text
stringlengths
12
1.05M
repo_name
stringlengths
5
86
path
stringlengths
4
191
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
12
1.05M
keyword
listlengths
1
23
text_hash
stringlengths
64
64
import h5py import numpy from rdkit import Chem from steps.featuregeneration.shared import substructure_feature_generator from util import data_validation, misc, file_structure, file_util, logger, process_pool, constants, \ hdf5_util, multi_process_progressbar class SaliencyMapSubstructureFeatureGeneration: @staticmethod def get_id(): return 'saliency_map_substructure_feature_generation' @staticmethod def get_name(): return 'Saliency Map Substructures' @staticmethod def get_parameters(): parameters = list() parameters.append({'id': 'top_n', 'name': 'Top n', 'type': int, 'default': None, 'min': 1, 'description': 'The number of substructures that will be considered. Default: All'}) parameters.append({'id': 'min_score', 'name': 'Minimum score', 'type': float, 'default': None, 'min': 0, 'max': 1, 'description': 'The minimum score of substructures that will be considered. Default: All'}) parameters.append({'id': 'active', 'name': 'Active class', 'type': bool, 'default': True, 'description': 'Use substructures for the active class (True) or inactive class (False).' ' Default: Active'}) parameters.append({'id': 'count', 'name': 'Use counts', 'type': bool, 'default': True, 'description': 'Use counts instead of bits. Default: True'}) return parameters @staticmethod def check_prerequisites(global_parameters, local_parameters): data_validation.validate_data_set(global_parameters) @staticmethod def get_result_file(global_parameters, local_parameters): file_name = 'saliency_map_features.h5' return file_util.resolve_subpath(file_structure.get_result_folder(global_parameters), file_name) @staticmethod def execute(global_parameters, local_parameters): global_parameters[constants.GlobalParameters.feature_id] = 'saliency_map_substructures' features_path = SaliencyMapSubstructureFeatureGeneration.get_result_file(global_parameters, local_parameters) if file_util.file_exists(features_path): logger.log('Skipping step: ' + features_path + ' already exists') features_h5 = h5py.File(features_path, 'r') feature_dimensions = features_h5[file_structure.Preprocessed.preprocessed].shape[1] features_h5.close() else: saliency_map_substructures_path = global_parameters[constants.GlobalParameters.saliency_map_substructures_data] substructures = load_substructures(saliency_map_substructures_path, local_parameters['top_n'], local_parameters['min_score'], local_parameters['active']) feature_dimensions = len(substructures) data_h5 = h5py.File(file_structure.get_data_set_file(global_parameters), 'r') smiles_data = data_h5[file_structure.DataSet.smiles][:] data_h5.close() temp_features_path = file_util.get_temporary_file_path('saliency_map_features') chunks = misc.chunk(len(smiles_data), process_pool.default_number_processes) global_parameters[constants.GlobalParameters.input_dimensions] = (len(substructures),) logger.log('Calculating saliency map features') with process_pool.ProcessPool(len(chunks)) as pool: with multi_process_progressbar.MultiProcessProgressbar(len(smiles_data), value_buffer=100) as progress: for chunk in chunks: pool.submit(substructure_feature_generator.generate_substructure_features, smiles_data[chunk['start']:chunk['end']], substructures, progress=progress.get_slave()) results = pool.get_results() if local_parameters['count']: dtype = 'uint16' else: dtype = 'uint8' features_h5 = h5py.File(temp_features_path, 'w') features = hdf5_util.create_dataset(features_h5, file_structure.Preprocessed.preprocessed, (len(smiles_data), len(substructures)), dtype=dtype, chunks=(1, len(substructures))) offset = 0 for result in results: if local_parameters['count']: features[offset:offset + len(result)] = result[:] else: features[offset:offset + len(result)] = result[:] > 0 offset += len(result) features_h5.close() file_util.move_file(temp_features_path, features_path) global_parameters[constants.GlobalParameters.input_dimensions] = feature_dimensions global_parameters[constants.GlobalParameters.preprocessed_data] = features_path global_parameters[constants.GlobalParameters.feature_files].append(features_path) def load_substructures(saliency_map_substructures_path, top_n, min_score, active): if active: score_data_set = file_structure.SaliencyMapSubstructures.active_substructures_score smiles_data_set = file_structure.SaliencyMapSubstructures.active_substructures else: score_data_set = file_structure.SaliencyMapSubstructures.inactive_substructures_score smiles_data_set = file_structure.SaliencyMapSubstructures.inactive_substructures saliency_map_substructures_h5 = h5py.File(saliency_map_substructures_path, 'r') number_substructures = len(saliency_map_substructures_h5[smiles_data_set]) if top_n is not None: number_substructures = min(number_substructures, top_n) if min_score is not None: score = saliency_map_substructures_h5[score_data_set][:] number_substructures = min(number_substructures, numpy.sum(score >= min_score)) smiles = saliency_map_substructures_h5[smiles_data_set][:number_substructures] saliency_map_substructures_h5.close() substructures = list() for i in range(len(smiles)): substructures.append(Chem.MolFromSmiles(smiles[i].decode('UTF-8'), sanitize=False)) return substructures
patrick-winter-knime/mol-struct-nets
molstructnets/steps/featuregeneration/saliencymapsubstructurefeaturegeneration/saliency_map_substructure_feature_generation.py
Python
gpl-3.0
6,334
[ "RDKit" ]
5440d74ecbc43b7ebdd9b6ca5fb2c40aceef9965530a03b4181aacf3df097db5
""" RemoveNestedFunctions turns nested function into top-level functions. """ from pythran.analyses import GlobalDeclarations, ImportedIds from pythran.passmanager import Transformation from pythran.tables import MODULES import ast class _NestedFunctionRemover(Transformation): def __init__(self, pm, ctx): Transformation.__init__(self) self.ctx = ctx self.passmanager = pm self.global_declarations = pm.gather(GlobalDeclarations, ctx.module) def visit_FunctionDef(self, node): if MODULES['functools'] not in self.global_declarations.values(): import_ = ast.Import([ast.alias('functools', None)]) self.ctx.module.body.insert(0, import_) self.global_declarations['functools'] = MODULES['functools'] self.ctx.module.body.append(node) former_name = node.name new_name = "pythran_{0}".format(former_name) ii = self.passmanager.gather(ImportedIds, node, self.ctx) binded_args = [ast.Name(iin, ast.Load()) for iin in sorted(ii)] node.args.args = ([ast.Name(iin, ast.Param()) for iin in sorted(ii)] + node.args.args) class Renamer(ast.NodeTransformer): def visit_Call(self, node): self.generic_visit(node) if (isinstance(node.func, ast.Name) and node.func.id == former_name): node.func.id = new_name node.args = ( [ast.Name(iin, ast.Load()) for iin in sorted(ii)] + node.args ) return node Renamer().visit(node) node.name = new_name proxy_call = ast.Name(new_name, ast.Load()) new_node = ast.Assign( [ast.Name(former_name, ast.Store())], ast.Call( ast.Attribute( ast.Name('functools', ast.Load()), "partial", ast.Load() ), [proxy_call] + binded_args, [], None, None ) ) self.generic_visit(node) return new_node class RemoveNestedFunctions(Transformation): """ Replace nested function by top-level functions. Also add a call to a bind intrinsic that generates a local function with some arguments binded. >>> import ast >>> from pythran import passmanager, backend >>> node = ast.parse("def foo(x):\\n def bar(y): return x+y\\n bar(12)") >>> pm = passmanager.PassManager("test") >>> _, node = pm.apply(RemoveNestedFunctions, node) >>> print pm.dump(backend.Python, node) import functools def foo(x): bar = functools.partial(pythran_bar, x) bar(12) def pythran_bar(x, y): return (x + y) """ def visit_Module(self, node): map(self.visit, node.body) return node def visit_FunctionDef(self, node): nfr = _NestedFunctionRemover(self.passmanager, self.ctx) node.body = map(nfr.visit, node.body) return node
artas360/pythran
pythran/transformations/remove_nested_functions.py
Python
bsd-3-clause
3,162
[ "VisIt" ]
f5afa3a583b492e25cd795691eb916d8bf20600b6108f5329b28051121820e95
#!/usr/bin/env python ''' This is an implementation of the Metropolis Hastings algorithm. This is used for Bayesian sampling from a distribution that's typically multidimensional and can't be numerically integrated. It utilizes Markov chains, which are ordered lists of stochastic (random) variables. The Markov chain wanders around, only remembering the state of the previous iteration. When the number of samples approaches infinity, the Markov chain will converge to the posterior distribution. Usage: Modify the posterior and proposal distribution functions in mh.py to suit your statistical model. references: "Pattern Recognition and Machine Learning" by Christopher Bishop "Information Theory, Inference, and Learning Algorithms" by David Mackay "Machine Learning: An Algorithmic Perspective" by Stephen Marsland ''' import numpy as np from pylab import * import random class MH(): def __init__(self, p, q, samples, method): self.samples = samples # integer number of samples to do, typically > 5,000 self.method = method # independent or random_walk self.chain = np.zeros(samples) # initialize list of samples to 0 self.p = p # posterior distribution self.q = q # proposal distribution def alpha(self,candidate,current): if self.method=="random_walk": # Gaussian distribution is symmetric, so equation simplifies to just the Metropolis algorithm return min(1, self.p(candidate)/self.p(current)) else: return min(1, self.p(candidate)*self.q(current)/self.p(current)*self.q(candidate)) def generate_candidate(self,mu,sigma): # randomly generate a candidate value from the proposal distribution if self.method=="independent": candidate = random.normalvariate(mu,sigma) # proposed move elif self.method=="random_walk": candidate = self.chain[i] + random.normalvariate(mu,sigma) # proposed move return candidate def sample(self,mu,sigma,burn_in=250): self.chain[0] = random.normalvariate(mu,sigma) # initial