x3] %onnx::Conv_1046[FLOAT, 170x512x1x1] ) { %onnx::Conv_1047 = Identity(%onnx::Conv_1011) %onnx::Conv_1044 = Identity(%onnx::Conv_996) %onnx::Conv_1041 = Identity(%onnx::Conv_996) %onnx::Conv_1038 = Identity(%onnx::Conv_996) %onnx::Conv_1035 = Identity(%onnx::Conv_996) %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_1011) %onnx::Conv_1026 = Identity(%onnx::Conv_996) %onnx::Conv_1023 = Identity(%onnx::Conv_996) %onnx::Conv_1020 = Identity(%onnx::Conv_996) %onnx::Conv_1017 = Identity(%onnx::Conv_996) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1008 = Identity(%onnx::Conv_996) %onnx::Conv_1005 = Identity(%onnx::Conv_996) %onnx::Conv_1002 = Identity(%onnx::Conv_996) %onnx::Conv_999 = Identity(%onnx::Conv_996) %onnx::Conv_993 = Identity(%onnx::Conv_948) %onnx::Conv_990 = Identity(%onnx::Conv_948) %onnx::Conv_987 = Identity(%onnx::Conv_948) %onnx::Conv_984 = Identity(%onnx::Conv_948) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_948) %onnx::Conv_972 = Identity(%onnx::Conv_948) %onnx::Conv_969 = Identity(%onnx::Conv_948) %onnx::Conv_966 = Identity(%onnx::Conv_948) %onnx::Conv_963 = Identity(%onnx::Conv_942) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_948) %onnx::Conv_954 = Identity(%onnx::Conv_948) %onnx::Conv_951 = Identity(%onnx::Conv_948) %onnx::Conv_945 = Identity(%onnx::Conv_942) %onnx::Conv_939 = Identity(%onnx::Conv_903) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_903) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_884, %onnx::Conv_885) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %882 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %882 }
val_accuracy
91.426283
658,421,376
2,152,866
{'zcp_epe_nas': 129.41149754163948, 'zcp_fisher': 4.197208881378174, 'zcp_flops': 10534742016.0, 'zcp_grad_norm': 46.2502326965332, 'zcp_grasp': 3.073211669921875, 'zcp_jacov': -16.04061796824803, 'zcp_l2_norm': 959.2516479492188, 'zcp_nwot': 218.57346981078592, 'zcp_params': 2152866.0, 'zcp_plain': -0.031450480222702006, 'zcp_snip': 247.07481384277344, 'zcp_synflow': 84.66598721684116, 'zcp_zen': 82.94208526611328, 'zcp_val_accuracy': 0.9258813858032221}
NASBench101_80690
NASBench101
80690
30f1b43408f744244c3bfe30809fb47a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1013[FLOAT, 128x3x3x3] %onnx::Conv_1014[FLOAT, 128] %onnx::Conv_1016[FLOAT, 43x128x1x1] %onnx::Conv_1017[FLOAT, 43] %onnx::Conv_1019[FLOAT, 43x43x3x3] %onnx::Conv_1022[FLOAT, 43x43x3x3] %onnx::Conv_1025[FLOAT, 43x43x1x1] %onnx::Conv_1028[FLOAT, 43x43x3x3] %onnx::Conv_1031[FLOAT, 42x128x1x1] %onnx::Conv_1032[FLOAT, 42] %onnx::Conv_1034[FLOAT, 42x42x3x3] %onnx::Conv_1037[FLOAT, 43x128x1x1] %onnx::Conv_1040[FLOAT, 43x43x3x3] %onnx::Conv_1043[FLOAT, 43x43x3x3] %onnx::Conv_1046[FLOAT, 43x43x1x1] %onnx::Conv_1049[FLOAT, 43x43x3x3] %onnx::Conv_1052[FLOAT, 42x128x1x1] %onnx::Conv_1055[FLOAT, 42x42x3x3] %onnx::Conv_1058[FLOAT, 43x128x1x1] %onnx::Conv_1061[FLOAT, 43x43x3x3] %onnx::Conv_1064[FLOAT, 43x43x3x3] %onnx::Conv_1067[FLOAT, 43x43x1x1] %onnx::Conv_1070[FLOAT, 43x43x3x3] %onnx::Conv_1073[FLOAT, 42x128x1x1] %onnx::Conv_1076[FLOAT, 42x42x3x3] %onnx::Conv_1079[FLOAT, 86x128x1x1] %onnx::Conv_1080[FLOAT, 86] %onnx::Conv_1082[FLOAT, 