The dataset viewer is not available for this split.
Error code: StreamingRowsError
Exception: UnicodeDecodeError
Message: 'utf-8' codec can't decode byte 0xa8 in position 1827: invalid start byte
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2361, in __iter__
for key, example in ex_iterable:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 325, in __iter__
for key, pa_table in self.generate_tables_fn(**gen_kwags):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 188, in _generate_tables
csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/streaming.py", line 73, in wrapper
return function(*args, download_config=download_config, **kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1199, in xpandas_read_csv
return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1026, in read_csv
return _read(filepath_or_buffer, kwds)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 620, in _read
parser = TextFileReader(filepath_or_buffer, **kwds)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1620, in __init__
self._engine = self._make_engine(f, self.engine)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1898, in _make_engine
return mapping[engine](f, **self.options)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 93, in __init__
self._reader = parsers.TextReader(src, **kwds)
File "parsers.pyx", line 574, in pandas._libs.parsers.TextReader.__cinit__
File "parsers.pyx", line 663, in pandas._libs.parsers.TextReader._get_header
File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
File "parsers.pyx", line 2053, in pandas._libs.parsers.raise_parser_error
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa8 in position 1827: invalid start byteNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
BRU Dataset: Balancing Rigor and Utility for Testing Cognitive Biases in LLMs
π§ This dataset accompanies our paper "Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions", accepted at CogSci 2025.
π About the Dataset
The BRU dataset includes 205 multiple-choice questions, each crafted to assess how LLMs handle well-known cognitive biases. Unlike widely used datasets such as MMLU, TruthfulQA, and PIQA, BRU offers comprehensive coverage of cognitive distortions, rather than focusing solely on factual correctness or reasoning.
The dataset was developed through a multidisciplinary collaboration:
- An experienced psychologist designed the bias scenarios.
- A medical data expert ensured content validity.
- Two NLP researchers formatted the dataset for LLM evaluation.
Each question is backed by references to psychological literature and frameworks, with full documentation in the paper's appendix.
β Covered Bias Categories
The dataset includes questions targeting the following eight types of cognitive biases:
- Anchoring Bias
- Base Rate Fallacy
- Conjunction Fallacy
- Gamblerβs Fallacy
- Insensitivity to Sample Size
- Overconfidence Bias
- Regression Fallacy
- Sunk Cost Fallacy
π Dataset Format
Each .csv file in this repository corresponds to one bias type. All files follow the same format:
| Question ID | Question Text | Ground Truth Answer |
|---|---|---|
| 1 | (MCQ content) | A |
| 2 | (MCQ content) | C |
| ... | ... | ... |
- First row: column headers
- First column: question number
- Second column: question content (includes options)
- Third column: correct answer label (e.g., A, B, C, D)
π Citation
If you use the BRU dataset in your research, please cite our paper:
@inproceedings{zhong2025balancing,
title = {Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions},
author = {Zhong, H. and Wang, L. and Cao, Wenting and Sun, Zeyuan},
booktitle = {Proceedings of the Annual Meeting of the Cognitive Science Society},
volume = {47},
year = {2025},
publisher = {Cognitive Science Society},
url = {https://escholarship.org/uc/item/2vr690cx}
}
- Downloads last month
- 40