value u = np.random.uniform(0.0, 1.0, self.samples) # array of uniform random variables (between 0 and 1) for i in xrange(1,self.samples-1): candidate = self.generate_candidate(mu,sigma) # accept/reject scheme if u[i]<self.alpha(candidate,self.chain[i]): # accept the move self.chain[i+1] = candidate else: # reject the move self.chain[i+1] = self.chain[i] self.chain = self.chain[burn_in:self.samples] # discard the first burn_in samples to prevent influence of the starting distribution def plot_results(self): # create histogram for distribution figure(1) hist(self.chain, bins = 30) # histogram ylabel('Frequency') xlabel('Value') title('Histogram of Samples') # create trace plot of Markov values over all iterations figure(2) plot(self.chain) ylabel('Values') xlabel('Iteration #') title('Trace Plot of Markov Values') show() def single_sample(self): return self.chain[random.randrange(0,self.samples)] if __name__ == '__main__': def PosteriorDistribution(x): # creates a probability density function that serves as the proposal distribution # let's use a bimodal distribution to represent a non-symmetric distribution # another example could be a mixture of two normal distributions mu1 = 3 # mean1 mu2 = 10 # mean2 v1 = 10 # variance1 v2 = 3 # variance2 return 0.3*exp(-(x-mu1)**2/v1) + 0.7* exp(-(x-mu2)**2/v2) def ProposalDistribution(x): # one option is exp(-x**/2)/sqrt(2*pi) # standard normal PDF # should be tuned to the posterior distribution # specify the hyperparameters (mean and variance) return exp(-(x-5)**2/(10**2)) # 5 = mu, 10 = sigma model = MH(PosteriorDistribution,ProposalDistribution,10000,"independent") # last 2 args are # samples and method model.sample(5,10) # mu, sigma, burn-in. for method="random_walk", set mu=0 print 'A sample from the PDF is: ' + str(model.single_sample()) model.plot_results()
mlskit/astromlskit
MCMC/mh.py
Python
gpl-3.0
4,354
[ "Gaussian" ]
6e505aa705c66246de72e082ffe8000de637a8fb3ef11738e712965fd08f8ed6
# -*- coding: utf-8 -*- from __future__ import division import numpy as np from scipy.stats import multivariate_normal from pgmpy.factors.continuous import ContinuousFactor class JointGaussianDistribution(ContinuousFactor): u""" In its most common representation, a multivariate Gaussian distribution over X1...........Xn is characterized by an n-dimensional mean vector μ, and a symmetric n x n covariance matrix Σ. This is the base class for its representation. """ def __init__(self, variables, mean, covariance): """ Parameters ---------- variables: iterable of any hashable python object The variables for which the distribution is defined. mean: n x 1, array like n-dimensional vector where n is the number of variables. covariance: n x n, 2-d array like n x n dimensional matrix where n is the number of variables. Examples -------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> dis = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> dis.variables ['x1', 'x2', 'x3'] >>> dis.mean array([[ 1], [-3], [4]])) >>> dis.covariance array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]]) >>> dis.pdf([0,0,0]) 0.0014805631279234139 """ no_of_var = len(variables) if len(mean) != no_of_var: raise ValueError("Length of mean_vector must be equal to the\ number of variables.") self.mean = np.asarray(np.reshape(mean, (no_of_var, 1)), dtype=float) self.covariance = np.asarray(covariance, dtype=float) self._precision_matrix = None if self.covariance.shape != (no_of_var, no_of_var): raise ValueError("The Covariance matrix should be a square matrix with order equal to\ the number of variables. Got: {got_shape}, Expected: {exp_shape}".format (got_shape=self.covariance.shape, exp_shape=(no_of_var, no_of_var))) super(JointGaussianDistribution, self).__init__(variables, None) @property def pdf(self): return lambda *args: multivariate_normal.pdf(args, self.mean.reshape(1, len(self.variables))[0], self.covariance) @property def precision_matrix(self): """ Returns the precision matrix of the distribution. Examples -------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> dis = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> dis.precision_matrix array([[ 0.3125 , -0.125 , 0. ], [-0.125 , 0.58333333, 0.33333333], [ 0. , 0.33333333, 0.33333333]]) """ if self._precision_matrix is None: self._precision_matrix = np.linalg.inv(self.covariance) return self._precision_matrix def marginalize(self, variables, inplace=True): """ Modifies the distribution with marginalized values. Parameters ---------- variables: iterator List of variables over which marginalization is to be done. inplace: boolean If inplace=True it will modify the distribution itself, else would return a new distribution. Returns ------- JointGaussianDistribution or None : if inplace=True (default) returns None if inplace=False return a new JointGaussianDistribution instance Examples -------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> dis = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> dis.variables ['x1', 'x2', 'x3'] >>> dis.mean array([[ 1], [-3], [ 4]]) >>> dis.covariance array([[ 4, 2, -2], [ 2, 5, -5], [-2, -5, 8]]) >>> dis.marginalize(['x3']) dis.variables ['x1', 'x2'] >>> dis.mean array([[ 1], [-3]])) >>> dis.covariance narray([[4, 2], [2, 5]]) """ if not isinstance(variables, list): raise TypeError("variables: Expected type list or array-like,\ got type {var_type}".format(var_type=type(variables))) phi = self if inplace else self.copy() var_indexes = [phi.variables.index(var) for var in variables] index_to_keep = [self.variables.index(var) for var in self.variables if var not in variables] phi.variables = [phi.variables[index] for index in index_to_keep] phi.mean = phi.mean[index_to_keep] phi.covariance = phi.covariance[np.ix_(index_to_keep, index_to_keep)] phi._precision_matrix = None if not inplace: return phi def reduce(self, values, inplace=True): """ Reduces the distribution to the context of the given variable values. The formula for the obtained conditional distribution is given by - For, .. math:: N(X_j | X_i = x_i) ~ N(mu_{j.i} ; sig_{j.i}) where, .. math:: mu_{j.i} = mu_j + sig_{j, i} * {sig_{i, i}^{-1}} * (x_i - mu_i) .. math:: sig_{j.i} = sig_{j, j} - sig_{j, i} * {sig_{i, i}^{-1}} * sig_{i, j} Parameters ---------- values: list, array-like A list of tuples of the form (variable_name, variable_value). inplace: boolean If inplace=True it will modify the factor itself, else would return a new ContinuosFactor object. Returns ------- JointGaussianDistribution or None: if inplace=True (default) returns None if inplace=False returns a new JointGaussianDistribution instance. Examples -------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> dis = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> dis.variables ['x1', 'x2', 'x3'] >>> dis.variables ['x1', 'x2', 'x3'] >>> dis.mean array([[ 1.], [-3.], [ 4.]]) >>> dis.covariance array([[ 4., 2., -2.], [ 2., 5., -5.], [-2., -5., 8.]]) >>> dis.reduce([('x1', 7)]) >>> dis.variables ['x2', 'x3'] >>> dis.mean array([[ 0.], [ 1.]]) >>> dis.covariance array([[ 4., -4.], [-4., 7.]]) """ if not isinstance(values, list): raise TypeError("values: Expected type list or array-like,\ got type {var_type}".format(var_type=type(values))) phi = self if inplace else self.copy() var_to_reduce = [var for var, value in values] # index_to_keep -> j vector index_to_keep = [self.variables.index(var) for var in self.variables if var not in var_to_reduce] # index_to_reduce -> i vector index_to_reduce = [self.variables.index(var) for var in var_to_reduce] mu_j = self.mean[index_to_keep] mu_i = self.mean[index_to_reduce] x_i = np.array([value for var, value in values]).reshape(len(index_to_reduce), 1) sig_i_j = self.covariance[np.ix_(index_to_reduce, index_to_keep)] sig_j_i = self.covariance[np.ix_(index_to_keep, index_to_reduce)] sig_i_i_inv = np.linalg.inv(self.covariance[np.ix_(index_to_reduce, index_to_reduce)]) sig_j_j = self.covariance[np.ix_(index_to_keep, index_to_keep)] phi.variables = [self.variables[index] for index in index_to_keep] phi.mean = mu_j + np.dot(np.dot(sig_j_i, sig_i_i_inv), x_i - mu_i) phi.covariance = sig_j_j - np.dot(np.dot(sig_j_i, sig_i_i_inv), sig_i_j) phi._precision_matrix = None if not inplace: return phi def normalize(self, inplace=True): phi = self if inplace else self.copy() # The pdf of a Joint Gaussian distrinution is always # normalized. Hence, no changes. if not inplace: return phi def copy(self): """ Return a copy of the distribution. Returns ------- JointGaussianDistribution: copy of the distribution Examples -------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> gauss_dis = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> copy_dis = gauss_dis.copy() >>> copy_dis.variables ['x1', 'x2', 'x3'] >>> copy_dis.mean array([[ 1], [-3], [ 4]]) >>> copy_dis.covariance array([[ 4, 2, -2], [ 2, 5, -5], [-2, -5, 8]]) >>> copy_dis.precision_matrix array([[ 0.3125 , -0.125 , 0. ], [-0.125 , 0.58333333, 0.33333333], [ 0. , 0.33333333, 0.33333333]]) """ copy_distribution = JointGaussianDistribution(self.scope(), self.mean.copy(), self.covariance.copy()) if self._precision_matrix is not None: copy_distribution._precision_matrix = self._precision_matrix.copy() return copy_distribution def to_canonical_factor(self): u""" Returns an equivalent CanonicalFactor object. The formulas for calculating the cannonical factor parameters for N(μ; Σ) = C(K; h; g) are as follows - K = sigma^(-1) h = sigma^(-1) * mu g = -(0.5) * mu.T * sigma^(-1) * mu - log((2*pi)^(n/2) * det(sigma)^(0.5)) where, K,h,g are the canonical factor parameters sigma is the covariance_matrix of the distribution, mu is the mean_vector of the distribution, mu.T is the transpose of the matrix mu, and det(sigma) is the determinant of the matrix sigma. Example ------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> dis = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> phi = dis.to_canonical_factor() >>> phi.variables ['x1', 'x2', 'x3'] >>> phi.K array([[0.3125, -0.125, 0.], [-0.125, 0.5833, 0.333], [ 0., 0.333, 0.333]]) >>> phi.h array([[ 0.6875], [-0.54166], [ 0.33333]])) >>> phi.g -6.51533 """ from pgmpy.factors.continuous import CanonicalFactor mu = self.mean sigma = self.covariance K = self.precision_matrix h = np.dot(K, mu) g = -(0.5) * np.dot(mu.T, h)[0, 0] - np.log( np.power(2 * np.pi, len(self.variables)/2) * np.power(abs(np.linalg.det(sigma)), 0.5)) return CanonicalFactor(self.scope(), K, h, g) def _operate(self, other, operation, inplace=True): """ Gives the CanonicalFactor operation (product or divide) with the other factor. Parameters ---------- other: CanonicalFactor The CanonicalFactor to be multiplied. operation: String 'product' for multiplication operation and 'divide' for division operation. Returns ------- CanonicalFactor or None: if inplace=True (default) returns None if inplace=False returns a new CanonicalFactor instance. Examples -------- >>> import numpy as np >>> from pgmpy.factors.continuous import JointGaussianDistribution as JGD >>> dis1 = JGD(['x1', 'x2', 'x3'], np.array([[1], [-3], [4]]), ... np.array([[4, 2, -2], [2, 5, -5], [-2, -5, 8]])) >>> dis2 = JGD(['x3', 'x4'], [1, 2], [[2, 3], [5, 6]]) >>> dis3 = dis1 * dis2 >>> dis3.covariance array([[ 3.6, 1. , -0.4, -0.6], [ 1. , 2.5, -1. , -1.5], [-0.4, -1. , 1.6, 2.4], [-1. , -2.5, 4. , 4.5]]) >>> dis3.mean array([[ 1.6], [-1.5], [ 1.6], [ 3.5]]) """ phi = self.to_canonical_factor()._operate( other.to_canonical_factor(), operation, inplace=False).to_joint_gaussian() if not inplace: return phi
sandeepkrjha/pgmpy