86x86x3x3] %onnx::Conv_1085[FLOAT, 86x86x3x3] %onnx::Conv_1088[FLOAT, 85x85x1x1] %onnx::Conv_1089[FLOAT, 85] %onnx::Conv_1091[FLOAT, 85x85x3x3] %onnx::Conv_1094[FLOAT, 85x128x1x1] %onnx::Conv_1097[FLOAT, 85x85x3x3] %onnx::Conv_1100[FLOAT, 86x256x1x1] %onnx::Conv_1103[FLOAT, 86x86x3x3] %onnx::Conv_1106[FLOAT, 86x86x3x3] %onnx::Conv_1109[FLOAT, 85x85x1x1] %onnx::Conv_1112[FLOAT, 85x85x3x3] %onnx::Conv_1115[FLOAT, 85x256x1x1] %onnx::Conv_1118[FLOAT, 85x85x3x3] %onnx::Conv_1121[FLOAT, 86x256x1x1] %onnx::Conv_1124[FLOAT, 86x86x3x3] %onnx::Conv_1127[FLOAT, 86x86x3x3] %onnx::Conv_1130[FLOAT, 85x85x1x1] %onnx::Conv_1133[FLOAT, 85x85x3x3] %onnx::Conv_1136[FLOAT, 85x256x1x1] %onnx::Conv_1139[FLOAT, 85x85x3x3] %onnx::Conv_1142[FLOAT, 171x256x1x1] %onnx::Conv_1143[FLOAT, 171] %onnx::Conv_1145[FLOAT, 171x171x3x3] %onnx::Conv_1148[FLOAT, 171x171x3x3] %onnx::Conv_1151[FLOAT, 171x171x1x1] %onnx::Conv_1154[FLOAT, 171x171x3x3] %onnx::Conv_1157[FLOAT, 170x256x1x1] %onnx::Conv_1158[FLOAT, 170] %onnx::Conv_1160[FLOAT, 170x170x3x3] %onnx::Conv_1163[FLOAT, 171x512x1x1] %onnx::Conv_1166[FLOAT, 171x171x3x3] %onnx::Conv_1169[FLOAT, 171x171x3x3] %onnx::Conv_1172[FLOAT, 171x171x1x1] %onnx::Conv_1175[FLOAT, 171x171x3x3] %onnx::Conv_1178[FLOAT, 170x512x1x1] %onnx::Conv_1181[FLOAT, 170x170x3x3] %onnx::Conv_1184[FLOAT, 171x512x1x1] %onnx::Conv_1187[FLOAT, 171x171x3x3] %onnx::Conv_1190[FLOAT, 171x171x3x3] %onnx::Conv_1193[FLOAT, 171x171x1x1] %onnx::Conv_1196[FLOAT, 171x171x3x3] %onnx::Conv_1199[FLOAT, 170x512x1x1] %onnx::Conv_1202[FLOAT, 170x170x3x3] ) { %onnx::Conv_1203 = Identity(%onnx::Conv_1158) %onnx::Conv_1200 = Identity(%onnx::Conv_1158) %onnx::Conv_1197 = Identity(%onnx::Conv_1143) %onnx::Conv_1194 = Identity(%onnx::Conv_1143) %onnx::Conv_1191 = Identity(%onnx::Conv_1143) %onnx::Conv_1188 = Identity(%onnx::Conv_1143) %onnx::Conv_1185 = Identity(%onnx::Conv_1143) %onnx::Conv_1182 = Identity(%onnx::Conv_1158) %onnx::Conv_1179 = Identity(%onnx::Conv_1158) %onnx::Conv_1176 = Identity(%onnx::Conv_1143) %onnx::Conv_1173 = Identity(%onnx::Conv_1143) %onnx::Conv_1170 = Identity(%onnx::Conv_1143) %onnx::Conv_1167 = Identity(%onnx::Conv_1143) %onnx::Conv_1164 = Identity(%onnx::Conv_1143) %onnx::Conv_1161 = Identity(%onnx::Conv_1158) %onnx::Conv_1155 = Identity(%onnx::Conv_1143) %onnx::Conv_1152 = Identity(%onnx::Conv_1143) %onnx::Conv_1149 = Identity(%onnx::Conv_1143) %onnx::Conv_1146 = Identity(%onnx::Conv_1143) %onnx::Conv_1140 = Identity(%onnx::Conv_1089) %onnx::Conv_1137 = Identity(%onnx::Conv_1089) %onnx::Conv_1134 = Identity(%onnx::Conv_1089) %onnx::Conv_1131 = Identity(%onnx::Conv_1089) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1089) %onnx::Conv_1116 = Identity(%onnx::Conv_1089) %onnx::Conv_1113 = Identity(%onnx::Conv_1089) %onnx::Conv_1110 = Identity(%onnx::Conv_1089) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1089) %onnx::Conv_1095 = Identity(%onnx::Conv_1089) %onnx::Conv_1092 = Identity(%onnx::Conv_1089) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %onnx::Conv_1077 = Identity(%onnx::Conv_1032) %onnx::Conv_1074 = Identity(%onnx::Conv_1032) %onnx::Conv_1071 = Identity(%onnx::Conv_1017) %onnx::Conv_1068 = Identity(%onnx::Conv_1017) %onnx::Conv_1065 = Identity(%onnx::Conv_1017) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1032) %onnx::Conv_1053 = Identity(%onnx::Conv_1032) %onnx::Conv_1050 = Identity(%onnx::Conv_1017) %onnx::Conv_1047 = Identity(%onnx::Conv_1017) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1032) %onnx::Conv_1029 = Identity(%onnx::Conv_1017) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1011 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1011 }
