Datasets:
File size: 7,240 Bytes
15b8acc af9b9ab 15b8acc af9b9ab 15b8acc af9b9ab 15b8acc af9b9ab ae59429 af9b9ab 5257582 af9b9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
dataset_info:
features:
- name: run_id
dtype: string
- name: frame
dtype: int32
- name: timestamp
dtype: float32
- name: image_front
dtype: image
- name: image_front_left
dtype: image
- name: image_front_right
dtype: image
- name: image_rear
dtype: image
- name: seg_front
dtype: image
- name: lidar
list:
list: float32
- name: boxes
list:
list: float32
- name: box_labels
list: string
- name: location_x
dtype: float32
- name: location_y
dtype: float32
- name: location_z
dtype: float32
- name: rotation_pitch
dtype: float32
- name: rotation_yaw
dtype: float32
- name: rotation_roll
dtype: float32
- name: velocity_x
dtype: float32
- name: velocity_y
dtype: float32
- name: velocity_z
dtype: float32
- name: speed_kmh
dtype: float32
- name: throttle
dtype: float32
- name: steer
dtype: float32
- name: brake
dtype: float32
- name: nearby_vehicles_50m
dtype: int32
- name: total_npc_vehicles
dtype: int32
- name: total_npc_walkers
dtype: int32
- name: map_name
dtype: string
- name: weather_cloudiness
dtype: float32
- name: weather_precipitation
dtype: float32
- name: weather_fog_density
dtype: float32
- name: weather_sun_altitude
dtype: float32
- name: vehicles_spawned
dtype: int32
- name: walkers_spawned
dtype: int32
- name: duration_seconds
dtype: int32
splits:
- name: train
num_bytes: 298274262201
num_examples: 67000
- name: validation
num_bytes: 35503432435.4
num_examples: 8400
- name: test
num_bytes: 31770625008.6
num_examples: 7200
download_size: 361766155632
dataset_size: 365548319645
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: mit
task_categories:
- object-detection
- image-classification
- image-segmentation
- depth-estimation
- video-classification
- any-to-any
- image-to-text
- reinforcement-learning
language:
- en
pretty_name: CARLA Autopilot Multimodal Dataset
size_categories:
- 10K<n<100K
---
# CARLA Autopilot Multimodal Dataset
This dataset contains synchronized multimodal driving data collected in the [CARLA simulator](https://carla.org/) using the autopilot feature. It provides RGB images from multiple cameras, semantic segmentation, LiDAR point clouds, 2D bounding boxes, and ego-vehicle state/control signals across varied weather, maps, and traffic densities.
The dataset is designed for research in **autonomous driving**, **sensor fusion**, **imitation learning**, and **self-driving evaluation**.
---
## Dataset Summary
- **Runs**: 30 autopilot runs
- **Sensors**:
- RGB cameras: front, front-left, front-right, rear (800×600, fov=90°)
- Semantic segmentation: front (raw + colorized)
- LiDAR: 32-channel ray-cast, 20 Hz, 80 m range
- Collision sensor for impact logs
- **Annotations**: 2D bounding boxes and class labels (vehicles, pedestrians) w.r.t front camera
- **Ego states**: position, rotation, velocity, control (throttle/steer/brake), speed (km/h)
- **Environment**: varied weather, time-of-day (sun altitude), NPC traffic (vehicles + pedestrians)
**Splits**
- Train: 67,000 frames
- Validation: 8,400 frames
- Test: 7,200 frames
- Total size: ~365 GB
---
## Relation to Previous Versions
This dataset, **CARLA Autopilot Multimodal Dataset**, is an extension of the earlier
[CARLA Autopilot Image Dataset](https://huggingface.co/datasets/immanuelpeter/carla-autopilot-images).
- **Previous version (`carla-autopilot-images`)**:
Contained synchronized RGB camera views (front, front-left, front-right, rear) with ego-vehicle states, controls, and environment metadata.
- **Current version (`carla-autopilot-multimodal-dataset`)**:
Adds **new sensor modalities and richer annotations**, including:
- Semantic segmentation (front view)
- LiDAR point clouds
- 2D bounding boxes and labels (vehicles, pedestrians)
- Expanded metadata (collisions, weather difficulty, quality metrics)
In short, `v2` augments the original dataset with **multimodal signals for perception + sensor fusion research**,
while retaining full compatibility with the core camera + state data from `v1`.
---
## Features
Each sample contains:
- `run_id` (string): Identifier for the simulation run
- `frame` (int): Frame number
- `timestamp` (float): Relative timestamp (s)
- `image_front`, `image_front_left`, `image_front_right`, `image_rear` (images): RGB views
- `seg_front` (image): Semantic segmentation (front view)
- `lidar` (list[list[float32]]): LiDAR point cloud (x, y, z, intensity)
- `boxes` (list[list[float32]]): 2D bounding boxes in `[xmin, ymin, xmax, ymax]` format
- `box_labels` (list[string]): Class labels for bounding boxes
- `location_{x,y,z}` (float): Ego position in world coords
- `rotation_{pitch,yaw,roll}` (float): Ego rotation
- `velocity_{x,y,z}` (float): Ego velocity (m/s)
- `speed_kmh` (float): Ego speed (km/h)
- `throttle`, `steer`, `brake` (float): Control inputs
- `nearby_vehicles_50m`, `total_npc_vehicles`, `total_npc_walkers` (int): Traffic counts
- `map_name` (string): CARLA map used
- `weather_*` (float): Weather conditions (cloudiness, precipitation, fog, sun altitude)
- `vehicles_spawned`, `walkers_spawned` (int): Number of NPCs
- `duration_seconds` (int): Total run length in seconds
---
## Example Usage
```python
from datasets import load_dataset
ds = load_dataset("immanuelpeter/carla-autopilot-multimodal-dataset", split="train")
sample = ds[0]
# Access RGB image and LiDAR
front_img = sample["image_front"]
lidar = sample["lidar"]
boxes = sample["boxes"]
````
---
## Collection Process
Data was collected using a custom CARLA Python script that:
* Spawns an ego vehicle with autopilot enabled
* Spawns configurable NPC vehicles and pedestrians
* Randomizes weather and lighting conditions per run
* Synchronizes all sensors and saves every *N*-th frame
* Records vehicle state, control signals, collisions, and environment statistics
All sensors operate in synchronous mode for frame alignment.
---
## Intended Use
* Training and benchmarking multimodal self-driving models
* Research on sensor fusion, perception, and planning
* Imitation learning from autopilot trajectories
* Evaluation under diverse weather and traffic conditions
## Citation
If you use this dataset, please cite the CARLA simulator:
```
@inproceedings{Dosovitskiy17,
title = {CARLA: An Open Urban Driving Simulator},
author = {Alexey Dosovitskiy and German Ros and Felipe Codevilla and Antonio Lopez and Vladlen Koltun},
booktitle = {Proceedings of the 1st Annual Conference on Robot Learning},
pages = {1--16},
year = {2017}
}
```
<!-- ## Citation
If you use this dataset, please cite:
```
@dataset{yourname2025carlaautopilot,
author = {Your Name},
title = {CARLA Autopilot Multimodal Dataset},
year = {2025},
howpublished = {\url{https://huggingface.co/datasets/your-username/carla-autopilot-multimodal-dataset}}
}
``` --> |