metadata
			tags:
  - ocr
  - document-processing
  - dots-ocr
  - multilingual
  - markdown
  - uv-script
  - generated
Document OCR using dots.ocr
This dataset contains OCR results from images in davanstrien/transcribed-slates using DoTS.ocr, a compact 1.7B multilingual model.
Processing Details
- Source Dataset: davanstrien/transcribed-slates
- Model: rednote-hilab/dots.ocr
- Number of Samples: 100
- Processing Time: 1.5 min
- Processing Date: 2025-10-22 15:19 UTC
Configuration
- Image Column: image
- Output Column: markdown
- Dataset Split: train
- Batch Size: 256
- Prompt Mode: ocr
- Max Model Length: 8,192 tokens
- Max Output Tokens: 8,192
- GPU Memory Utilization: 80.0%
Model Information
DoTS.ocr is a compact multilingual document parsing model that excels at:
- π 100+ Languages - Multilingual document support
- π Table extraction - Structured data recognition
- π Formulas - Mathematical notation preservation
- π Layout-aware - Reading order and structure preservation
- π― Compact - Only 1.7B parameters
Dataset Structure
The dataset contains all original columns plus:
- markdown: The extracted text in markdown format
- inference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr DoTS OCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
    davanstrien/transcribed-slates \
    <output-dataset> \
    --image-column image \
    --batch-size 256 \
    --prompt-mode ocr \
    --max-model-len 8192 \
    --max-tokens 8192 \
    --gpu-memory-utilization 0.8
Generated with π€ UV Scripts
