|
|
--- |
|
|
language: |
|
|
- fr |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
task_categories: |
|
|
- summarization |
|
|
- image-to-text |
|
|
- text-generation |
|
|
tags: |
|
|
- summarization |
|
|
- vision |
|
|
- DeepSeek-OCR |
|
|
- multilingual |
|
|
- visual-text-encoding |
|
|
- random-augmentation |
|
|
library_name: datasets |
|
|
license: cc-by-nc-sa-4.0 |
|
|
pretty_name: MLSUM French News Summarization |
|
|
dataset_info: |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: summary |
|
|
dtype: string |
|
|
- name: image |
|
|
dtype: image |
|
|
- name: source_dataset |
|
|
dtype: string |
|
|
- name: original_split |
|
|
dtype: string |
|
|
- name: original_index |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 35360851312 |
|
|
num_examples: 392902 |
|
|
download_size: 34743297549 |
|
|
dataset_size: 35360851312 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
--- |
|
|
|
|
|
# DeepSynth - MLSUM French News Summarization |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
Large-scale French news summarization dataset from major French newspapers. |
|
|
Enables training multilingual DeepSeek-OCR models with proper Unicode/diacritics handling. |
|
|
|
|
|
This dataset is part of the **DeepSynth** project, which uses visual text encoding for multilingual summarization with the DeepSeek-OCR vision-language model. Text documents are converted into images and processed through a frozen 380M parameter visual encoder, enabling 20x token compression while preserving document layout and structure. |
|
|
|
|
|
### Key Features |
|
|
|
|
|
- **Original High-Quality Images**: Full-resolution images stored once, augmented on-the-fly during training |
|
|
- **Random Augmentation Pipeline**: Rotation, perspective, color jitter, and resize transforms for better generalization |
|
|
- **Visual Text Encoding**: 20x compression ratio (1 visual token ≈ 20 text tokens) |
|
|
- **Document Structure Preservation**: Layout and formatting maintained through image representation |
|
|
- **Human-Written Summaries**: High-quality reference summaries for each document |
|
|
- **Deduplication Tracking**: Source dataset and index tracking prevents duplicates |
|
|
|
|
|
### Dataset Statistics |
|
|
|
|
|
- **Total Samples**: ~392,000 |
|
|
- **Language(s)**: French |
|
|
- **Domain**: French news articles |
|
|
- **Average Document Length**: ~700 tokens |
|
|
- **Average Summary Length**: ~50 tokens |
|
|
|
|
|
### Source Dataset |
|
|
|
|
|
Based on **MLSUM (MultiLingual SUMmarization)** French subset. |
|
|
- **Original Authors**: Scialom et al. (2020) |
|
|
- **Paper**: [MLSUM: The Multilingual Summarization Corpus](https://arxiv.org/abs/2004.14900) |
|
|
- **License**: CC BY-NC-SA 4.0 |
|
|
|
|
|
## Image Augmentation Pipeline |
|
|
|
|
|
Images are stored at **original resolution** (up to 1600×2200) and augmented during training for better generalization: |
|
|
|
|
|
### Available Augmentation Transforms |
|
|
|
|
|
- **Random Rotation**: ±10° rotation for orientation invariance |
|
|
- **Random Perspective**: 0.1-0.2 distortion to simulate viewing angles |
|
|
- **Random Resize**: 512-1600px range for multi-scale learning |
|
|
- **Color Jitter**: Brightness, contrast, saturation adjustments (±20%) |
|
|
- **Random Horizontal Flip**: Optional (use with caution for text) |
|
|
|
|
|
All transforms preserve aspect ratio with padding to maintain text readability. This approach: |
|
|
- **Reduces storage**: 6x less disk space (single image vs 6 resolutions) |
|
|
- **Increases flexibility**: Any resolution on-the-fly vs pre-computed fixed sizes |
|
|
- **Improves generalization**: Random transforms prevent overfitting to specific resolutions |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
- `text` (string): Original document text |
|
|
- `summary` (string): Human-written summary |
|
|
- `image` (PIL.Image): Original full-size rendered document image (up to 1600×2200) |
|
|
- `source_dataset` (string): Origin dataset name |
|
|
- `original_split` (string): Source split (train/validation/test) |
|
|
- `original_index` (int): Original sample index for deduplication |
|
|
|
|
|
### Data Example |
|
|
|
|
|
```python |
|
|
{ |
|
|
'text': 'Le gouvernement français a annoncé de nouvelles mesures...', |
|
|
'summary': 'Nouvelles mesures gouvernementales contre le changement climatique.', |
|
|
'image': <PIL.Image>, # Original resolution (up to 1600×2200) |
|
|
'source_dataset': 'MLSUM (fr)', |
|
|
'original_split': 'train', |
|
|
'original_index': 0 |
|
|
} |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Loading the Dataset |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load full dataset |
|
|
dataset = load_dataset("baconnier/deepsynth-fr") |
|
|
|
|
|
# Streaming for large datasets |
|
|
dataset = load_dataset("baconnier/deepsynth-fr", streaming=True) |
|
|
``` |
|
|
|
|
|
### Training Example with DeepSeek-OCR and Augmentation |
|
|
|
|
|
```python |
|
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
|
from datasets import load_dataset |
