File size: 7,240 Bytes
15b8acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9b9ab
15b8acc
 
 
 
 
 
 
 
af9b9ab
15b8acc
 
 
 
 
 
 
 
 
af9b9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b8acc
af9b9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae59429
af9b9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5257582
 
 
 
 
 
 
 
 
 
 
 
 
af9b9ab
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
dataset_info:
  features:
  - name: run_id
    dtype: string
  - name: frame
    dtype: int32
  - name: timestamp
    dtype: float32
  - name: image_front
    dtype: image
  - name: image_front_left
    dtype: image
  - name: image_front_right
    dtype: image
  - name: image_rear
    dtype: image
  - name: seg_front
    dtype: image
  - name: lidar
    list:
      list: float32
  - name: boxes
    list:
      list: float32
  - name: box_labels
    list: string
  - name: location_x
    dtype: float32
  - name: location_y
    dtype: float32
  - name: location_z
    dtype: float32
  - name: rotation_pitch
    dtype: float32
  - name: rotation_yaw
    dtype: float32
  - name: rotation_roll
    dtype: float32
  - name: velocity_x
    dtype: float32
  - name: velocity_y
    dtype: float32
  - name: velocity_z
    dtype: float32
  - name: speed_kmh
    dtype: float32
  - name: throttle
    dtype: float32
  - name: steer
    dtype: float32
  - name: brake
    dtype: float32
  - name: nearby_vehicles_50m
    dtype: int32
  - name: total_npc_vehicles
    dtype: int32
  - name: total_npc_walkers
    dtype: int32
  - name: map_name
    dtype: string
  - name: weather_cloudiness
    dtype: float32
  - name: weather_precipitation
    dtype: float32
  - name: weather_fog_density
    dtype: float32
  - name: weather_sun_altitude
    dtype: float32
  - name: vehicles_spawned
    dtype: int32
  - name: walkers_spawned
    dtype: int32
  - name: duration_seconds
    dtype: int32
  splits:
  - name: train
    num_bytes: 298274262201
    num_examples: 67000
  - name: validation
    num_bytes: 35503432435.4
    num_examples: 8400
  - name: test
    num_bytes: 31770625008.6
    num_examples: 7200
  download_size: 361766155632
  dataset_size: 365548319645
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: mit
task_categories:
- object-detection
- image-classification
- image-segmentation
- depth-estimation
- video-classification
- any-to-any
- image-to-text
- reinforcement-learning
language:
- en
pretty_name: CARLA Autopilot Multimodal Dataset
size_categories:
- 10K<n<100K
---

# CARLA Autopilot Multimodal Dataset

This dataset contains synchronized multimodal driving data collected in the [CARLA simulator](https://carla.org/) using the autopilot feature. It provides RGB images from multiple cameras, semantic segmentation, LiDAR point clouds, 2D bounding boxes, and ego-vehicle state/control signals across varied weather, maps, and traffic densities.

The dataset is designed for research in **autonomous driving**, **sensor fusion**, **imitation learning**, and **self-driving evaluation**.

---

## Dataset Summary

- **Runs**: 30 autopilot runs
- **Sensors**: 
  - RGB cameras: front, front-left, front-right, rear (800×600, fov=90°)  
  - Semantic segmentation: front (raw + colorized)  
  - LiDAR: 32-channel ray-cast, 20 Hz, 80 m range  
  - Collision sensor for impact logs  
- **Annotations**: 2D bounding boxes and class labels (vehicles, pedestrians) w.r.t front camera  
- **Ego states**: position, rotation, velocity, control (throttle/steer/brake), speed (km/h)  
- **Environment**: varied weather, time-of-day (sun altitude), NPC traffic (vehicles + pedestrians)  

**Splits**  
- Train: 67,000 frames  
- Validation: 8,400 frames  
- Test: 7,200 frames  
- Total size: ~365 GB

---

## Relation to Previous Versions

This dataset, **CARLA Autopilot Multimodal Dataset**, is an extension of the earlier 
[CARLA Autopilot Image Dataset](https://huggingface.co/datasets/immanuelpeter/carla-autopilot-images).