val_accuracy
93.129009
1,444,989,952
4,850,651
{'zcp_epe_nas': 104.9895702271533, 'zcp_fisher': 59.28803634643555, 'zcp_flops': 23119839232.0, 'zcp_grad_norm': 162.5377655029297, 'zcp_grasp': -85.20654296875, 'zcp_jacov': -16.066652492863124, 'zcp_l2_norm': 1007.6551513671875, 'zcp_nwot': 220.76811466949948, 'zcp_params': 4850651.0, 'zcp_plain': 0.017580244690179003, 'zcp_snip': 781.9969482421875, 'zcp_synflow': 140.35055175739257, 'zcp_zen': 113.63056182861328, 'zcp_val_accuracy': 0.9104567170143121}
NASBench101_266111
NASBench101
266111
a125e1082184ff8924edfea2d94afe63
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x64x1x1] %onnx::Conv_998[FLOAT, 64x128x1x1] %onnx::Conv_1001[FLOAT, 64x64x1x1] %onnx::Conv_1004[FLOAT, 64x128x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x64x1x1] %onnx::Conv_1019[FLOAT, 64x128x1x1] %onnx::Conv_1022[FLOAT, 64x64x1x1] %onnx::Conv_1025[FLOAT, 64x128x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x64x1x1] %onnx::Conv_1040[FLOAT, 64x128x1x1] %onnx::Conv_1043[FLOAT, 64x64x1x1] %onnx::Conv_1046[FLOAT, 64x128x1x1] %onnx::Conv_1049[FLOAT, 64x64x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x128x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x256x1x1] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x256x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x256x1x1] %onnx::Conv_1106[FLOAT, 128x128x1x1] %onnx::Conv_1109[FLOAT, 128x256x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1116[FLOAT, 256] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x256x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x256x1x1] %onnx::Conv_1145[FLOAT, 256x512x1x1] %onnx::Conv_1148[FLOAT, 256x256x1x1] %onnx::Conv_1151[FLOAT, 256x512x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x1x1] %onnx::Conv_1166[FLOAT, 256x512x1x1] %onnx::Conv_1169[FLOAT, 256x256x1x1] %onnx::Conv_1172[FLOAT, 256x512x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_987) %onnx::Conv_1110 = Identity(%onnx::Conv_987) %onnx::Conv_1107 = Identity(%onnx::Conv_987) %onnx::Conv_1104 = Identity(%onnx::Conv_987) %onnx::Conv_1101 = Identity(%onnx::Conv_987) %onnx::Conv_1098 = Identity(%onnx::Conv_987) %onnx::Conv_1095 = Identity(%onnx::Conv_987) %onnx::Conv_1092 = Identity(%onnx::Conv_987) %onnx::Conv_1089 = Identity(%onnx::Conv_987) %onnx::Conv_1086 = Identity(%onnx::Conv_987) %onnx::Conv_1083 = Identity(%onnx::Conv_987) %onnx::Conv_1080 = Identity(%onnx::Conv_987) %onnx::Conv_1077 = Identity(%onnx::Conv_987) %onnx::Conv_1074 = Identity(%onnx::Conv_987) %onnx::Conv_1071 = Identity(%onnx::Conv_987) %onnx::Conv_1068 = Identity(%onnx::Conv_987) %onnx::Conv_1065 = Identity(%onnx::Conv_987) %onnx::Conv_1062 = Identity(%onnx::Conv_987) %onnx::Conv_1059 = Identity(%onnx::Conv_987) %onnx::Conv_1056 = Identity(%onnx::Conv_987) %onnx::Conv_1053 = Identity(%onnx::Conv_987) %onnx::Conv_1050 = Identity(%onnx::Conv_990) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
