Datasets:
ArXiv:
License:
| import os | |
| import random | |
| from concurrent.futures import ProcessPoolExecutor | |
| from functools import partial | |
| from pathlib import Path | |
| from typing import Optional | |
| import torch.nn.functional as F | |
| import lmdb | |
| import gzip | |
| import pickle | |
| import json | |
| from itertools import product | |
| import numpy as np | |
| from tqdm import tqdm | |
| import torch | |
| from torch_geometric.data import Data, Dataset | |
| from torch_geometric.loader import DataLoader | |
| import periodictable | |
| from torch.utils.data.distributed import DistributedSampler | |
| from torch.utils.data import SubsetRandomSampler, random_split, Subset | |
| import bisect | |
| HARTREE_2_EV = 27.2114 | |
| BOHR_2_ANGSTROM = 1.8897 | |
| _MEAN_ENERGY = -4.269320623583757 | |
| _STD_ENERGY = 1.0 | |
| _STD_FORCE_SCALE = 1.0 | |
| atomic_number_mapping = {} | |
| for element in periodictable.elements: | |
| atomic_number_mapping[element.symbol] = element.number | |
| atomic_number_mapping[element.symbol.upper()] = element.number | |
| atomic_number_mapping[element.symbol.lower()] = element.number | |
| atom_energy = { | |
| 1: -0.5002727762, | |
| 4: -14.6684425428, | |
| 5: -24.6543539532, | |
| 6: -37.8462799513, | |
| 7: -54.5844893657, | |
| 8: -75.0606214015, | |
| 9: -99.7155354215, | |
| 14: -289.3723539998, | |
| 15: -341.2580898032, | |
| 16: -398.1049925382, | |
| 17: -460.1362417086, | |
| 21: -760.5813501324, | |
| 22: -849.3013849537, | |
| 23: -943.8255794204, | |
| 24: -1044.2810289455, | |
| 25: -1150.8680174849, | |
| 26: -1263.5207828239406, | |
| 27: -1382.5485719267936, | |
| 28: -1508.0542451335, | |
| 29: -1640.1731641564784, | |
| 31: -1924.5926070018, | |
| 32: -2076.6914561594, | |
| 33: -2235.5683127287, | |
| 34: -2401.2347730327, | |
| 35: -2573.8397377628 | |
| } | |
| def find_last_index_with_key(objects, key): | |
| last_index = -1 | |
| for i in range(len(objects) - 1, -1, -1): | |
| if key in objects[i] and objects[i][key] is not None: | |
| last_index = i | |
| break | |
| return last_index | |
| def data_to_pyg(data, key, stage='1st', filter=False): | |
| def process_data(phase): | |
| nonlocal data | |
| nonlocal key | |
| nonlocal stage | |
| datas = [] | |
| if phase is None or len(phase) == 0: | |
| return datas | |
| if stage == 'mixing': | |
| if len(data['DFT_2nd']) != 0: | |
| last_index = find_last_index_with_key(data['DFT_2nd'], 'energy') | |
| if last_index == -1: | |
| if data['DFT_1st'] is None or len(data['DFT_1st']) == 0: | |
| return datas | |
| last_index = find_last_index_with_key(data['DFT_1st'], 'energy') | |
| last_data = data['DFT_1st'][last_index] | |
| else: | |
| last_data = data['DFT_2nd'][last_index] | |
| else: | |
| if data['DFT_1st'] is None or len(data['DFT_1st']) == 0: | |
| return datas | |
| last_index = find_last_index_with_key(data['DFT_1st'], 'energy') | |
| last_data = data['DFT_1st'][last_index] | |
| elif stage == '1st': | |
| last_index = find_last_index_with_key(data['DFT_1st'], 'energy') | |
| if last_index == -1: | |
| return datas | |
| last_data = phase[last_index] | |
| elif stage == '1st_smash': | |
| last_index = find_last_index_with_key(data['DFT_1st'], 'energy') | |
| if last_index == -1: | |
| return datas | |
| last_data = phase[last_index] | |