pgmpy/factors/continuous/JointGaussianDistribution.py
Python
mit
13,522
[ "Gaussian" ]
fdf275bdd8112a4ecc72ae0601b24d5700a2245ad9f8f573e3651e1ebcf87aeb
#!/usr/bin/env python2.7 # -*- coding:utf-8 -*- """ This is a script that runs a simulation of a small OB model. It consists of an input signal and some OB columns. A column is a set of one glomerule, its connected mitral cells, and the granule cells. Script Overview --------------- 1. Import the model and necessary stuff (like numpy) 2. Get the set of parameters (see inside the paramsets directory) 3. Initialize the different cell populations: - glomeruli - (synapses between granule and mitral) - mitral cells - granule cells 4. Connects the different cell populations: - glomeruli and mitral cells - mitral cells and granule cells 5. Set some monitors on the simulation 6. Run the simulation 7. Output simulation information and indexes. 8. Plots """ import brian_no_units from brian import * def main(args): import model_utils as mutils # Set the parameters from the specified file BEFORE any model.* import import model mutils.set_model_ps(args.psfile) import numpy as np import analysis import plotting from utils import print_dict, pairs from scipy.signal import resample from model.glomerule import Glomerule from model.mitral_cells import MitralCells from model.synapse import Synapse from model.granule_cells import GranuleCells # Reset old stuff from Brian memory clear(erase=True, all=True) defaultclock.reinit() # Initialize random generator (necessary mainly for parallel simulations) np.random.seed() """ Parameters ---------- Get the parameter values from the `ps` module, which in turn gets the values from the file specified in parameters.py. Set some aliases for the different cell population sizes. Also check that there is an even number of cells for each column. Finally set some simulation parameters. """ psmt = model.PARAMETERS['Mitral'] psgr = model.PARAMETERS['Granule'] pscommon = model.PARAMETERS['Common'] n_mitral = pscommon['N_mitral'] n_glomeruli = n_granule = n_subpop = pscommon['N_subpop'] # check to have an even number of mitral in each sub-population assert n_mitral % n_subpop == 0, \ "N_mitral is not a multiple of the number of sub-populations N_subpop." n_mitral_per_subpop = n_mitral/n_subpop defaultclock.dt = pscommon['simu_dt'] simu_length = pscommon['simu_length'] """ Population Initialization ------------------------- 1. glomeruli *. synapses between granule and mitral cells 3. mitral cells 4. granule cells """ # Glomeruli glom = Glomerule() glom.add_eqs() glom.make_pop(n_glomeruli*n_mitral_per_subpop) # Synapses (granule -- mitral) synexc = Synapse(synapse_type='exc') # excitatory synapse synexc.set_eqs_model() syninhib = Synapse(synapse_type='inhib') # inhibitory synapse syninhib.set_eqs_model() # Mitral cells mt = MitralCells() mt_supp_eqs = {'var': ['- I_syn', '- g_input*V'], 'eqs': [synexc.get_eqs_model(), Equations("g_input : siemens*meter**-2")]} mt.add_eqs(supp_eqs=mt_supp_eqs) mt.make_pop(n_mitral) mt.pop.V = (psmt['V_t'] - psmt['V_r'])*np.random.random_sample(np.shape(mt.pop.V)) \ + psmt['V_r'] # Granule Cells gr = GranuleCells() gr_supp_eqs = {'var': ['-I_syn'], 'eqs': [syninhib.get_eqs_model()]} gr.add_eqs(supp_eqs=gr_supp_eqs) gr.make_pop(n_granule) gr.pop.V_D = psgr['E_L'] gr.pop.V_S = psgr['E_L'] """ Connecting Populations ---------------------- 1. Glomeruli and mitral cells 2. Mitral cells and granule cells """ # Connecting mitral cells to glomeruli glmt_connections = diag(ones(n_mitral)) # Glomeruli--Mitral interactions @network_operation(when='start') def mt_input(): mt.pop.g_input = dot(glom.pop.g, glmt_connections) # Connecting sub-population of mitral cells to granule cells mtgr_connections = mutils.intrapop_connections(n_mitral, n_granule, n_subpop, n_mitral_per_subpop) # Inter subpopulation connectivities inter_conn_rate = pscommon['inter_conn_rate'] inter_conn_strength = pscommon['inter_conn_strength'] homeostasy = pscommon['homeostasy'] mtgr_connections, grmt_connections = mutils.interpop_connections(mtgr_connections, n_mitral, n_subpop, n_mitral_per_subpop, inter_conn_rate, inter_conn_strength,homeostasy) # Mitral--Granule interactions @network_operation(when='start') def graded_synapse(): """Computes granule and mitral s_syn""" mt.pop.state('T')[:] = 0. mt.pop.state('T')[mt.pop.get_refractory_indices()] = 1. gr.pop.s_syn = dot(mt.pop.s, mtgr_connections) mt.pop.s_syn = dot(gr.pop.s, grmt_connections) @network_operation(when='start') def sum_s(): """Computes granule self s_syn (for its glomerular column only)""" for subpop in xrange(n_subpop): start = subpop*n_mitral_per_subpop stop = start + n_mitral_per_subpop gr.pop.s_syn_self[subpop] = sum(mt.pop.state('s')[start:stop]) @network_operation(when='after_groups') def keep_reset(): mt.pop.state('V')[mt.pop.get_refractory_indices()] = psmt['V_r'] """ Simulation Monitoring --------------------- Monitor state variables for the different populations. """ glom_ps = ('g') mt_ps = ('s', 's_syn', 'V') gr_ps = ('V_D', 's_syn', 's', 's_syn_self') # Simulation monitors rec_neurons = True # Must be set to True if we want accurate MPS and STS timestep = int(pscommon['resample_dt']/pscommon['simu_dt']) monit_glom = mutils.monit(glom.pop, glom_ps, timestep, reclist=rec_neurons) monit_mt = mutils.monit(mt.pop, mt_ps, timestep, reclist=rec_neurons, spikes=True) monit_gr = mutils.monit(gr.pop, gr_ps, timestep) """ Running Simulation ------------------ Create Network object and put everything simulation related in it. Then run this network. """ # Gathering simulation objects netw = Network(glom.pop, mt.pop, gr.pop, mt_input, graded_synapse, keep_reset, sum_s, [m for m in monit_glom.values()], [m for m in monit_mt.values()], [m for m in monit_gr.values()]) # Simulation run if args.no_brian_output: report_output = None else: report_output = "text" netw.run(simu_length, report=report_output) """ Information Output ------------------ """ if args.full_ps: print 'Full set of parameters:' print_dict(model.PARAMETERS) burnin = pscommon['burnin'] times = monit_gr['s'].times sig_start = where(times > burnin)[0][0] sts_indexes = {} mps_indexes = {} fftmax = {} mps_indexes['whole'] = analysis.mps(monit_mt['V'], 0, n_mitral, sig_start) gr_s_syn_self_whole = np.zeros(monit_gr['s_syn_self'][0].shape) # MPS and STS computation for subpopulation for subpop in xrange(n_subpop): start = subpop*n_mitral_per_subpop stop = start + n_mitral_per_subpop sts = analysis.sts(monit_gr['s_syn_self'][subpop], monit_mt['spikes'], start, stop, sig_start, burnin) sts_indexes[subpop] = sts gr_s_syn_self_whole += monit_gr['s_syn_self'][subpop] mps = analysis.mps(monit_mt['V'], start, stop, sig_start) mps_indexes[subpop] = mps # STS for the whole population sts_indexes['whole'] = analysis.sts(gr_s_syn_self_whole, monit_mt['spikes'], 0, n_mitral, sig_start, burnin) # FFT Max index fftmax = analysis.fftmax(monit_gr['s_syn_self'], n_subpop, pscommon['resample_dt'], sig_start) # Peak distances index peak_distances = {} if n_subpop > 1: for sub_i, sub_j in pairs(n_subpop): sig1 = monit_gr['s_syn_self'][sub_i] sig2 = monit_gr['s_syn_self'][sub_j] if not peak_distances.has_key(sub_i): peak_distances[sub_i] = {} pd_index = analysis.peak_dist_circ_index(sig1, sig2) peak_distances[sub_i][sub_j] = {} peak_distances[sub_i][sub_j]['mean'] = pd_index[0] peak_distances[sub_i][sub_j]['disp'] = pd_index[1] if not args.no_summary: print '\nParameters: using', args.psfile print 'Populations:', n_subpop, 'glomerular columns;', print n_mitral, 'mitral cells;', n_granule, 'granule cells.' print 'Times:', simu_length, 'of simulation; dt =', defaultclock.dt, '.' print 'Indexes: STS =', sts_indexes, '\nMPS =', mps_indexes print 'FFT peaks (Hz):', fftmax print 'Peak distances index:', peak_distances """ Plotting -------- Plot monitored variables and a scatter plot. """ if not args.no_plot: # Raster plot spikes_it = monit_mt['spikes'].it plotting.raster_plot(spikes_it[0], spikes_it[1], mtgr_connections) # Membrane potentials if not rec_neurons: # if we only have a couple of recorded neurons plotting.memb_plot_figure(monit_mt, monit_gr, rec_neurons, n_granule) # Granule synapses plotting.granule_figure(monit_gr, pscommon) show() """ Simulation records ------------------ Put numpy arrays in var `results` to save them into the simulation record. Note: the variable must be monitored by Brian. """ # Add parameters ps_arrays = {'mtgr_connections': (mtgr_connections, "Connection matrix from mitral (rows) to granules (columns)")} # Add results