92.798477
1,336,027,136
4,426,762
{'zcp_epe_nas': 87.98302295242773, 'zcp_fisher': 21.60128402709961, 'zcp_flops': 21376434176.0, 'zcp_grad_norm': 92.33531951904297, 'zcp_grasp': -5.338134765625, 'zcp_jacov': -16.05326665439934, 'zcp_l2_norm': 1190.8419189453125, 'zcp_nwot': 227.09091019940814, 'zcp_params': 4426762.0, 'zcp_plain': 0.023344032466411, 'zcp_snip': 551.1510009765625, 'zcp_synflow': 107.94042605619036, 'zcp_zen': 100.20113372802734, 'zcp_val_accuracy': 0.917668282985687}
NASBench101_9511
NASBench101
9511
05b1d1fefaab3e940877c9fc2eccc83d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_617[FLOAT, 128x3x3x3] %onnx::Conv_618[FLOAT, 128] %onnx::Conv_620[FLOAT, 64x128x1x1] %onnx::Conv_621[FLOAT, 64] %onnx::Conv_623[FLOAT, 64x64x1x1] %onnx::Conv_626[FLOAT, 64x128x1x1] %onnx::Conv_629[FLOAT, 64x64x3x3] %onnx::Conv_632[FLOAT, 64x128x1x1] %onnx::Conv_635[FLOAT, 64x64x1x1] %onnx::Conv_638[FLOAT, 64x128x1x1] %onnx::Conv_641[FLOAT, 64x64x3x3] %onnx::Conv_644[FLOAT, 64x128x1x1] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x128x1x1] %onnx::Conv_653[FLOAT, 64x64x3x3] %onnx::Conv_656[FLOAT, 128x128x1x1] %onnx::Conv_659[FLOAT, 128x128x1x1] %onnx::Conv_662[FLOAT, 128x128x1x1] %onnx::Conv_665[FLOAT, 128x128x3x3] %onnx::Conv_668[FLOAT, 128x256x1x1] %onnx::Conv_671[FLOAT, 128x128x1x1] %onnx::Conv_674[FLOAT, 128x256x1x1] %onnx::Conv_677[FLOAT, 128x128x3x3] %onnx::Conv_680[FLOAT, 128x256x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x256x1x1] %onnx::Conv_689[FLOAT, 128x128x3x3] %onnx::Conv_692[FLOAT, 256x256x1x1] %onnx::Conv_693[FLOAT, 256] %onnx::Conv_695[FLOAT, 256x256x1x1] %onnx::Conv_698[FLOAT, 256x256x1x1] %onnx::Conv_701[FLOAT, 256x256x3x3] %onnx::Conv_704[FLOAT, 256x512x1x1] %onnx::Conv_707[FLOAT, 256x256x1x1] %onnx::Conv_710[FLOAT, 256x512x1x1] %onnx::Conv_713[FLOAT, 256x256x3x3] %onnx::Conv_716[FLOAT, 256x512x1x1] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x512x1x1] %onnx::Conv_725[FLOAT, 256x256x3x3] ) { %onnx::Conv_726 = Identity(%onnx::Conv_693) %onnx::Conv_723 = Identity(%onnx::Conv_693) %onnx::Conv_720 = Identity(%onnx::Conv_693) %onnx::Conv_717 = Identity(%onnx::Conv_693) %onnx::Conv_714 = Identity(%onnx::Conv_693) %onnx::Conv_711 = Identity(%onnx::Conv_693) %onnx::Conv_708 = Identity(%onnx::Conv_693) %onnx::Conv_705 = Identity(%onnx::Conv_693) %onnx::Conv_702 = Identity(%onnx::Conv_693) %onnx::Conv_699 = Identity(%onnx::Conv_693) %onnx::Conv_696 = Identity(%onnx::Conv_693) %onnx::Conv_690 = Identity(%onnx::Conv_618) %onnx::Conv_687 = Identity(%onnx::Conv_618) %onnx::Conv_684 = Identity(%onnx::Conv_618) %onnx::Conv_681 = Identity(%onnx::Conv_618) %onnx::Conv_678 = Identity(%onnx::Conv_618) %onnx::Conv_675 = Identity(%onnx::Conv_618) %onnx::Conv_672 = Identity(%onnx::Conv_618) %onnx::Conv_669 = Identity(%onnx::Conv_618) %onnx::Conv_666 = Identity(%onnx::Conv_618) %onnx::Conv_663 = Identity(%onnx::Conv_618) %onnx::Conv_660 = Identity(%onnx::Conv_618) %onnx::Conv_657 = Identity(%onnx::Conv_618) %onnx::Conv_654 = Identity(%onnx::Conv_621) %onnx::Conv_651 = Identity(%onnx::Conv_621) %onnx::Conv_648 = Identity(%onnx::Conv_621) %onnx::Conv_645 = Identity(%onnx::Conv_621) %onnx::Conv_642 = Identity(%onnx::Conv_621) %onnx::Conv_639 = Identity(%onnx::Conv_621) %onnx::Conv_636 = Identity(%onnx::Conv_621) %onnx::Conv_633 = Identity(%onnx::Conv_621) %onnx::Conv_630 = Identity(%onnx::Conv_621) %onnx::Conv_627 = Identity(%onnx::Conv_621) %onnx::Conv_624 = Identity(%onnx::Conv_621) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_617, %onnx::Conv_618) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %615 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %615 }
val_accuracy
92.678285
1,042,556,928
3,468,426
{'zcp_epe_nas': 120.97062867882599, 'zcp_fisher': 2.057490110397339, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 23.787755966186523, 'zcp_grasp': -0.35999679565429604, 'zcp_jacov': -16.065494923047268, 'zcp_l2_norm': 694.9071655273438, 'zcp_nwot': 218.06849152120438, 'zcp_params': 3468426.0, 'zcp_plain': -0.008904267102479001, 'zcp_snip': 149.383544921875, 'zcp_synflow': 91.04234831400184, 'zcp_zen': 75.31204223632812, 'zcp_val_accuracy': 0.87109375}
NASBench101_258995
NASBench101
258995
9cda9f8a30af53355b0ecb146e5818fb
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x128x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x256x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x3x3] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
90.594953
6,617,835,520
22,421,642
{'zcp_epe_nas': 134.7573706041386, 'zcp_fisher': 1269.384765625, 'zcp_flops': 105885368320.0, 'zcp_grad_norm': 598.8551025390625, 'zcp_grasp': 2319.2578125, 'zcp_jacov': -16.058280474675257, 'zcp_l2_norm': 1242.74658203125, 'zcp_nwot': 235.26894221622598, 'zcp_params': 22421642.0, 'zcp_plain': -0.012566742487251, 'zcp_snip': 4508.0654296875, 'zcp_synflow': 155.89422684818848, 'zcp_zen': 111.62928009033203, 'zcp_val_accuracy': 0.9199719429016111}
NASBench101_217247
NASBench101
217247
839caaa84fb28b28d3409f34c49e8948
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_725[FLOAT, 128x3x3x3] %onnx::Conv_726[FLOAT, 128] %onnx::Conv_728[FLOAT, 64x128x1x1] %onnx::Conv_729[FLOAT, 64] %onnx::Conv_731[FLOAT, 64x64x3x3] %onnx::Conv_734[FLOAT, 64x128x1x1] %onnx::Conv_737[FLOAT, 64x128x1x1] %onnx::Conv_740[FLOAT, 64x64x3x3] %onnx::Conv_743[FLOAT, 64x128x1x1] %onnx::Conv_746[FLOAT, 64x64x3x3] %onnx::Conv_749[FLOAT, 64x128x1x1] %onnx::Conv_752[FLOAT, 64x128x1x1] %onnx::Conv_755[FLOAT, 64x64x3x3] %onnx::Conv_758[FLOAT, 64x128x1x1] %onnx::Conv_761[FLOAT, 64x64x3x3] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_767[FLOAT, 64x128x1x1] %onnx::Conv_770[FLOAT, 64x64x3x3] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 128x128x3x3] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x3x3] %onnx::Conv_788[FLOAT, 128x256x1x1] %onnx::Conv_791[FLOAT, 128x128x3x3] %onnx::Conv_794[FLOAT, 128x256x1x1] %onnx::Conv_797[FLOAT, 128x256x1x1] %onnx::Conv_800[FLOAT, 128x128x3x3] %onnx::Conv_803[FLOAT, 128x256x1x1] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 128x256x1x1] %onnx::Conv_812[FLOAT, 128x256x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 