deepsynth-fr / README.md
baconnier's picture
fix: correct metadata (392,902 samples)
b5b4914 verified
---
language:
- fr
size_categories:
- 100K<n<1M
task_categories:
- summarization
- image-to-text
- text-generation
tags:
- summarization
- vision
- DeepSeek-OCR
- multilingual
- visual-text-encoding
- random-augmentation
library_name: datasets
license: cc-by-nc-sa-4.0
pretty_name: MLSUM French News Summarization
dataset_info:
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: image
dtype: image
- name: source_dataset
dtype: string
- name: original_split
dtype: string
- name: original_index
dtype: int64
splits:
- name: train
num_bytes: 35360851312
num_examples: 392902
download_size: 34743297549
dataset_size: 35360851312
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# DeepSynth - MLSUM French News Summarization
## Dataset Description
Large-scale French news summarization dataset from major French newspapers.
Enables training multilingual DeepSeek-OCR models with proper Unicode/diacritics handling.
This dataset is part of the **DeepSynth** project, which uses visual text encoding for multilingual summarization with the DeepSeek-OCR vision-language model. Text documents are converted into images and processed through a frozen 380M parameter visual encoder, enabling 20x token compression while preserving document layout and structure.
### Key Features
- **Original High-Quality Images**: Full-resolution images stored once, augmented on-the-fly during training
- **Random Augmentation Pipeline**: Rotation, perspective, color jitter, and resize transforms for better generalization
- **Visual Text Encoding**: 20x compression ratio (1 visual token ≈ 20 text tokens)
- **Document Structure Preservation**: Layout and formatting maintained through image representation
- **Human-Written Summaries**: High-quality reference summaries for each document
- **Deduplication Tracking**: Source dataset and index tracking prevents duplicates
### Dataset Statistics
- **Total Samples**: ~392,000
- **Language(s)**: French
- **Domain**: French news articles
- **Average Document Length**: ~700 tokens
- **Average Summary Length**: ~50 tokens
### Source Dataset
Based on **MLSUM (MultiLingual SUMmarization)** French subset.
- **Original Authors**: Scialom et al. (2020)
- **Paper**: [MLSUM: The Multilingual Summarization Corpus](https://arxiv.org/abs/2004.14900)
- **License**: CC BY-NC-SA 4.0
## Image Augmentation Pipeline
Images are stored at **original resolution** (up to 1600×2200) and augmented during training for better generalization:
### Available Augmentation Transforms
- **Random Rotation**: ±10° rotation for orientation invariance
- **Random Perspective**: 0.1-0.2 distortion to simulate viewing angles
- **Random Resize**: 512-1600px range for multi-scale learning
- **Color Jitter**: Brightness, contrast, saturation adjustments (±20%)
- **Random Horizontal Flip**: Optional (use with caution for text)
All transforms preserve aspect ratio with padding to maintain text readability. This approach:
- **Reduces storage**: 6x less disk space (single image vs 6 resolutions)
- **Increases flexibility**: Any resolution on-the-fly vs pre-computed fixed sizes
- **Improves generalization**: Random transforms prevent overfitting to specific resolutions
## Dataset Structure
### Data Fields
- `text` (string): Original document text
- `summary` (string): Human-written summary
- `image` (PIL.Image): Original full-size rendered document image (up to 1600×2200)
- `source_dataset` (string): Origin dataset name
- `original_split` (string): Source split (train/validation/test)
- `original_index` (int): Original sample index for deduplication
### Data Example
```python
{
'text': 'Le gouvernement français a annoncé de nouvelles mesures...',
'summary': 'Nouvelles mesures gouvernementales contre le changement climatique.',
'image': <PIL.Image>, # Original resolution (up to 1600×2200)
'source_dataset': 'MLSUM (fr)',
'original_split': 'train',
'original_index': 0
}
```
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("baconnier/deepsynth-fr")
# Streaming for large datasets
dataset = load_dataset("baconnier/deepsynth-fr", streaming=True)
```
### Training Example with DeepSeek-OCR and Augmentation
```python
from transformers import AutoProcessor, AutoModelForVision2Seq
from datasets import load_dataset
from deepsynth.data.transforms import create_training_transform
# Load model and processor
model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/DeepSeek-OCR")
processor = AutoProcessor.from_pretrained("deepseek-ai/DeepSeek-OCR")
# Load dataset
dataset = load_dataset("baconnier/deepsynth-fr")
# Create augmentation pipeline (random rotation, perspective, resize, color jitter)
transform = create_training_transform(
target_size_range=(512, 1600), # Random resize range
rotation_degrees=10, # ±10° rotation
perspective_distortion=0.1, # Perspective transform
brightness_factor=0.2, # ±20% brightness
contrast_factor=0.2, # ±20% contrast
)
# Process sample with augmentation
sample = dataset['train'][0]
augmented_image = transform(sample['image']) # Apply random transforms
inputs = processor(
images=augmented_image,
text=sample['text'],
return_tensors="pt"
)
# Fine-tune decoder only (freeze encoder)
for param in model.encoder.parameters():