array_spikes_it = np.array((monit_mt['spikes'].it[0], monit_mt['spikes'].it[1])) results = {} # Mean inputs mean_inputs = np.ndarray((n_glomeruli, monit_glom['g'].values.shape[1])) for glom in xrange(n_glomeruli): start_subpop = glom*n_mitral_per_subpop stop_subpop = start_subpop + n_mitral_per_subpop mean_inputs[glom] = np.mean(monit_glom['g'].values[start_subpop:stop_subpop], axis=0) # Mean membrane potentials mean_memb_pot = np.ndarray((n_glomeruli*2, monit_mt['V'].values.shape[1])) bin_interco_matrix = (mtgr_connections > 0.) interco_neurons = (bin_interco_matrix.sum(axis=1) > 1) for glom in xrange(n_glomeruli): start_subpop = glom*n_mitral_per_subpop stop_subpop = start_subpop + n_mitral_per_subpop # Get subpopulation membrane potentials and interconnected neurons subpop_memb_pot = monit_mt['V'].values[start_subpop:stop_subpop] subpop_interco_neurons = interco_neurons[start_subpop:stop_subpop] # Compute one mean for interconnected neurons and another for the other neurons mean_pop = np.mean(subpop_memb_pot[~subpop_interco_neurons], axis=0) mean_pop_interco = np.mean(subpop_memb_pot[subpop_interco_neurons], axis=0) mean_memb_pot[glom*2] = mean_pop mean_memb_pot[glom*2 + 1] = mean_pop_interco results['data'] = {'spikes_it': [array_spikes_it, "Spikes: one array for the neuron number, another one for the spike times."], 'input': [mean_inputs, "Mean network input conductance value for each glomerule."], 's_granule': [monit_gr['s'].values, "Variable 's' of the granules."], 's_syn_self': [monit_gr['s_syn_self'].values, "Variable 's_syn' for the granule, without integrating the mitral 's' from other subpopulations."], 'mean_memb_pot': [mean_memb_pot, "Mean membrane potential. For each subpop: one mean for the interconnected neurons and one mean for the non-interconnected neurons."]} results['indexes'] = {'MPS': mps_indexes, 'STS': sts_indexes, 'FFTMAX': fftmax, 'peak_distances': peak_distances} return {'set': model.PARAMETERS, 'arrays': ps_arrays}, results if __name__ == '__main__': # Argument parsing from arg_parsers import SIM_PARSER args = SIM_PARSER.parse_args() # Run script ps, res = main(args)
neuro-lyon/multiglom-model
src/multiglom_network.py
Python
mit
12,424
[ "Brian", "NEURON" ]
18bc96f03e1847c7ac04524bf41be322e6de88fb452dcb5cca1edde08f8b72a2
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the Mozilla Firefox history database plugin.""" import collections import unittest from plaso.lib import definitions from plaso.parsers.sqlite_plugins import firefox_history from tests.parsers.sqlite_plugins import test_lib class FirefoxHistoryPluginTest(test_lib.SQLitePluginTestCase): """Tests for the Mozilla Firefox history database plugin.""" def testProcessPriorTo24(self): """Tests the Process function on a Firefox History database file.""" # This is probably version 23 but potentially an older version. plugin = firefox_history.FirefoxHistoryPlugin() storage_writer = self._ParseDatabaseFileWithPlugin( ['places.sqlite'], plugin) # The places.sqlite file contains 205 events (1 page visit, # 2 x 91 bookmark records, 2 x 3 bookmark annotations, # 2 x 8 bookmark folders). # However there are three events that do not have a timestamp # so the test file will show 202 extracted events. self.assertEqual(storage_writer.number_of_events, 202) self.assertEqual(storage_writer.number_of_extraction_warnings, 0) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetEvents()) # Check the first page visited event. expected_event_values = { 'data_type': 'firefox:places:page_visited', 'date_time': '2011-07-01 11:16:21.371935', 'host': 'news.google.com', 'timestamp_desc': definitions.TIME_DESCRIPTION_LAST_VISITED, 'title': 'Google News', 'url': 'http://news.google.com/', 'visit_count': 1, 'visit_type': 2} self.CheckEventValues(storage_writer, events[0], expected_event_values) # Check the first bookmark event. expected_event_values = { 'data_type': 'firefox:places:bookmark', 'date_time': '2011-07-01 11:13:59.266344', 'timestamp_desc': definitions.TIME_DESCRIPTION_ADDED} self.CheckEventValues(storage_writer, events[1], expected_event_values) # Check the second bookmark event. expected_event_values = { 'data_type': 'firefox:places:bookmark', 'date_time': '2011-07-01 11:13:59.267198', 'places_title': ( 'folder=BOOKMARKS_MENU&folder=UNFILED_BOOKMARKS&folder=TOOLBAR&' 'sort=12&excludeQueries=1&excludeItemIfParentHasAnnotation=livemark' '%2FfeedURI&maxResults=10&queryType=1'), 'timestamp_desc': definitions.TIME_DESCRIPTION_MODIFICATION, 'title': 'Recently Bookmarked', 'type': 'URL', 'url': ( 'place:folder=BOOKMARKS_MENU&folder=UNFILED_BOOKMARKS&folder=' 'TOOLBAR&sort=12&excludeQueries=1&excludeItemIfParentHasAnnotation=' 'livemark%2FfeedURI&maxResults=10&queryType=1'), 'visit_count': 0} self.CheckEventValues(storage_writer, events[2], expected_event_values) # Check the first bookmark annotation event. expected_event_values = { 'data_type': 'firefox:places:bookmark_annotation', 'date_time': '2011-07-01 11:13:59.267146', 'timestamp_desc': definitions.TIME_DESCRIPTION_ADDED} self.CheckEventValues(storage_writer, events[183], expected_event_values) # Check another bookmark annotation event. expected_event_values = { 'content': 'RecentTags', 'data_type': 'firefox:places:bookmark_annotation', 'date_time': '2011-07-01 11:13:59.267605', 'timestamp_desc': definitions.TIME_DESCRIPTION_ADDED, 'title': 'Recent Tags', 'url': 'place:sort=14&type=6&maxResults=10&queryType=1'} self.CheckEventValues(storage_writer, events[184], expected_event_values) # Check the second last bookmark folder event. expected_event_values = { 'data_type': 'firefox:places:bookmark_folder', 'date_time': '2011-03-21 10:05:01.553774', 'timestamp_desc': definitions.TIME_DESCRIPTION_ADDED} self.CheckEventValues(storage_writer, events[200], expected_event_values) # Check the last bookmark folder event. expected_event_values = { 'data_type': 'firefox:places:bookmark_folder', 'date_time': '2011-07-01 11:14:11.766851', 'timestamp_desc': definitions.TIME_DESCRIPTION_MODIFICATION, 'title': 'Latest Headlines'} self.CheckEventValues(storage_writer, events[201], expected_event_values) def testProcessVersion25(self): """Tests the Process function on a Firefox History database file v 25.""" plugin = firefox_history.FirefoxHistoryPlugin() storage_writer = self._ParseDatabaseFileWithPlugin( ['places_new.sqlite'], plugin) # The places.sqlite file contains 84 events: # 34 page visits. # 28 bookmarks # 14 bookmark folders # 8 annotations self.assertEqual(storage_writer.number_of_events, 84) self.assertEqual(storage_writer.number_of_extraction_warnings, 0) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetEvents()) counter = collections.Counter() for event in events: event_data = self._GetEventDataOfEvent(storage_writer, event) counter[event_data.data_type] += 1 self.assertEqual(counter['firefox:places:bookmark'], 28) self.assertEqual(counter['firefox:places:page_visited'], 34) self.assertEqual(counter['firefox:places:bookmark_folder'], 14) self.assertEqual(counter['firefox:places:bookmark_annotation'], 8) expected_event_values = { 'data_type': 'firefox:places:page_visited', 'date_time': '2013-10-30 21:57:11.281942', 'host': 'code.google.com', 'url': 'http://code.google.com/p/plaso', 'visit_count': 1, 'visit_type': 2} self.CheckEventValues(storage_writer, events[10], expected_event_values) if __name__ == '__main__': unittest.main()
kiddinn/plaso
tests/parsers/sqlite_plugins/firefox_history.py
Python
apache-2.0
5,892
[ "VisIt" ]
b86510d401cebd0ac91b1dc304ad6f35245e58cf8deb5a2eb52a8e6bf9371f3f
# Scan a genome database using BLAST # Created by Bryan White, 2015 # input: list of FASTA files # output: completed BLAST database # # Copyright (c) 2015-2016 Bryan White, [email protected] # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os import random import subprocess import textwrap import distance import time import argparse import pickle ## Local libraries from blst_libs import tistamp, load_sequences, rand_subseq, sl_window, similar start_time = time.time() query_file = "query_targets.txt" db_file = "target_genomes.txt" output_path = "~/data_analysis/data/genome_assemblies/" blast_path = "~/data_analysis/apps/ncbi-blast-2.2.31+/bin/" seq_type = "blastn" ''' parser = argparse.ArgumentParser(description='Scan genomes') parser.add_argument('--sum', dest='accumulate', help='sum the integers (default: find the max)') ''' #args = parser.parse_args() random_scan = 1 random_pairwise = 1 blast_scan = 0 mem_scan = 1 r_scan_size = 1000 sl_window_size = 1000 r_scan_n = 5000 merge_contigs = 1 seq_line_limit = 9999999999 sl_increment = int(0.75*sl_window_size) use_fastcomp = 0 dist_pcnt = 0.30 sliding_window = 1 expand_size = 10 #pickle_cache = 'build' clear_cache = 0 #pickle_cache = 1 print("random_scan\t" + str(random_scan)) print("blast_scan\t" + str(blast_scan)) print("mem_scan\t" + str(mem_scan)) print("r_scan_size\t" + str(r_scan_size)) print("r_scan_n\t" + str(r_scan_n)) print("merge_contigs\t" + str(merge_contigs)) print("seq_line_limit\t" + str(seq_line_limit)) print("sl_window_size\t" + str(sl_window_size)) print("sl_increment\t" + str(sl_increment)) print("Cache: " + str(clear_cache)) ''' -word_size <Integer, >=4> Word size for wordfinder algorithm (length of best perfect match) -gapopen <Integer> Cost to open a gap -gapextend <Integer> Cost to extend a gap -penalty <Integer, <=0> Penalty for a nucleotide mismatch -reward <Integer, >=0> Reward for a nucleotide match ''' # Load query file names print(tistamp(1)+"\tReading queries...") queries = [] with open(query_file) as inputfile: for line in inputfile: queries.append(line.strip().split(',')) # Load database file names print(tistamp(1)+"\tReading databases...") databases = [] with open(db_file) as inputfile: for line in inputfile: databases.append(line.strip().split(',')) # Start main loop of query sequence files for query_file in queries: query_file = ''.join(query_file[0]) # Begin analysis of query file print(tistamp(1)+"\tLoading query file: "+query_file) # Determine query file path split_query = query_file.split('/') query_file_name = split_query[-1] split_query.pop() query_path = '/'.join(split_query) print(tistamp(1)+"\tQuery File path: " + query_path) # Load sequences into dictionary print(tistamp(1)+"\tLoading sequences...") query_sequences = {} pickle_query_file = os.path.expanduser(query_file+".pickle") if clear_cache == 1: if os.path.exists(pickle_query_file): print(tistamp(1)+"\tClearing Cache..." + pickle_query_file) os.unlink(pickle_query_file) if os.path.exists(pickle_query_file): print(tistamp(1)+"\tLoading Cache..." + pickle_query_file) query_sequences = pickle.load( open( pickle_query_file, "rb" ) ) else: print(tistamp(1)+"\tBuilding Cache..." + pickle_query_file) query_sequences = load_sequences(query_file, merge_contigs, seq_line_limit) pickle.dump(query_sequences, open( pickle_query_file, "wb" ) ) print(tistamp(1)+"\tLoaded "+str(len(query_sequences))+" sequences") # Access first sequence in dict (should be merged) query_sequence = next (iter (query_sequences.values())) print(tistamp(1)+"\tGenerating "+str(r_scan_n)+" slices of size "+str(r_scan_size)+"...") # Generate random query sequences ''' query_seqs = {} if(random_pairwise == 1): for i in range(0,r_scan_n): (sub_seq,q_pos) = rand_subseq(query_sequence, r_scan_size) query_seqs[q_pos] = sub_seq print(tistamp(1)+"\tCreated "+str(r_scan_n)+" random sub-sequences.") ''' #elif(sliding_window == 1): #query_seqs = sl_window(query_sequence, sl_window_size, sl_increment) for database in databases: database = ''.join(database[0]) database_file_name = os.path.expanduser(database) print(tistamp(1)+"\tLoading database: "+ database) # Load database sequences db_sequences = {} pickle_db_file = os.path.expanduser(database+".pickle") if clear_cache == 1: if os.path.exists(pickle_db_file): print(tistamp(1)+"\tClearing Cache..." + pickle_db_file) os.unlink(pickle_db_file) if os.path.exists(pickle_db_file): print(tistamp(1)+"\tLoading Cache..." + pickle_db_file) db_sequences = pickle.load( open( pickle_db_file, "rb" ) ) else: print(tistamp(1)+"\tBuilding Cache..." + pickle_db_file) db_sequences = load_sequences(database, merge_contigs, seq_line_limit) pickle.dump(db_sequences, open( pickle_db_file, "wb" ) ) db_sequence = next (iter (db_sequences.values())) search_i = 1 found_seqs = {} while True: print(tistamp(1)+"\tSEARCH ROUND: " + str(search_i)) dup_hits_i = 0 hits_i = 0 dup_hits_list = [] blst_size_cutoff = float(r_scan_size - r_scan_size*dist_pcnt) print(tistamp(1)+"\t"+str(blst_size_cutoff)) #r_scan_sub_file = os.path.expanduser(output_path+"r_scan_contigs.fas") r_scan_sub_file = query_path+"/r_scan_contigs.fas" scan_file = query_file # Actual file that will be blasted against the database # Access first sequence in dict (should be merged) query_sequence = next (iter (query_sequences.values())) if search_i == 1: print(tistamp(1)+"\tGenerating "+str(r_scan_n)+" slices of size "+str(r_scan_size)+"...") r_scan_f = open(os.path.expanduser(r_scan_sub_file), 'w') for i in range(0,r_scan_n): (sub_seq,seq_start,seq_end) = rand_subseq(query_sequence, r_scan_size) r_scan_f.write(">Sub_g:" + str(i) + "_" + str(seq_start) + "_" + str(seq_end) + "\n" + sub_seq + "\n") print(tistamp(1)+"\tPrinted "+str(r_scan_n)+" random sub-sequences to "+r_scan_sub_file) else: print(tistamp(1)+"\tRefining query sequences from: " + str(len(found_seqs))) current_expand_size = expand_size*search_i print(tistamp(1)+"\tExpanding: "+ str(current_expand_size)) r_scan_f = open(os.path.expanduser(r_scan_sub_file), 'w') for q_pos, q_end in found_seqs.items(): q_left = int(q_pos) - current_expand_size q_right = int(q_end) + current_expand_size query_seq = query_sequence[q_left:q_right] r_scan_f.write(">Sub_g:" + str(i) + "_" + str(seq_start) + "_" + str(seq_end) + "\n" + query_seq + "\n") #ldist = distance.levenshtein(q_seq,d_seq) #else: #ldist = distance.fast_comp(q_seq,d_seq) r_scan_f.close() # Reset found seqs found_seqs = {} # Set query file to sub sequence file scan_file = r_scan_sub_file print(tistamp(1)+"\tTargeting "+database+" with ") blst_results_file = query_path+"/qry_"+query_file_name+"_results_"+tistamp(2)+".tsv" blst_results_file = os.path.expanduser(blst_results_file) print(tistamp(1)+"\tOutputing BLAST results to "+blst_results_file) # Form blastn command scandb_command = blast_path + seq_type + " -query " + os.path.expanduser(scan_file) \ + " -db " + os.path.expanduser(''.join(database)) +\ " -outfmt \"6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore\"" +\ " -out " + blst_results_file print(tistamp(1)+"\tRunning: ") print(tistamp(1)+"\t"+scandb_command) #sts = subprocess.Popen(scandb_command, shell=True).wait() os.system(scandb_command) blst_results = [] with open(blst_results_file) as inputfile: for line in inputfile: blst_results.append(line.strip().split('\t')) #print("qseqid\tsseqid\tpident\tlength\tmismatch\tgapopen\tqstart\tqend\tsstart\tsend\tevalue\tbitscore") # 0 1 2 3 4 5 6 7 8 9 10 11 # Store blast hits blst_hits = {} for result in blst_results: q_sid = result[0] if q_sid in blst_hits: blst_hits[q_sid] += 1 else: blst_hits[q_sid] = 1 # Find hits mapping to only 1 region unique_hits = {} for q_sid, count in blst_hits.items(): if count == 1: unique_hits[q_sid] = 1 for unique_q_sid, count in unique_hits.items(): for result in blst_results: q_sid = result[0] split_id = q_sid.split('_') q_start = split_id[2] q_end = split_id[3] q_length = result[3] if float(q_length) >= blst_size_cutoff: if q_sid == unique_q_sid: print(tistamp(1)+"\tFound at: " + q_sid + ": "+ str(q_start) + " => " + str(q_end)) found_seqs[q_start] = q_end # Iterate number of search rounds search_i = search_i + 1 if len(found_seqs) == 0: print(tistamp(1)+"\tDone") break for q_start, q_end in found_seqs.items(): print(q_start + " => " + q_end) end_time = time.time() print("Time: " + str(end_time - start_time))
bpwhite/bioinformatics-toolbox
src/blst_scan_genomes.py
Python
gpl-3.0
9,596
[ "BLAST" ]
277e443463d9a36fc05f250ad1b07e5893a6f66d5f8d99ecd43ccdf111e99be6
# This file is part of PyEMMA. # # Copyright (c) 2015, 2014 Computational Molecular Biology Group, Freie Universitaet Berlin (GER) # # PyEMMA is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ''' Created on Jul 25, 2014 @author: noe ''' from __future__ import absolute_import import unittest from pyemma.util import statistics import numpy as np from six.moves import range class TestStatistics(unittest.TestCase): def assertConfidence(self, sample, alpha, precision): alpha = 0.5 conf = statistics.confidence_interval(sample, alpha) n_in = 0.0 for i in range(len(sample)): if sample[i] > conf[0] and sample[i] < conf[1]: n_in += 1.0 assert(alpha - (n_in/len(sample)) < precision) def test_confidence_interval(self): # exponential distribution self.assertConfidence(np.random.exponential(size=10000), 0.5, 0.01) self.assertConfidence(np.random.exponential(size=10000), 0.8, 0.01) self.assertConfidence(np.random.exponential(size=10000), 0.95, 0.01) # Gaussian distribution self.assertConfidence(np.random.normal(size=10000), 0.5, 0.01) self.assertConfidence(np.random.normal(size=10000), 0.8, 0.01) self.assertConfidence(np.random.normal(size=10000), 0.95, 0.01) if __name__ == "__main__": unittest.main()
gph82/PyEMMA
pyemma/util/tests/statistics_test.py
Python
lgpl-3.0
1,944
[ "Gaussian" ]
8eeab67c3d4c1342f5d56c916e7f231a97226c120cecffa15e8d023c0f7d18cd
__author__ = 'Tom Schaul, [email protected]' from scipy import zeros, randn from random import random, sample, gauss from topology import TopologyEvolvable class MaskedParameters(TopologyEvolvable): """ A module with a binary mask that can disable (=zero) parameters. If no maximum is set, the mask can potentially have all parameters enabled. The maxComplexity represents the number of allowed enabled parameters. """ maskFlipProbability = 0.05 mutationStdev = 0.1 # number of bits in the mask that can be maximally on at once (None = all) # Note: there must always be at least one on maxComplexity = None # probability of mask bits being on in a random mask (subject to the constraint above) maskOnProbability = 0.5 def __init__(self, pcontainer, **args): TopologyEvolvable.__init__(self, pcontainer, **args) if self.maxComplexity == None: self.maxComplexity = self.pcontainer.paramdim self.randomize() self.maskableParams = self.pcontainer.params.copy() self._applyMask() def _applyMask(self): """ apply the mask to the module. """ self.pcontainer._params[:] = self.mask*self.maskableParams @property def paramdim(self): return sum(self.mask) @property def params(self): """ returns an array with only the unmasked parameters """ x = zeros(self.paramdim) paramcount = 0 for i in range(len(self.maskableParams)): if self.mask[i] == True: x[paramcount] = self.maskableParams[i] paramcount += 1 return x def _setParameters(self, x): """ sets only the unmasked parameters """ paramcount = 0 for i in range(len(self.maskableParams)): if self.mask[i] == True: self.maskableParams[i] = x[paramcount] paramcount += 1 self._applyMask() def randomize(self, **args): """ an initial, random mask (with random params) with as many parameters enabled as allowed""" self.mask = zeros(self.pcontainer.paramdim, dtype=bool) onbits = [] for i in range(self.pcontainer.paramdim): if random() > self.maskOnProbability: self.mask[i] = True onbits.append(i) over = len(onbits) - self.maxComplexity if over > 0: for i in sample(onbits, over): self.mask[i] = False self.maskableParams = randn(self.pcontainer.paramdim)*self.stdParams self._applyMask() def topologyMutate(self): """ flips some bits on the mask (but do not exceed the maximum of enabled parameters). """ for i in range(self.pcontainer.paramdim): if random() < self.maskFlipProbability: self.mask[i] = not self.mask[i] tooMany = sum(self.mask) - self.maxComplexity for i in range(tooMany): while True: ind = int(random()*self.pcontainer.paramdim) if self.mask[ind]: self.mask[ind] = False break if sum(self.mask) == 0: # CHECKME: minimum of one needs to be on ind = int(random()*self.pcontainer.paramdim) self.mask[ind] = True self._applyMask() def mutate(self): """ add some gaussian noise to all parameters.""" # CHECKME: could this be partly outsourced to the pcontainer directly? for i in range(self.pcontainer.paramdim): self.maskableParams[i] += gauss(0, self.mutationStdev) self._applyMask()
daanwierstra/pybrain
