pretty_name: HALvest-Geometric
license: cc-by-4.0
configs:
- config_name: en
data_files: en/*.gz
- config_name: fr
data_files: fr/*.gz
- config_name: ict-2
data_files:
- split: train
path: ict-2/train-*
- config_name: ict-4
data_files:
- split: train
path: ict-4/train-*
language:
- en
- fr
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
tags:
- academia
- research
- graph
annotations_creators:
- no-annotation
multilinguality:
- multilingual
source_datasets:
- HALvest
dataset_info:
- config_name: ict-2
features:
- name: halid
dtype: string
- name: year
dtype: string
- name: affiliations
sequence: string
- name: domains
sequence: string
- name: authors
sequence: string
- name: query
dtype: string
- name: positive
dtype: string
- name: negative
dtype: string
splits:
- name: train
num_bytes: 1665821697
num_examples: 976619
download_size: 954211030
dataset_size: 1665821697
- config_name: ict-4
features:
- name: halid
dtype: string
- name: year
dtype: string
- name: affiliations
sequence: string
- name: domains
sequence: string
- name: authors
sequence: string
- name: query
dtype: string
- name: positive
dtype: string
- name: negative
dtype: string
splits:
- name: train
num_bytes: 3185622246
num_examples: 971620
download_size: 1747142363
dataset_size: 3185622246
HALvest-Geometric
Citation Network of Open Scientific Papers Harvested from HAL
Dataset Description
- Repository: GitHub
Dataset Summary
overview:
French and English fulltexts from open papers found on Hyper Articles en Ligne (HAL) and its citation network.
You can download the dataset using Hugging Face datasets:
from datasets import load_dataset
ds = load_dataset("Madjakul/HALvest-Geometric", "en")
Details
Nodes
- Papers: 18,662,037
- Authors: 238,397
- Affiliations: 96,105
- Domains: 16
Edges
- Paper <-> Domain: 136,700
- Paper <-> Paper: 22,363,817
- Author <-> Paper: 238,397
- Author <-> Affiliation: 426,030
Languages
| ISO-639 | Language | # Documents | # mT5 Tokens |
|---|---|---|---|
| en | English | 442,892 | 7,606,895,258 |
| fr | French | 193,437 | 8,728,722,255 |
Considerations for Using the Data
The corpus is extracted from the HAL's open archive which distributes scientific publications following open access principles. The corpus is made up of both creative commons licensed and copyrighted documents (distribution authorized on HAL by the publisher). This must be considered prior to using this dataset for any purpose, other than training deep learning models, data mining etc. We do not own any of the text from which these data has been extracted.
Dataset Copyright
The licence terms for HALvest strictly follows the one from HAL. Please refer to the below license when using this dataset.
Citation
@misc{kulumba2024harvestingtextualstructureddata,
title={Harvesting Textual and Structured Data from the HAL Publication Repository},
author={Francis Kulumba and Wissam Antoun and Guillaume Vimont and Laurent Romary},
year={2024},
eprint={2407.20595},
archivePrefix={arXiv},
primaryClass={cs.DL},
url={https://arxiv.org/abs/2407.20595},
}