| elif stage == '2nd': | |
| last_index = find_last_index_with_key(data['DFT_2nd'], 'energy') | |
| if last_index == -1: | |
| return datas | |
| last_data = phase[last_index] | |
| elif stage == 'hf': | |
| last_index = find_last_index_with_key(data['hf'], 'energy') | |
| if last_index == -1: | |
| return datas | |
| last_data = phase[last_index] | |
| elif stage == 'pm3': | |
| last_index = find_last_index_with_key(data['pm3'], 'energy') | |
| if last_index == -1: | |
| return datas | |
| last_data = phase[last_index] | |
| else: | |
| raise Exception('Unknown stage') | |
| last_coordinates = last_data['coordinates'] | |
| last_energy = last_data['energy'] | |
| if stage == '1st_smash': | |
| if 'charge' in last_coordinates[0]: | |
| return datas | |
| for d in phase: | |
| coords = d['coordinates'] | |
| energy = d['energy'] | |
| gradient = d['gradient'] | |
| formation_energies = [] | |
| atomic_numbers = [] | |
| positions = [] | |
| last_positions = [] | |
| forces = [] | |
| if coords is None or len( | |
| coords) == 0: | |
| continue | |
| if stage == '1st_smash': | |
| if 'charge' in coords[0]: | |
| continue | |
| if energy is None: | |
| continue | |
| if len(coords) != len(last_coordinates): | |
| continue | |
| if len(gradient) != len(coords): | |
| continue | |
| for i, atom_info in enumerate(coords): | |
| atom = atom_info['atom'] | |
| atomic_number = atomic_number_mapping[atom] | |
| x = atom_info['x'] | |
| y = atom_info['y'] | |
| z = atom_info['z'] | |
| atomic_numbers.append(atomic_number) | |
| formation_energies.append(atom_energy[atomic_number]) | |
| positions.append([x, y, z]) | |
| last_positions.append([last_coordinates[i]['x'], last_coordinates[i]['y'], | |
| last_coordinates[i]['z']]) | |
| forces.append([-gradient[i]['dx'] * HARTREE_2_EV * BOHR_2_ANGSTROM, -gradient[i]['dy'] * HARTREE_2_EV * BOHR_2_ANGSTROM, | |
| -gradient[i]['dz'] * HARTREE_2_EV * BOHR_2_ANGSTROM]) | |
| x = torch.tensor(atomic_numbers, dtype=torch.long).view(-1, | |
| 1) | |
| pos = torch.tensor(positions, dtype=torch.float) | |
| last_pos = torch.tensor(last_positions, | |
| dtype=torch.float) | |
| y = torch.tensor([(energy - sum(formation_energies)) * HARTREE_2_EV / x.size(0)], | |
| dtype=torch.float) | |
| last_y = torch.tensor([(last_energy - sum(formation_energies)) * HARTREE_2_EV / x.size(0)], | |
| dtype=torch.float) | |
| y_force = torch.tensor(forces, | |
| dtype=torch.float) | |
| if (torch.isnan(x).any() or torch.isnan(pos).any() or torch.isnan(last_pos).any() or torch.isnan( | |
| y).any() or torch.isnan(last_y).any() or torch.isnan(y_force).any()): | |
| continue | |
| ds = Data(x=x, natoms=x.size(0), pos=pos, last_pos=last_pos, y=y, last_y=last_y, y_force=y_force, cid=str(key)) | |
| datas.append(ds) | |
| return datas | |
| if stage == '1st': | |
| return process_data(data['DFT_1st']) | |
| elif stage == '1st_smash': | |
| return process_data(data['DFT_1st']) | |
| elif stage == '2nd': | |
| return process_data(data['DFT_2nd']) | |
| elif stage == 'mixing': | |
| return process_data(data['DFT_1st']) + process_data(data['DFT_2nd']) | |
| elif stage == 'pm3': | |
| return process_data(data['pm3']) | |
| elif stage == 'hf': | |
| return process_data(data['hf']) | |
| else: | |
| raise Exception('Unknown stage') | |
| def process_key(key, db_path, stage, filtering): | |