pybrain/structure/evolvables/maskedparameters.py
Python
bsd-3-clause
3,787
[ "Gaussian" ]
7e18ebfb8ea0d8ec62ed2375956c67a486a0f888734336912f84cf1a2a471b3c
# # Copyright (C) 2013-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import unittest as ut import unittest_decorators as utx import thermostats_common import numpy as np import espressomd import espressomd.accumulators import espressomd.observables class BrownianThermostat(ut.TestCase, thermostats_common.ThermostatsCommon): """Tests velocity distributions and diffusion for Brownian Dynamics""" system = espressomd.System(box_l=[1.0, 1.0, 1.0]) system.cell_system.set_regular_decomposition(use_verlet_lists=True) system.cell_system.skin = 0 system.periodicity = [0, 0, 0] def setUp(self): np.random.seed(42) self.system.integrator.set_brownian_dynamics() def tearDown(self): self.system.time_step = 1e-12 self.system.cell_system.skin = 0.0 self.system.part.clear() self.system.auto_update_accumulators.clear() self.system.thermostat.turn_off() self.system.integrator.set_vv() def check_vel_dist_global_temp(self, recalc_forces, loops): """Test velocity distribution for global temperature parameters. Parameters ---------- recalc_forces : :obj:`bool` True if the forces should be recalculated after every step. loops : :obj:`int` Number of sampling loops """ N = 200 system = self.system system.time_step = 1.6 kT = 1.1 gamma = 3.5 system.thermostat.set_brownian(kT=kT, gamma=gamma, seed=41) v_minmax = 5 bins = 4 error_tol = 0.01 self.check_global( N, kT, loops, v_minmax, bins, error_tol, recalc_forces) def test_vel_dist_global_temp(self): """Test velocity distribution for global Brownian parameters.""" self.check_vel_dist_global_temp(False, loops=200) def test_vel_dist_global_temp_initial_forces(self): """Test velocity distribution for global Brownian parameters, when using the initial force calculation. """ self.check_vel_dist_global_temp(True, loops=170) @utx.skipIfMissingFeatures("THERMOSTAT_PER_PARTICLE") def test_vel_dist_per_particle(self): """Test Brownian dynamics with particle-specific kT and gamma. Covers all combinations of particle-specific gamma and temp set or not set. """ N = 400 system = self.system system.time_step = 1.9 kT = 0.9 gamma = 3.2 gamma2 = 4.3 system.thermostat.set_brownian(kT=kT, gamma=gamma, seed=41) loops = 200 v_minmax = 5 bins = 4 error_tol = 0.012 self.check_per_particle( N, kT, gamma2, loops, v_minmax, bins, error_tol) def test_msd_global_temp(self): """Tests diffusion via MSD for global gamma and temperature""" gamma = 9.4 kT = 0.37 dt = 0.5 system = self.system p = system.part.add(pos=(0, 0, 0)) system.time_step = dt system.thermostat.set_brownian(kT=kT, gamma=gamma, seed=41) system.cell_system.skin = 0.4 pos_obs = espressomd.observables.ParticlePositions(ids=(p.id,)) c_pos = espressomd.accumulators.Correlator( obs1=pos_obs, tau_lin=16, tau_max=100., delta_N=1, corr_operation="square_distance_componentwise", compress1="discard1") system.auto_update_accumulators.add(c_pos) system.integrator.run(30000) c_pos.finalize() # Check MSD msd = c_pos.result() tau = c_pos.lag_times() system.auto_update_accumulators.clear() def expected_msd(x): return 2. * kT / gamma * x for i in range(2, 6): np.testing.assert_allclose( msd[i], expected_msd(tau[i]), rtol=0.02) def test_08__noise_correlation(self): """Checks that the Brownian noise is uncorrelated""" system = self.system system.time_step = 0.01 system.cell_system.skin = 0.1 kT = 3.2 system.thermostat.set_brownian(kT=kT, gamma=2.1, seed=17) system.part.add(pos=np.zeros((2, 3))) steps = int(1e4) error_delta = 0.04 self.check_noise_correlation(kT, steps, error_delta) if __name__ == "__main__": ut.main()
pkreissl/espresso
testsuite/python/brownian_dynamics_stats.py
Python
gpl-3.0
4,981
[ "ESPResSo" ]
6bc8cf7270a1329f25508092dce1a6019601d3bdcb82b672b5742717db5b56ce
# coding: utf-8 from __future__ import unicode_literals, division, print_function """ Error handlers for errors originating from the Submission systems. """ __author__ = "Michiel van Setten" __copyright__ = " " __version__ = "0.9" __maintainer__ = "Michiel van Setten" __email__ = "[email protected]" __date__ = "May 2014" from pymatgen.io.gwwrapper.scheduler_error_parsers import get_parser from custodian.custodian import ErrorHandler class SchedulerErrorHandler(ErrorHandler): """ Custodian error handler for scheduler related errors scheduler_adapter takes the scheduler, it should at least provide a .name attribute indentifying the scheduler, currently 'slurm' is supported. If the scheduler adapter also provides the methods defined in CorrectorProtocolScheduler, problems can also be fixed by .apply_corrections. If a application_adapter is also provided and it provides the methods defined in CorrectorProtocolApplication problems can also be fixed a the level of the application, e.g. making the application require less memory. """ def __init__(self, scheduler_adapter, application_adapter=None, err_file='queue.err', out_file='queue.out', run_err_file='run.err', batch_err_file='batch.err'): self.scheduler_adapter = scheduler_adapter self.application_adapter = application_adapter self.err_file = err_file self.out_file = out_file self.run_err_file = run_err_file self.batch_err_file = batch_err_file self.errors = [] self.corrections = {} def check(self): """ Check for the defined errors, put all found errors in self.errors, return True if any were found False if no errors were found """ parser = get_parser(self.scheduler_adapter.name, err_file=self.err_file, out_file=self.out_file, run_err_file=self.run_err_file, batch_err_file=self.batch_err_file) parser.parse() self.errors = parser.errors if len(self.errors) == 0: return False else: return True def correct(self): """ For custodian compatibility """ self.return_corrections() def return_corrections(self): for error in self.errors: self.corrections.update({error: {'scheduler_adapter_solutions': [], 'aplication_adapter_solutions': []}}) self.corrections[error]['scheduler_adapter_solutions'].append(error.scheduler_adapter_solutions) self.corrections[error]['application_adapter_solutions'].append(error.application_adapter_solutions) return self.corrections def apply_corrections(self): """ Method to directly apply the corrections. """ for error in self.errors: for solution in error.scheduler_adapter_solutions: if self.scheduler_adapter is not None: if self.scheduler_adapter.__getattribut__(solution[0].__name__)(solution[1]): return True for solution in error.application_adapter_solutions: if self.application_adapter is not None: if self.application_adapter.__getattribut__(solution[0].__name__)(solution[1]): return True return False
yanikou19/pymatgen
pymatgen/io/gwwrapper/scheduler_error_handlers.py
Python
mit
3,375
[ "pymatgen" ]
a3913abe1f8848dd8dc5d195aed21f3990bd32e8a870f37addb2c347453a91c7
# # Copyright (C) 2013-2019 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import unittest as ut import espressomd from espressomd import magnetostatics from tests_common import generate_test_for_class class MagnetostaticsInteractionsTests(ut.TestCase): # Handle to espresso system system = espressomd.System(box_l=[1.0, 1.0, 1.0]) def setUp(self): self.system.box_l = [10, 10, 10] if not self.system.part.exists(0): self.system.part.add(id=0, pos=(0.1, 0.1, 0.1), dip=(1.3, 2.1, -6)) if not self.system.part.exists(1): self.system.part.add(id=1, pos=(0, 0, 0), dip=(7.3, 6.1, -4)) if espressomd.has_features(["DP3M"]): test_DP3M = generate_test_for_class( system, magnetostatics.DipolarP3M, dict(prefactor=1.0, epsilon=0.0, inter=1000, mesh_off=[0.5, 0.5, 0.5], r_cut=2.4, mesh=[8, 8, 8], cao=1, alpha=12, accuracy=0.01, tune=False)) if espressomd.has_features(["DIPOLAR_DIRECT_SUM"]): test_DdsCpu = generate_test_for_class( system, magnetostatics.DipolarDirectSumCpu, dict(prefactor=3.4)) if espressomd.has_features("EXPERIMENTAL_FEATURES"): test_DdsRCpu = generate_test_for_class( system, magnetostatics.DipolarDirectSumWithReplicaCpu, dict(prefactor=3.4, n_replica=2)) if __name__ == "__main__": ut.main()
KaiSzuttor/espresso
testsuite/python/magnetostaticInteractions.py
Python
gpl-3.0
2,066
[ "ESPResSo" ]
a6a7fa1c3c30be3c20e7daf453c5cfc1805f3318c48e4f05f0d44107bcc9fac8
import random from _collections import OrderedDict import quantities import theano from theano import tensor as TT import numpy as np from . import ensemble from . import simplenode from . import probe from . import origin from . import input from . import subnetwork from . import helpers class Network(object): def __init__(self, name, seed=None, fixed_seed=None, dt=.001): """Wraps an NEF network with a set of helper functions for simplifying the creation of NEF models. :param string name: create and wrap a new Network with the given name. :param int seed: random number seed to use for creating ensembles. This one seed is used only to start the random generation process, so each neural group created will be different. """ self.name = name self.dt = dt self.run_time = 0.0 self.seed = seed self.fixed_seed = fixed_seed # all the nodes in the network, indexed by name self.nodes = {} # the function call to run the theano portions of the model self.theano_tick = None # the list of nodes that have non-theano code self.tick_nodes = [] self.random = random.Random() if seed is not None: self.random.seed(seed) def add(self, node): """Add an arbitrary non-theano node to the network. Used for inputs, SimpleNodes, and Probes. These nodes will be added to the Theano graph if the node has an "update()" function, but will also be triggered explicitly at every tick via the node's `theano_tick()` function. :param Node node: the node to add to this network """ # remake theano_tick function, in case the node has Theano updates self.theano_tick = None self.tick_nodes.append(node) self.nodes[node.name] = node