Datasets:

ArXiv:
License:
PubChemQCR / Code /database.md
congfu's picture
Update Code/database.md
fde0abe verified

Structure of LMDB

Notes

  • The coordinates at the last step of one stage match the first step coordinates of the next stage
  • In some cases, the Hartree Fork results were copied to the raw DFT first substage files and in this case the value of DFT_1st is None

Key-Value Structure

  • Keys:

    • CIDs as strings, e.g., b'000015111'
    • Note: These are byte-encoded using string.encode() or b'string'
  • Values:

    • A nested dictionary containing multiple calculation methods:

    • Uncompress values with:

      pickle.loads(gzip.decompress(val))
      
    • Structure example:

      b'000015111' : {
          'pm3'     : [{step1}, {step2}, ..., {step_n}],
          'hf'      : [{step1}, {step2}, ..., {step_m}],
          'DFT_1st' : [{step1}, {step2}, ..., {step_z}],
          'DFT_2nd' : [{step1}, {step2}, ..., {step_k}]
      }
      
    • Each step is a nested dictionary with the following structure:

      {
          'coordinates': {'atom': f'{element_letter}', 'charge': float(charge_val), 'x': float(x_val), 'y': float(y_val), 'z': float(z_val)}, ...
          'energy': float(energy_val),
          'gradient': {'atom': f'{element_letter}', 'charge': float(charge_val), 'dx': float(dx_val), 'dy': float(dy_val), 'dz': float(dz_val)}, ...
      }
      

      Note: DFT_1st stage for each molecule is calculated with either FireFly or SMASH. For SMASH method, it does not contain a charge value associated with each atom.

Accessing LMDB Example

import lmdb
import pickle
import gzip

lmdb_file = '/path/to/lmdb/dir/hokusai2017.lmdb'

with lmdb.open(lmdb_file, readonly=True, subdir=False) as env:
    with env.begin() as txn:
        val = pickle.loads(gzip.decompress((txn.get(b'000000984'))))
    
pm3_val = val['pm3']
hf_val = val['hf']
dft1st_val = val['DFT_1st']
dft2nd_val = val['DFT_2nd']

for step in dft1st_val:
    
    # coords & grad is a list of dictionaries that stores the relevant information of each atom
    # energy is a scalar representing the energy for that conformer
    
    coords = step['coordinates']
    energy = step['energy']
    grad = step['gradient']
    
    for atom in coords:
        # access atom's attributes
        element = atom['atom']
        x = atom['x']
        y = atom['y']
        z = atom['z']
        
    for atom in grad:
        # access atom's attributes
        element = atom['atom']
        dx = atom['dx']
        dy = atom['dy']
        dz = atom['dz']