256x256x1x1] %onnx::Conv_819[FLOAT, 256] %onnx::Conv_821[FLOAT, 256x256x3x3] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x3x3] %onnx::Conv_833[FLOAT, 256x512x1x1] %onnx::Conv_836[FLOAT, 256x256x3x3] %onnx::Conv_839[FLOAT, 256x512x1x1] %onnx::Conv_842[FLOAT, 256x512x1x1] %onnx::Conv_845[FLOAT, 256x256x3x3] %onnx::Conv_848[FLOAT, 256x512x1x1] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 256x512x1x1] %onnx::Conv_857[FLOAT, 256x512x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] ) { %onnx::Conv_861 = Identity(%onnx::Conv_819) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_819) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_726) %onnx::Conv_813 = Identity(%onnx::Conv_726) %onnx::Conv_810 = Identity(%onnx::Conv_726) %onnx::Conv_807 = Identity(%onnx::Conv_726) %onnx::Conv_804 = Identity(%onnx::Conv_726) %onnx::Conv_801 = Identity(%onnx::Conv_726) %onnx::Conv_798 = Identity(%onnx::Conv_726) %onnx::Conv_795 = Identity(%onnx::Conv_726) %onnx::Conv_792 = Identity(%onnx::Conv_726) %onnx::Conv_789 = Identity(%onnx::Conv_726) %onnx::Conv_786 = Identity(%onnx::Conv_726) %onnx::Conv_783 = Identity(%onnx::Conv_726) %onnx::Conv_780 = Identity(%onnx::Conv_726) %onnx::Conv_777 = Identity(%onnx::Conv_726) %onnx::Conv_774 = Identity(%onnx::Conv_726) %onnx::Conv_771 = Identity(%onnx::Conv_729) %onnx::Conv_768 = Identity(%onnx::Conv_729) %onnx::Conv_765 = Identity(%onnx::Conv_729) %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_725, %onnx::Conv_726) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %723 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %723 }
val_accuracy
92.307693
1,783,506,944
5,969,674
{'zcp_epe_nas': 87.74975650745196, 'zcp_fisher': 10.466567039489746, 'zcp_flops': 28536111104.0, 'zcp_grad_norm': 59.055667877197266, 'zcp_grasp': -2.992919921875, 'zcp_jacov': -16.05774376104925, 'zcp_l2_norm': 890.6311645507812, 'zcp_nwot': 221.0992310774493, 'zcp_params': 5969674.0, 'zcp_plain': 0.014180463738739001, 'zcp_snip': 385.1087646484375, 'zcp_synflow': 94.64928221374308, 'zcp_zen': 95.4381332397461, 'zcp_val_accuracy': 0.928285241127014}
NASBench101_362451
NASBench101
362451
db1735434f26a02f38b94886782b2f1f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_716[FLOAT, 128x3x3x3] %onnx::Conv_717[FLOAT, 128] %onnx::Conv_719[FLOAT, 64x128x1x1] %onnx::Conv_720[FLOAT, 64] %onnx::Conv_722[FLOAT, 64x64x3x3] %onnx::Conv_725[FLOAT, 64x64x1x1] %onnx::Conv_728[FLOAT, 64x64x1x1] %onnx::Conv_731[FLOAT, 128x128x1x1] %onnx::Conv_734[FLOAT, 64x128x1x1] %onnx::Conv_737[FLOAT, 64x64x3x3] %onnx::Conv_740[FLOAT, 64x64x1x1] %onnx::Conv_743[FLOAT, 64x64x1x1] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 64x128x1x1] %onnx::Conv_752[FLOAT, 64x64x3x3] %onnx::Conv_755[FLOAT, 64x64x1x1] %onnx::Conv_758[FLOAT, 64x64x1x1] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x3x3] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 256x128x1x1] %onnx::Conv_777[FLOAT, 256] %onnx::Conv_779[FLOAT, 128x256x1x1] %onnx::Conv_782[FLOAT, 128x128x3x3] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 256x256x1x1] %onnx::Conv_794[FLOAT, 128x256x1x1] %onnx::Conv_797[FLOAT, 128x128x3x3] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 