def connect(self, pre, post, transform=None, weight=1, index_pre=None, index_post=None, pstc=0.01, func=None): """Connect two nodes in the network. Note: cannot specify (transform) AND any of (weight, index_pre, index_post). *pre* and *post* can be strings giving the names of the nodes, or they can be the nodes themselves (Inputs and Ensembles are supported). They can also be actual Origins or Terminations, or any combination of the above. If transform is not None, it is used as the transformation matrix for the new termination. You can also use *weight*, *index_pre*, and *index_post* to define a transformation matrix instead. *weight* gives the value, and *index_pre* and *index_post* identify which dimensions to connect. If *func* is not None, a new Origin will be created on the pre-synaptic ensemble that will compute the provided function. The name of this origin will be taken from the name of the function, or *origin_name*, if provided. If an origin with that name already exists, the existing origin will be used rather than creating a new one. :param string pre: Name of the node to connect from. :param string post: Name of the node to connect to. :param float pstc: post-synaptic time constant for the neurotransmitter/receptor on this connection :param transform: The linear transfom matrix to apply across the connection. If *transform* is T and *pre* represents ``x``, then the connection will cause *post* to represent ``Tx``. Should be an N by M array, where N is the dimensionality of *post* and M is the dimensionality of *pre*. :type transform: array of floats :param index_pre: The indexes of the pre-synaptic dimensions to use. Ignored if *transform* is not None. See :func:`helpers.compute_transform()` :param float weight: Scaling factor for a transformation defined with *index_pre* and *index_post*. Ignored if *transform* is not None. See :func:`helpers.compute_transform()` :type index_pre: List of integers or a single integer :param index_post: The indexes of the post-synaptic dimensions to use. Ignored if *transform* is not None. See :func:`helpers.compute_transform()` :type index_post: List of integers or a single integer :param function func: Function to be computed by this connection. If None, computes ``f(x)=x``. The function takes a single parameter ``x``, which is the current value of the *pre* ensemble, and must return either a float or an array of floats. :param string origin_name: Name of the origin to check for / create to compute the given function. Ignored if func is None. If an origin with this name already exists, the existing origin is used instead of creating a new one. """ # 1) pre = decoded, post = decoded # - in this case, transform will be # (post.dimensions x pre.origin.dimensions) # - decoded_input will be (post.array_size x post.dimensions) # reset timer in case the model has been run, # as adding a new node requires rebuilding the theano function self.theano_tick = None # see if a termination name was specified # right now only relevant for SimpleNodes post_split = post.split(':'); post = post_split[0]; if len(post_split) > 1: term_name = post_split[1] # get post Node object from node dictionary post = self.get_object(post) # get the origin from the pre Node pre_origin = self.get_origin(pre, func) # get pre Node object from node dictionary pre_name = pre pre = self.get_object(pre) # get decoded_output from specified origin pre_output = pre_origin.decoded_output dim_pre = pre_origin.dimensions if transform is not None: # make sure contradicting things aren't simultaneously specified assert ((weight == 1) and (index_pre is None) and (index_post is None)) if isinstance(post, simplenode.SimpleNode): assert index_post is None dim_post = post.dimensions[term_name] else: dim_post = post.dimensions # if decoded-decoded connection (case 1) # compute transform if not given, if given make sure shape is correct transform = helpers.compute_transform( dim_pre=dim_pre, dim_post=dim_post, array_size=post.array_size, weight=weight, index_pre=index_pre, index_post=index_post, transform=transform) # apply transform matrix, directing pre dimensions # to specific post dimensions decoded_output = TT.dot(transform, pre_output) # pass in the pre population decoded output function # to the post population, connecting them for theano if isinstance(post, simplenode.SimpleNode): post.set_input_source(name=term_name, pstc=pstc, source=decoded_output) else: post.add_termination(name=pre_name, pstc=pstc, decoded_input=decoded_output) def connect_neurons(self, pre, post, weight_matrix, pstc=0.01, func=None): """ This function makes a connection to post-synaptic neurons directly either from a pre-synaptic vector or neuron space, depending on the shape of the weight matrix. If weight_matrix is (post.neurons x pre.dim) then it connects from the vector space of the pre-synaptic neuron, using the pre synaptic decoders, but replacing the post-synaptic encoders. If weight_matrix is (post.neurons x pre.neurons) then it connects the neurons of the two populations directly together. :param pre: pre-synaptic signal source :type pre: Ensemble, Input, SimpleNode note if neuron - neuron connection must be type Ensemble :param Ensemble post: post-synaptic population of neurons :param weight_matrix: set of connection weight strengths :type weight_matrix: numpy.array, list :param function func: Not for use on neuron-neuron connections, only vector-neurons connections. Function of the decoded origin to be the presynaptic connection. If None, default origin used. The function takes a single parameter ``x``, which is the current value of the *pre* ensemble, and must return either a float or an array of floats. """ post = self.get_object(post) # get the origin from the pre Node pre_origin = self.get_origin(pre, func) # get pre Node object from node dictionary pre_name = pre pre = self.get_object(pre) # get decoded_output from specified origin pre_output = pre_origin.decoded_output dim_pre = pre_origin.dimensions weight_matrix = np.asarray(weight_matrix) # make sure the weight_matrix is in the right form if weight_matrix.shape[0] == post.array_size * post.neurons_num: weight_matrix = weight_matrix.reshape( [post.array_size, post.neurons_num] +\ list(weight_matrix.shape[1:])) if len(weight_matrix.shape) == 2: # repeat array_size times weight_matrix = np.tile(weight_matrix, (post.array_size, 1, 1)) # there are 2 cases # 3) pre = encoded, post = encoded # - in this case, weight_matrix will be (post.array_size x # post.neurons_num x pre.array_size x pre.neurons_num) # - encoded_input will be (post.array_size x post.neurons_num) # check for pre side encoded connection (case 3) if len(weight_matrix.shape) > 3 or \ weight_matrix.shape[2] == pre.array_size * pre.neurons_num: if weight_matrix.shape[2] == pre.array_size * pre.neurons_num: weight_matrix = weight_matrix.reshape( [post.array_size, post.neurons_num, pre.array_size, pre.neurons_num]) assert weight_matrix.shape == \ (post.array_size, post.neurons_num, pre.array_size, pre.neurons_num) # can't specify a function in this case assert func == None # get spiking output from pre population pre_output = pre.neurons.output encoded_output = (weight_matrix * pre_output) # sum the contribution from all pre neurons # for each post neuron encoded_output = np.sum(encoded_output, axis=3) # sum the contribution from each of the # pre arrays for each post neuron encoded_output = np.sum(encoded_output, axis=2) # pass in the pre population encoded output function # to the post population, connecting them for theano post.add_termination(name=pre_name, pstc=pstc, encoded_input=encoded_output) return # else # 2) pre = decoded, post = encoded # - in this case, weight_matrix will be size # (post.array_size x post.neurons x pre.origin.dimensions) # - encoded_input will be (post.array_size x post.neurons_num) assert weight_matrix.shape == \ (post.array_size, post.neurons_num, dim_pre) encoded_output = TT.zeros((post.array_size, post.neurons_num), dtype='float32') for ii in xrange(post.neurons_num): encoded_output = TT.set_subtensor(encoded_output[:, ii], TT.dot(weight_matrix[:, ii], pre_output)) # pass in the pre population encoded output function # to the post population, connecting them for theano post.add_termination(name=pre_name, pstc=pstc, encoded_input=encoded_output) def get_object(self, name): """This is a method for parsing input to return the proper object. The only thing we need to check for here is a ':', indicating an origin. :param string name: the name of the desired object """ assert isinstance(name, str) # separate into node and origin, if specified split = name.split(':') if len(split) == 1: # no origin specified return self.nodes[name] elif len(split) == 2: # origin specified node = self.nodes[split[0]] return node.origin[split[1]] def get_origin(self, name, func=None): """This method takes in a string and returns the decoded_output function of this object. If no origin is specified in name then 'X' is used. :param string name: the name of the object(and optionally :origin) from which to take decoded_output from :returns: specified origin """ obj = self.get_object(name) # get the object referred to by name if not isinstance(obj, origin.Origin): # if obj is not an origin, find the origin # the projection originates from # take default identity decoded output from obj population origin_name = 'X' if func is not None: # if this connection should compute a function # set name as the function being calculated origin_name = func.