| env = lmdb.open(str(db_path), subdir=False, readonly=True, lock=False) | |
| with env.begin(write=False) as txn: | |
| datapoint_pickled = txn.get(key) | |
| data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), stage, filter=filtering) | |
| if len(data_objects) > 0: | |
| return key | |
| else: | |
| return None | |
| def process_num(key, db_path, stage, filtering): | |
| env = lmdb.open(str(db_path), subdir=False, readonly=True, lock=False) | |
| with env.begin(write=False) as txn: | |
| datapoint_pickled = txn.get(key) | |
| data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), stage, filter=filtering) | |
| if len(data_objects) > 0: | |
| return len(data_objects) | |
| else: | |
| return None | |
| def get_valid_nums(db_path, keys, stage, filtering): | |
| valid_nums = [] | |
| worker_func = partial(process_num, db_path=db_path, stage=stage, filtering=filtering) | |
| with ProcessPoolExecutor(max_workers=32) as executor: | |
| results = executor.map(worker_func, keys) | |
| for maybe_len in tqdm(results, total=len(keys), desc="Get valid numbers"): | |
| if maybe_len is not None: | |
| valid_nums.append(maybe_len) | |
| return valid_nums | |
| def filter_valid_keys(db_path, keys, stage, filtering): | |
| valid_keys = [] | |
| worker_func = partial(process_key, db_path=db_path, stage=stage, filtering=filtering) | |
| with ProcessPoolExecutor(max_workers=32) as executor: | |
| results = executor.map(worker_func, keys) | |
| for maybe_key in tqdm(results, total=len(keys), desc="Filtering valid keys"): | |
| if maybe_key is not None: | |
| valid_keys.append(maybe_key) | |
| return valid_keys | |
| class LMDBDataset(Dataset): | |
| def __init__(self, path, transform=None, keys_file='valid_keys', stage='1st', total_traj=True, | |
| SubsetOnly=False, getTest = False, stochastic_frame = False) -> None: | |
| super(LMDBDataset, self).__init__() | |
| self.path = Path(path) | |
| self.keys_file = keys_file | |
| self.stage = stage | |
| self.total_traj = total_traj | |
| self.stochastic_frame = stochastic_frame | |
| assert self.path.is_dir(), "Path is not a directory" | |
| db_paths = sorted(self.path.glob("*.lmdb")) | |
| assert len(db_paths) > 0, f"No LMDBs found in '{self.path}'" | |
| self._keys = [] | |
| if total_traj: | |
| self._nums = [] | |
| self.envs = [] | |
| self.SubsetOnly = SubsetOnly | |
| self.postfix = "" | |
| if SubsetOnly: | |
| self.postfix = "_Subset" | |
| for i, db_path in enumerate(db_paths): | |
| if SubsetOnly: | |
| if 'Data06.lmdb' not in str(db_path): | |
| continue | |
| # If we're generating the test set, skip all lmdbs that aren't the test otherwise skip only the test lmdb | |
| if getTest: | |
| if 'test.lmdb' not in str(db_path): | |
| continue | |
| else: | |
| if 'test.lmdb' in str(db_path): | |
| continue | |
| cur_env = self.connect_db(db_path) | |
| self.envs.append(cur_env) | |
| lmdb_name = Path(str(db_path)).stem | |
| if os.path.exists(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}.txt')): | |
| self._keys.append(self.load_keys(lmdb_name)) | |
| else: | |
| with cur_env.begin() as txn: | |
| all_keys = [key for key in tqdm(txn.cursor().iternext(values=False))] | |
| filter_keys = filter_valid_keys(db_path, all_keys, self.stage, not self.SubsetOnly) | |
| self._keys.append(filter_keys) | |
| self.save_keys(filter_keys, lmdb_name) | |