param.requires_grad = False
# Training loop with on-the-fly augmentation...
```
## Training Recommendations
### DeepSeek-OCR Fine-Tuning
```python
# Recommended hyperparameters with augmentation
training_args = {
"learning_rate": 2e-5,
"batch_size": 4,
"gradient_accumulation_steps": 4,
"num_epochs": 3,
"mixed_precision": "bf16",
"freeze_encoder": True, # IMPORTANT: Only fine-tune decoder
# Augmentation parameters
"rotation_degrees": 10, # Random rotation ±10°
"perspective_distortion": 0.1, # Perspective transform
"resize_range": (512, 1600), # Random resize 512-1600px
"brightness_factor": 0.2, # ±20% brightness
"contrast_factor": 0.2, # ±20% contrast
}
```
### Expected Performance
- **Baseline (text-to-text)**: ROUGE-1 ~40-42
- **DeepSeek-OCR (visual)**: ROUGE-1 ~44-47 (typical SOTA)
- **Training Time**: ~6-8 hours on A100 (80GB) for full dataset
- **GPU Memory**: ~40GB with batch_size=4, mixed_precision=bf16
## Dataset Creation
This dataset was created using the **DeepSynth** pipeline:
1. **Source Loading**: Original text documents from MLSUM (fr)
2. **Text-to-Image Conversion**: Documents rendered as PNG images (DejaVu Sans 12pt, Unicode support)
3. **Original Resolution Storage**: Full-quality images stored once (up to 1600×2200)
4. **Incremental Upload**: Batches of 5,000 samples uploaded to HuggingFace Hub
5. **Deduplication**: Source tracking prevents duplicate samples
**Note**: Images are augmented on-the-fly during training using random transformations (rotation, perspective, resize, color jitter) for better generalization across different resolutions and conditions.
### Rendering Specifications
- **Font**: DejaVu Sans 12pt (full Unicode support for multilingual text)
- **Line Wrapping**: 100 characters per line
- **Margin**: 40px
- **Background**: White (255, 255, 255)
- **Text Color**: Black (0, 0, 0)
- **Format**: PNG with lossless compression
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{deepsynth-fr,
title={{DeepSynth MLSUM French News Summarization: Visual Text Encoding with Random Augmentation for Summarization}},
author={Baconnier},
year={2025},
publisher={HuggingFace},
howpublished={\url{https://huggingface.co/datasets/baconnier/deepsynth-fr}}
}
```
### Source Dataset Citation
```bibtex
@inproceedings{scialom2020mlsum,
title={MLSUM: The Multilingual Summarization Corpus},
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle={Proceedings of EMNLP},
year={2020}
}
```
## License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
**Note**: This dataset inherits the license from the original source dataset. Please review the source license before commercial use.
## Limitations and Bias
- **French-specific**: Requires French language models
- **Diacritics**: Proper handling of accents (é, è, ê, etc.) critical
- **Regional**: May contain France-specific cultural references
- **News domain**: Limited to journalistic style
## Additional Information
### Dataset Curators
Created by the DeepSynth team as part of multilingual visual summarization research.
### Contact
- **Repository**: [DeepSynth GitHub](https://github.com/bacoco/DeepSynth)
- **Issues**: [GitHub Issues](https://github.com/bacoco/DeepSynth/issues)
### Acknowledgments
- **DeepSeek-OCR**: Visual encoder from DeepSeek AI
- **Source Dataset**: MLSUM (fr)
- **HuggingFace**: Dataset hosting and infrastructure