|
|
from deepsynth.data.transforms import create_training_transform |
|
|
|
|
|
# Load model and processor |
|
|
model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/DeepSeek-OCR") |
|
|
processor = AutoProcessor.from_pretrained("deepseek-ai/DeepSeek-OCR") |
|
|
|
|
|
# Load dataset |
|
|
dataset = load_dataset("baconnier/deepsynth-fr") |
|
|
|
|
|
# Create augmentation pipeline (random rotation, perspective, resize, color jitter) |
|
|
transform = create_training_transform( |
|
|
target_size_range=(512, 1600), # Random resize range |
|
|
rotation_degrees=10, # ±10° rotation |
|
|
perspective_distortion=0.1, # Perspective transform |
|
|
brightness_factor=0.2, # ±20% brightness |
|
|
contrast_factor=0.2, # ±20% contrast |
|
|
) |
|
|
|
|
|
# Process sample with augmentation |
|
|
sample = dataset['train'][0] |
|
|
augmented_image = transform(sample['image']) # Apply random transforms |
|
|
inputs = processor( |
|
|
images=augmented_image, |
|
|
text=sample['text'], |
|
|
return_tensors="pt" |
|
|
) |
|
|
|
|
|
# Fine-tune decoder only (freeze encoder) |
|
|
for param in model.encoder.parameters(): |
|
|
param.requires_grad = False |
|
|
|
|
|
# Training loop with on-the-fly augmentation... |
|
|
``` |
|
|
|
|
|
## Training Recommendations |
|
|
|
|
|
### DeepSeek-OCR Fine-Tuning |
|
|
|
|
|
```python |
|
|
# Recommended hyperparameters with augmentation |
|
|
training_args = { |
|
|
"learning_rate": 2e-5, |
|
|
"batch_size": 4, |
|
|
"gradient_accumulation_steps": 4, |
|
|
"num_epochs": 3, |
|
|
"mixed_precision": "bf16", |
|
|
"freeze_encoder": True, # IMPORTANT: Only fine-tune decoder |
|
|
|
|
|
# Augmentation parameters |
|
|
"rotation_degrees": 10, # Random rotation ±10° |
|
|
"perspective_distortion": 0.1, # Perspective transform |
|
|
"resize_range": (512, 1600), # Random resize 512-1600px |
|
|
"brightness_factor": 0.2, # ±20% brightness |
|
|
"contrast_factor": 0.2, # ±20% contrast |
|
|
} |
|
|
``` |
|
|
|
|
|
### Expected Performance |
|
|
|
|
|
- **Baseline (text-to-text)**: ROUGE-1 ~40-42 |
|
|
- **DeepSeek-OCR (visual)**: ROUGE-1 ~44-47 (typical SOTA) |
|
|
- **Training Time**: ~6-8 hours on A100 (80GB) for full dataset |
|
|
- **GPU Memory**: ~40GB with batch_size=4, mixed_precision=bf16 |
|
|
|
|
|
## Dataset Creation |
|
|
|
|
|
This dataset was created using the **DeepSynth** pipeline: |
|
|
|
|
|
1. **Source Loading**: Original text documents from MLSUM (fr) |
|
|
2. **Text-to-Image Conversion**: Documents rendered as PNG images (DejaVu Sans 12pt, Unicode support) |
|
|
3. **Original Resolution Storage**: Full-quality images stored once (up to 1600×2200) |
|
|
4. **Incremental Upload**: Batches of 5,000 samples uploaded to HuggingFace Hub |
|
|
5. **Deduplication**: Source tracking prevents duplicate samples |
|
|
|
|
|
**Note**: Images are augmented on-the-fly during training using random transformations (rotation, perspective, resize, color jitter) for better generalization across different resolutions and conditions. |
|
|
|
|
|
### Rendering Specifications |
|
|
|
|
|
- **Font**: DejaVu Sans 12pt (full Unicode support for multilingual text) |
|
|
- **Line Wrapping**: 100 characters per line |
|
|
- **Margin**: 40px |
|
|
- **Background**: White (255, 255, 255) |
|
|
- **Text Color**: Black (0, 0, 0) |
|
|
- **Format**: PNG with lossless compression |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{deepsynth-fr, |
|
|
title={{DeepSynth MLSUM French News Summarization: Visual Text Encoding with Random Augmentation for Summarization}}, |
|
|
author={Baconnier}, |
|
|
year={2025}, |
|
|
publisher={HuggingFace}, |
|
|
howpublished={\url{https://huggingface.co/datasets/baconnier/deepsynth-fr}} |
|
|
} |
|
|
``` |
|
|
|
|
|
### Source Dataset Citation |
|
|
|
|
|
```bibtex |
|
|
@inproceedings{scialom2020mlsum, |
|
|
title={MLSUM: The Multilingual Summarization Corpus}, |
|
|
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo}, |
|
|
booktitle={Proceedings of EMNLP}, |
|
|
year={2020} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International |
|
|
|
|
|
**Note**: This dataset inherits the license from the original source dataset. Please review the source license before commercial use. |
|
|
|
|
|
## Limitations and Bias |
|
|
|
|
|
- **French-specific**: Requires French language models |
|
|
- **Diacritics**: Proper handling of accents (é, è, ê, etc.) critical |
|
|
- **Regional**: May contain France-specific cultural references |
|
|
- **News domain**: Limited to journalistic style |
|
|
|
|
|
## Additional Information |
|
|
|
|
|
### Dataset Curators |
|
|
|
|
|
Created by the DeepSynth team as part of multilingual visual summarization research. |
|
|
|
|
|
### Contact |
|
|
|
|
|
- **Repository**: [DeepSynth GitHub](https://github.com/bacoco/DeepSynth) |
|
|
- **Issues**: [GitHub Issues](https://github.com/bacoco/DeepSynth/issues) |
|
|
|
|
|
### Acknowledgments |
|
|
|
|
|
- **DeepSeek-OCR**: Visual encoder from DeepSeek AI |
|
|
- **Source Dataset**: MLSUM (fr) |
|
|
- **HuggingFace**: Dataset hosting and infrastructure |
|
|
|