| if total_traj: | |
| if os.path.exists( | |
| self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}_number.txt')): | |
| self._nums.append(self.load_nums(lmdb_name)) | |
| else: | |
| numbers = get_valid_nums(db_path, self._keys[-1], self.stage, not self.SubsetOnly) | |
| self._nums.append(numbers) | |
| self.save_numbers(numbers, lmdb_name) | |
| if not total_traj: | |
| keylens = [len(k) for k in self._keys] | |
| self._keylen_cumulative = np.cumsum(keylens).tolist() | |
| self.num_samples = sum(keylens) | |
| else: | |
| keylens = [sum(k) for k in self._nums] | |
| self._keylen_cumulative = np.cumsum(keylens).tolist() | |
| self._num_cumulative = [np.cumsum(k).tolist() for k in | |
| self._nums] | |
| self.num_samples = sum( | |
| keylens) | |
| nums_flat = np.concatenate([np.array(nums) for nums in self._nums]) | |
| cumulative_nums = np.cumsum(nums_flat) | |
| start_indices = np.concatenate(([0], cumulative_nums[:-1])) | |
| self.trajectory_indices = list(zip(start_indices.tolist(), cumulative_nums.tolist())) | |
| self.transform = transform | |
| self.maximum_dist = 0 | |
| def save_keys(self, keys, lmdb_name): | |
| with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}.txt'), 'w') as f: | |
| for key in keys: | |
| f.write(key.hex() + '\n') | |
| def save_numbers(self, numbers, lmdb_name): | |
| with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}_number.txt'), 'w') as f: | |
| for num in numbers: | |
| f.write(str(num) + '\n') | |
| def load_keys(self, lmdb_name): | |
| with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}.txt'), 'r') as f: | |
| keys = [bytes.fromhex(line.strip()) for line in f] | |
| return keys | |
| def load_nums(self, lmdb_name): | |
| with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}_number.txt'), 'r') as f: | |
| nums = [int(line.strip()) for line in f] | |
| return nums | |
| def __len__(self) -> int: | |
| return self.num_samples | |
| def __getitem__(self, idx: int): | |
| db_idx = bisect.bisect(self._keylen_cumulative, idx) | |
| el_idx = idx | |
| if db_idx != 0: | |
| el_idx = idx - self._keylen_cumulative[db_idx - 1] | |
| assert el_idx >= 0 | |
| if not self.total_traj: | |
| datapoint_pickled = ( | |
| self.envs[db_idx] | |
| .begin() | |
| .get(self._keys[db_idx][el_idx]) | |
| ) | |
| data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), self._keys[db_idx][el_idx], filter=not self.SubsetOnly) | |
| if len(data_objects) == 0: | |
| return None | |
| if self.transform is not None: | |
| data_objects = [self.transform(data_object, self.stochastic_frame) for data_object in data_objects] | |
| return random.choice(data_objects) | |
| else: | |
| num_idx = bisect.bisect(self._num_cumulative[db_idx], el_idx) | |
| data_idx = el_idx | |
| if num_idx != 0: | |
| data_idx = el_idx - self._num_cumulative[db_idx][num_idx - 1] | |
| assert data_idx >= 0 | |
| datapoint_pickled = ( | |
| self.envs[db_idx] | |
| .begin() | |
| .get(self._keys[db_idx][num_idx]) | |
| ) | |
| data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), self._keys[db_idx][num_idx], filter=not self.SubsetOnly) | |
| data_object = data_objects[data_idx] | |
| if self.transform is not None: | |
| data_object = self.transform(data_object, self.stochastic_frame) | |
| return data_object | |
| def connect_db(self, lmdb_path: Optional[Path] = None) -> lmdb.Environment: | |