256x256x1x1] %onnx::Conv_809[FLOAT, 256x256x1x1] %onnx::Conv_812[FLOAT, 256x256x3x3] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x1x1] %onnx::Conv_821[FLOAT, 512x256x1x1] %onnx::Conv_822[FLOAT, 512] %onnx::Conv_824[FLOAT, 256x512x1x1] %onnx::Conv_827[FLOAT, 256x256x3x3] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 512x512x1x1] %onnx::Conv_839[FLOAT, 256x512x1x1] %onnx::Conv_842[FLOAT, 256x256x3x3] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 512x512x1x1] ) { %onnx::Conv_852 = Identity(%onnx::Conv_822) %onnx::Conv_849 = Identity(%onnx::Conv_777) %onnx::Conv_846 = Identity(%onnx::Conv_777) %onnx::Conv_843 = Identity(%onnx::Conv_777) %onnx::Conv_840 = Identity(%onnx::Conv_777) %onnx::Conv_837 = Identity(%onnx::Conv_822) %onnx::Conv_834 = Identity(%onnx::Conv_777) %onnx::Conv_831 = Identity(%onnx::Conv_777) %onnx::Conv_828 = Identity(%onnx::Conv_777) %onnx::Conv_825 = Identity(%onnx::Conv_777) %onnx::Conv_819 = Identity(%onnx::Conv_777) %onnx::Conv_816 = Identity(%onnx::Conv_777) %onnx::Conv_813 = Identity(%onnx::Conv_777) %onnx::Conv_810 = Identity(%onnx::Conv_777) %onnx::Conv_807 = Identity(%onnx::Conv_777) %onnx::Conv_804 = Identity(%onnx::Conv_717) %onnx::Conv_801 = Identity(%onnx::Conv_717) %onnx::Conv_798 = Identity(%onnx::Conv_717) %onnx::Conv_795 = Identity(%onnx::Conv_717) %onnx::Conv_792 = Identity(%onnx::Conv_777) %onnx::Conv_789 = Identity(%onnx::Conv_717) %onnx::Conv_786 = Identity(%onnx::Conv_717) %onnx::Conv_783 = Identity(%onnx::Conv_717) %onnx::Conv_780 = Identity(%onnx::Conv_717) %onnx::Conv_774 = Identity(%onnx::Conv_717) %onnx::Conv_771 = Identity(%onnx::Conv_717) %onnx::Conv_768 = Identity(%onnx::Conv_717) %onnx::Conv_765 = Identity(%onnx::Conv_717) %onnx::Conv_762 = Identity(%onnx::Conv_717) %onnx::Conv_759 = Identity(%onnx::Conv_720) %onnx::Conv_756 = Identity(%onnx::Conv_720) %onnx::Conv_753 = Identity(%onnx::Conv_720) %onnx::Conv_750 = Identity(%onnx::Conv_720) %onnx::Conv_747 = Identity(%onnx::Conv_717) %onnx::Conv_744 = Identity(%onnx::Conv_720) %onnx::Conv_741 = Identity(%onnx::Conv_720) %onnx::Conv_738 = Identity(%onnx::Conv_720) %onnx::Conv_735 = Identity(%onnx::Conv_720) %onnx::Conv_732 = Identity(%onnx::Conv_717) %onnx::Conv_729 = Identity(%onnx::Conv_720) %onnx::Conv_726 = Identity(%onnx::Conv_720) %onnx::Conv_723 = Identity(%onnx::Conv_720) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_716, %onnx::Conv_717) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_3_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_3_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_3_output_0) %714 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %714 }
val_accuracy
91.917068
1,257,777,152
4,166,026
{'zcp_epe_nas': 93.05726275041559, 'zcp_fisher': 2.841496706008911, 'zcp_flops': 20124434432.0, 'zcp_grad_norm': 39.189170837402344, 'zcp_grasp': -4.686248779296875, 'zcp_jacov': -16.052629407772578, 'zcp_l2_norm': 843.482177734375, 'zcp_nwot': 224.2206831462309, 'zcp_params': 4166026.0, 'zcp_plain': 0.12480694800615301, 'zcp_snip': 235.382080078125, 'zcp_synflow': 107.27792952403347, 'zcp_zen': 82.39697265625, 'zcp_val_accuracy': 0.8729968070983881}