- **Previous version (`carla-autopilot-images`)**:  
  Contained synchronized RGB camera views (front, front-left, front-right, rear) with ego-vehicle states, controls, and environment metadata.

- **Current version (`carla-autopilot-multimodal-dataset`)**:  
  Adds **new sensor modalities and richer annotations**, including:  
  - Semantic segmentation (front view)  
  - LiDAR point clouds  
  - 2D bounding boxes and labels (vehicles, pedestrians)  
  - Expanded metadata (collisions, weather difficulty, quality metrics)  

In short, `v2` augments the original dataset with **multimodal signals for perception + sensor fusion research**, 
while retaining full compatibility with the core camera + state data from `v1`.

---

## Features

Each sample contains:

- `run_id` (string): Identifier for the simulation run  
- `frame` (int): Frame number  
- `timestamp` (float): Relative timestamp (s)  
- `image_front`, `image_front_left`, `image_front_right`, `image_rear` (images): RGB views  
- `seg_front` (image): Semantic segmentation (front view)  
- `lidar` (list[list[float32]]): LiDAR point cloud (x, y, z, intensity)  
- `boxes` (list[list[float32]]): 2D bounding boxes in `[xmin, ymin, xmax, ymax]` format  
- `box_labels` (list[string]): Class labels for bounding boxes  
- `location_{x,y,z}` (float): Ego position in world coords  
- `rotation_{pitch,yaw,roll}` (float): Ego rotation  
- `velocity_{x,y,z}` (float): Ego velocity (m/s)  
- `speed_kmh` (float): Ego speed (km/h)  
- `throttle`, `steer`, `brake` (float): Control inputs  
- `nearby_vehicles_50m`, `total_npc_vehicles`, `total_npc_walkers` (int): Traffic counts  
- `map_name` (string): CARLA map used  
- `weather_*` (float): Weather conditions (cloudiness, precipitation, fog, sun altitude)  
- `vehicles_spawned`, `walkers_spawned` (int): Number of NPCs  
- `duration_seconds` (int): Total run length in seconds  

---

## Example Usage

```python
from datasets import load_dataset

ds = load_dataset("immanuelpeter/carla-autopilot-multimodal-dataset", split="train")
sample = ds[0]

# Access RGB image and LiDAR
front_img = sample["image_front"]
lidar = sample["lidar"]
boxes = sample["boxes"]
````

---

## Collection Process

Data was collected using a custom CARLA Python script that:

* Spawns an ego vehicle with autopilot enabled
* Spawns configurable NPC vehicles and pedestrians
* Randomizes weather and lighting conditions per run
* Synchronizes all sensors and saves every *N*-th frame
* Records vehicle state, control signals, collisions, and environment statistics

All sensors operate in synchronous mode for frame alignment.

---

## Intended Use

* Training and benchmarking multimodal self-driving models
* Research on sensor fusion, perception, and planning
* Imitation learning from autopilot trajectories
* Evaluation under diverse weather and traffic conditions

## Citation

If you use this dataset, please cite the CARLA simulator:
```
@inproceedings{Dosovitskiy17,
  title = {CARLA: An Open Urban Driving Simulator},
  author = {Alexey Dosovitskiy and German Ros and Felipe Codevilla and Antonio Lopez and Vladlen Koltun},
  booktitle = {Proceedings of the 1st Annual Conference on Robot Learning},
  pages = {1--16},
  year = {2017}
}
```

<!-- ## Citation

If you use this dataset, please cite:

```
@dataset{yourname2025carlaautopilot,
  author    = {Your Name},
  title     = {CARLA Autopilot Multimodal Dataset},
  year      = {2025},
  howpublished = {\url{https://huggingface.co/datasets/your-username/carla-autopilot-multimodal-dataset}}
}
``` -->