| env = lmdb.open( | |
| str(lmdb_path), | |
| subdir=False, | |
| readonly=True, | |
| lock=False, | |
| readahead=False, | |
| meminit=False, | |
| max_readers=128, | |
| ) | |
| return env | |
| def close_db(self) -> None: | |
| self.env.close() | |
| class CommonLMDBDataset(Dataset): | |
| def __init__(self, path, transform=None) -> None: | |
| super(CommonLMDBDataset, self).__init__() | |
| self.path = Path(path) | |
| assert self.path.is_file(), "Path is not a file" | |
| self.env = self.connect_db(self.path) | |
| self.transform = transform | |
| def __len__(self) -> int: | |
| with self.env.begin() as txn: | |
| self.all_keys = [key for key in tqdm(txn.cursor().iternext(values=False))] | |
| return len(self.all_keys) | |
| def __getitem__(self, idx: int): | |
| datapoint_pickled = self.env.begin().get(self.all_keys[idx]) | |
| data_object = pickle.loads(gzip.decompress(datapoint_pickled)) | |
| pos = random.choice([pos for pos in data_object.pos]) | |
| data_object.pos = pos | |
| if self.transform is not None: | |
| data_object = self.transform(data_object, self.stochastic_frame) | |
| return data_object | |
| def connect_db(self, lmdb_path: Optional[Path] = None) -> lmdb.Environment: | |
| env = lmdb.open( | |
| str(lmdb_path), | |
| subdir=False, | |
| readonly=True, | |
| lock=False, | |
| readahead=False, | |
| meminit=False, | |
| max_readers=128, | |
| ) | |
| return env | |
| def close_db(self) -> None: | |
| self.env.close() | |
| def initialize_datasets(root, transform, stage, total_traj, SubsetOnly, stochastic_frame): | |
| lmdb_dataset = LMDBDataset( | |
| root, | |
| transform=transform, | |
| stage=stage, | |
| total_traj=total_traj, | |
| SubsetOnly=SubsetOnly, | |
| stochastic_frame=stochastic_frame | |
| ) | |
| if not total_traj: | |
| train_size = int(0.8 * len(lmdb_dataset)) | |
| val_size = len(lmdb_dataset) - train_size | |
| with open('splits/new_split.json' if SubsetOnly else 'splits/new_split_full.json', 'r') as f: | |
| split = json.load(f) | |
| mol_indices = list(range(len(lmdb_dataset))) | |
| mol_indices_np = np.array(mol_indices) | |
| train_trajectory_indices = (mol_indices_np[split['train']]).tolist() | |
| val_trajectory_indices = (mol_indices_np[split['val']]).tolist() | |
| train_dataset = Subset(lmdb_dataset, train_trajectory_indices) | |
| val_dataset = Subset(lmdb_dataset, val_trajectory_indices) | |
| else: | |
| num_trajectories = len(lmdb_dataset.trajectory_indices) | |
| trajectory_indices = list(range(num_trajectories)) | |
| with open('splits/new_split.json' if SubsetOnly else 'splits/new_split_full.json', 'r') as f: | |
| split = json.load(f) | |
| trajectory_indices_np = np.array(trajectory_indices) | |
| train_trajectory_indices = (trajectory_indices_np[split['train']]).tolist() | |
| val_trajectory_indices = (trajectory_indices_np[split['val']]).tolist() | |
| train_snapshot_indices = [] | |
| val_snapshot_indices = [] | |
| for idx_set, snapshot_indices_set in zip( | |
| [train_trajectory_indices, val_trajectory_indices], | |
| [train_snapshot_indices, val_snapshot_indices], | |
| ): | |
| for traj_idx in idx_set: | |
| start_idx, end_idx = lmdb_dataset.trajectory_indices[traj_idx] | |
| snapshot_indices_set.extend(range(start_idx, end_idx)) | |
| train_dataset = Subset(lmdb_dataset, train_snapshot_indices) | |
