Datasets:
metadata
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-MS^2
- extended|other-Cochrane
task_categories:
- summarization
- text2text-generation
task_ids: []
paperswithcode_id: multi-document-summarization
pretty_name: MSLR Shared Task
tags:
- query-based-summarization
- query-based-multi-document-summarization
- scientific-document-summarization
This is a copy of the MS^2 dataset, except the input source documents of its validation split have been replaced by a dense retriever. The retrieval pipeline used:
- query: The
backgroundfield of each example - corpus: The union of all documents in the
train,validationandtestsplits. A document is the concatenation of thetitleandabstract. - retriever:
facebook/contriever-msmarcovia PyTerrier with default settings - top-k strategy:
"mean", i.e. the number of documents retrieved,k, is set as the mean number of documents seen across examples in this dataset
Retrieval results on the validation set:
| ndcg | recall@100 | recall@1000 | Rprec |
|---|---|---|---|
| 0.4565 | 0.4364 | 0.728 | 0.2133 |