Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
10K - 100K
Tags:
text-retrieval
metadata
task_categories:
- text-retrieval
task_ids:
- document-retrieval
config_names:
- corpus
tags:
- text-retrieval
dataset_info:
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
configs:
- config_name: default
data_files:
- split: test
path: relevance.jsonl
- config_name: corpus
data_files:
- split: corpus
path: corpus.jsonl
- config_name: queries
data_files:
- split: queries
path: queries.jsonl
The ChatDoctor-HealthCareMagic-100k dataset comprises 112,000 real-world medical question-and-answer pairs, providing a substantial and diverse collection of authentic medical dialogues. There is a slight risk to this dataset since there are grammatical inconsistencies in many of the questions and answers, but this can potentially help separate strong healthcare retrieval models from weak ones.
Usage
import datasets
# Download the dataset
queries = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "queries")
documents = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "corpus")
pair_labels = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "default")