| val_dataset = Subset(lmdb_dataset, val_snapshot_indices) | |
| lmdb_test_dataset = LMDBDataset( | |
| root, | |
| transform=transform, | |
| stage=stage, | |
| total_traj=True, | |
| SubsetOnly=False, | |
| getTest=True, | |
| stochastic_frame=stochastic_frame | |
| ) | |
| test_snapshot_indices = [] | |
| for start_idx, end_idx in lmdb_test_dataset.trajectory_indices: | |
| test_snapshot_indices.extend(range(start_idx, end_idx)) | |
| test_dataset = Subset(lmdb_test_dataset, test_snapshot_indices) | |
| return {"train": train_dataset, "val": val_dataset, "test": test_dataset} | |
| def scale_transform(data, stochastic_frame=False): | |
| y_scale = (data.y - _MEAN_ENERGY) / _STD_ENERGY | |
| data.y = y_scale | |
| data.y_force = data.y_force / _STD_FORCE_SCALE | |
| data.pos = data.pos - data.pos.mean(0, keepdim=True) | |
| data.num_atoms = data.pos.size(0) | |
| if stochastic_frame: | |
| plus_minus_list = list(product([1, -1], repeat=3)) | |
| index = random.randint(0, len(plus_minus_list) - 1) | |
| signs = plus_minus_list[index] | |
| Q = torch.linalg.eig(data.pos.T @ data.pos)[1] * torch.tensor(signs).unsqueeze(0) | |
| data.Q = Q.to(torch.float32).unsqueeze(0).expand(data.pos.size(0), 3, 3) | |
| return data | |
| class LMDBDataLoader: | |
| def __init__( | |
| self, | |
| root, | |
| batch_size=32, | |
| num_workers=4, | |
| stage='1st', | |
| total_traj=False, | |
| SubsetOnly=False, | |
| stochastic_frame=False | |
| ) -> None: | |
| self.batch_size = batch_size | |
| self.num_workers = num_workers | |
| self.datasets = initialize_datasets(root, scale_transform, stage, total_traj, | |
| SubsetOnly=SubsetOnly, stochastic_frame=stochastic_frame) | |
| def train_loader(self, distributed=False): | |
| if distributed: | |
| sampler = DistributedSampler(self.datasets["train"]) | |
| else: | |
| subset_indices = torch.randperm(len(self.datasets["train"])) | |
| sampler = SubsetRandomSampler(subset_indices) | |
| return DataLoader( | |
| self.datasets["train"], | |
| batch_size=self.batch_size, | |
| drop_last=False, | |
| num_workers=self.num_workers, | |
| sampler=sampler, | |
| pin_memory=True, | |
| ) | |
| def val_loader(self, distributed=False): | |
| if distributed: | |
| sampler = DistributedSampler(self.datasets["val"]) | |
| return DataLoader( | |
| self.datasets["val"], | |
| batch_size=self.batch_size, | |
| drop_last=False, | |
| num_workers=self.num_workers, | |
| sampler=sampler, | |
| pin_memory=True, | |
| ) | |
| return DataLoader( | |
| self.datasets["val"], | |
| batch_size=self.batch_size, | |
| drop_last=False, | |
| num_workers=self.num_workers, | |
| pin_memory=True, | |
| ) | |
| def test_loader(self, distributed=False): | |
| if distributed: | |
| sampler = DistributedSampler(self.datasets["test"]) | |
| return DataLoader( | |
| self.datasets["test"], | |
| batch_size=self.batch_size, | |
| drop_last=False, | |
| num_workers=self.num_workers, | |
| sampler=sampler, | |
| pin_memory=True, | |
| ) | |
| return DataLoader( | |
| self.datasets["test"], | |
| batch_size=self.batch_size, | |
| drop_last=False, | |
| num_workers=self.num_workers, | |
| pin_memory=True, | |
| ) | |
| def serialize_and_compress(data: Data): | |
| """ | |
| Serializes the Data object using msgpack and compresses it using lz4. | |
| """ | |
| return gzip.compress(pickle.dumps(data)) |