__name__ #TODO: better analysis to see if we need to build a new origin # (rather than just relying on the name) if origin_name not in obj.origin: # if an origin for this function hasn't already been created # create origin with to perform desired func obj.add_origin(origin_name, func, dt=self.dt) obj = obj.origin[origin_name] else: # if obj is an origin, make sure a function wasn't given # can't specify a function for an already created origin assert func == None return obj def learn(self, pre, post, error, pstc=0.01, **kwargs): """Add a connection with learning between pre and post, modulated by error. Error can be a Node, or an origin. If no origin is specified in the format node:origin, then 'X' is used. :param Ensemble pre: the pre-synaptic population :param Ensemble post: the post-synaptic population :param Ensemble error: the population that provides the error signal :param list weight_matrix: the initial connection weights with which to start """ pre_name = pre pre = self.get_object(pre) post = self.get_object(post) error = self.get_origin(error) return post.add_learned_termination(name=pre_name, pre=pre, error=error, pstc=pstc, dt=self.dt, **kwargs) def make(self, name, *args, **kwargs): """Create and return an ensemble of neurons. Note that all ensembles are actually arrays of length 1. :param string name: name of the ensemble (must be unique) :param int seed: Random number seed to use. If this is None and the Network was constructed with a seed parameter, a seed will be randomly generated. :returns: the newly created ensemble """ if 'seed' not in kwargs.keys(): if self.fixed_seed is not None: kwargs['seed'] = self.fixed_seed else: # if no seed provided, get one randomly from the rng kwargs['seed'] = self.random.randrange(0x7fffffff) # just in case the model has been run previously, # as adding a new node means we have to rebuild # the theano function self.theano_tick = None kwargs['dt'] = self.dt e = ensemble.Ensemble(*args, **kwargs) # store created ensemble in node dictionary if kwargs.get('mode', None) == 'direct': self.tick_nodes.append(e) self.nodes[name] = e return e def make_array(self, name, neurons, length, dimensions=1, **kwargs): """Generate a network array specifically. This function is depricated; use for legacy code or non-theano API compatibility. """ return self.make( name=name, neurons=neurons, dimensions=dimensions, array_size=length, **kwargs) def make_input(self, *args, **kwargs): """Create an input and add it to the network.""" i = input.Input(*args, **kwargs) self.add(i) return i def make_subnetwork(self, name): """Create a subnetwork. This has no functional purpose other than to help organize the model. Components within a subnetwork can be accessed through a dotted name convention, so an element B inside a subnetwork A can be referred to as A.B. :param name: the name of the subnetwork to create """ return subnetwork.SubNetwork(name, self) def make_probe(self, target, name=None, dt_sample=0.01, data_type='decoded', **kwargs): """Add a probe to measure the given target. :param target: a Theano shared variable to record :param name: the name of the probe :param dt_sample: the sampling frequency of the probe :returns: The Probe object """ i = 0 target_name = target + '-' + data_type while name is None or self.nodes.has_key(name): i += 1 name = ("Probe%d" % i) # get the signal to record if data_type == 'decoded': target = self.get_origin(target).decoded_output elif data_type == 'spikes': target = self.get_object(target) # check to make sure target is an ensemble assert isinstance(target, ensemble.Ensemble) target = target.neurons.output # set the filter to zero kwargs['pstc'] = 0 p = probe.Probe(name=name, target=target, target_name=target_name, dt_sample=dt_sample, **kwargs) self.add(p) return p def make_theano_tick(self): """Generate the theano function for running the network simulation. :returns: theano function """ # dictionary for all variables # and the theano description of how to compute them updates = OrderedDict() # for every node in the network for node in self.nodes.values(): # if there is some variable to update if hasattr(node, 'update'): # add it to the list of variables to update every time step updates.update(node.update(self.dt)) # create graph and return optimized update function return theano.function([], [], updates=updates.items())#, mode='ProfileMode') def run(self, time): """Run the simulation. If called twice, the simulation will continue for *time* more seconds. Note that the ensembles are simulated at the dt timestep specified when they are created. :param float time: the amount of time (in seconds) to run :param float dt: the timestep of the update """ # if theano graph hasn't been calculated yet, retrieve it if self.theano_tick is None: self.theano_tick = self.make_theano_tick() for i in range(int(time / self.dt)): # get current time step t = self.run_time + i * self.dt # run the non-theano nodes for node in self.tick_nodes: node.t = t node.theano_tick() # run the theano nodes self.theano_tick() if i % 1000 == 0: print 'time: ', t, 's' # update run_time variable self.run_time += time def write_data_to_hdf5(self, filename='data'): """This is a function to call after simulation that writes the data of all probes to filename using the Neo HDF5 IO module. :param string filename: the name of the file to write out to """ import neo from neo import hdf5io # get list of probes probe_list = [self.nodes[node] for node in self.nodes if node[:5] == 'Probe'] # if no probes then just return if len(probe_list) == 0: return # open up hdf5 file if not filename.endswith('.hd5'): filename += '.hd5' iom = hdf5io.NeoHdf5IO(filename=filename) #TODO: set up to write multiple trials/segments to same block # for trials run at different points # create the all encompassing block structure block = neo.Block() # create the segment, representing a trial segment = neo.Segment() # put the segment in the block block.segments.append(segment) # create the appropriate Neo structures from the Probes data #TODO: pair any analog signals and spike trains from the same # population together into a RecordingChannel for probe in probe_list: # decoded signals become AnalogSignals if probe.target_name.endswith('decoded'): segment.analogsignals.append( neo.AnalogSignal( probe.get_data() * quantities.dimensionless, sampling_period=probe.dt_sample * quantities.s, target_name=probe.target_name) ) # spikes become spike trains elif probe.target_name.endswith('spikes'): # have to change spike train of 0s and 1s to list of times for neuron in probe.get_data().T: segment.spiketrains.append( neo.SpikeTrain( [ t * probe.dt_sample for t, val in enumerate(neuron[0]) if val > 0 ] * quantities.s, t_stop=len(probe.data), target_name=probe.target_name) ) else: print 'Do not know how to write %s to NeoHDF5 file'%probe.target_name assert False # write block to file iom.save(block) # close up hdf5 file iom.close() def set_alias(self, alias, node): """Adds a named shortcut to an existing node within this network to be used to simplify connect() calls. For example, you can do:: net.set_alias('vision','A.B.C.D.E') net.set_alias('motor','W.X.Y.Z') net.connect('vision','motor') :param string alias: the new short name to create :param string node: the existing node name """ self.nodes[alias] = self.nodes[node]
ctn-waterloo/nengo_theano
nengo_theano/network.py
Python
mit
23,984
[ "NEURON" ]
93d54c17c84fd58a86f6616434194ea0b0b4d9f6d4395475a3c65a0e9042c400
# # Copyright 2001 - 2016 Ludek Smid [http://www.ospace.net/] # # This file is part of Outer Space. # # Outer Space is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Outer Space is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Outer Space; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # # # This module contains global data # from ige.ospace import Const app = None mainGameDlg = None updateDlgs = [] cmdInProgress = 0 # i18n (delayed translation) def N_(msg): return msg planetTypes = { 'A': N_('Asteroid'), 'G': N_('Gas Giant'), 'R': N_('Rock'), 'C': N_('Cold'), 'D': N_('Desert'), 'H': N_('Hostile'), 'M': N_('Marginal'), 'E': N_('Terrestrial'), 'I': N_('Gaia'), None: N_('Unknown'), } starTypes = { 'c': N_('Super giant'), 'g': N_('Giant'), 'm': N_('Main sequence'), 'd': N_('Dwarf'), 'b': N_('Black hole'), 'n': N_('Neutron star'), 'w': N_('Worm hole'), } shipClasses = { 0: N_('small'), 1: N_('medium'), 2: N_('large'), 3: N_('planet'), } fleetActions = { 0: N_('None'), 1: N_('Move to'), 1000: N_("Declare War at"), 1002: N_("Deploy Ship"), 1003: N_("Redirect to"), 1004: N_("Refuel at"), 1005: N_("Repeat from"), 1006: N_("Wait"), 1007: N_("Enter Wormhole at"), } stratRes = { 0: N_("None"), 1: N_("Uranium"), 2: N_("Titanium"), 3: N_("Chromium"), 4: N_("Silicium"), 5: N_("Carboneum"), 6: N_("Antimatter"), 7: N_("Plutonium"), 8: N_("Wolframium"), 100: N_("Mutagen"), 1000: N_("Unnilseptium") } relationNames = [N_("Enemy"), N_("Unfriendly"), N_("Unfriendly"), N_("Neutral"), N_("Neutral"), N_("Friendly"), N_("Friendly"), N_("Allied")] pactNames = { Const.PACT_ALLOW_CIVILIAN_SHIPS: N_("Passage for civilian ships"), Const.PACT_ALLOW_MILITARY_SHIPS: N_("Passage for military ships"), Const.PACT_ALLOW_TANKING: N_("Permission to tank ships"), Const.PACT_MINOR_CP_COOP: N_("Limited trade agreement"), Const.PACT_MAJOR_CP_COOP: N_("Unlimited trade agreement"), Const.PACT_SHARE_SCANNER: N_("Scanner map exchange"), Const.PACT_MINOR_SCI_COOP: N_("Research information exchange"), Const.PACT_MAJOR_SCI_COOP: N_("Research cooperation"), } pacts = [ Const.PACT_ALLOW_CIVILIAN_SHIPS, Const.PACT_ALLOW_MILITARY_SHIPS, Const.PACT_ALLOW_TANKING, Const.PACT_MINOR_CP_COOP, Const.PACT_SHARE_SCANNER, Const.PACT_MINOR_SCI_COOP, Const.PACT_MAJOR_CP_COOP, Const.PACT_MAJOR_SCI_COOP, ] pactStates = [N_("Disabled"), N_("Enabled"), N_("Active")] mailboxSpec = { (Const.T_PLAYER, "INBOX"): (N_("Mailbox"), "sender"), (Const.T_PLAYER, "OUTBOX"): (N_("Sent"), None), (Const.T_PLAYER, "EVENTS"): (N_("Events"), None), (Const.T_UNIVERSE, "NEWS"): (N_("News"), None), (Const.T_UNIVERSE, "PUBLIC"): (N_("Public"), "forum"), (Const.T_GALAXY, "PUBLIC"): (N_("Public"), "forum"), (Const.T_GALAXY, "NEWS"): (N_("News"), None), } def mailboxStripLang(forum): if "_" in forum: return forum.split("_")[1] else: return forum # morale states moraleStates = { -0.875: N_("MORALE IS TERRIBLE"), -0.75: N_("MORALE IS TERRIBLE"), -0.625: N_("MORALE IS TERRIBLE"), -0.50: N_("MORALE IS BAD"), -0.375: N_("MORALE IS VERY LOW"), -0.25: N_("MORALE IS LOW"), -0.125: N_("MORALE IS BELOW AVERAGE"), 0.0: N_(" "), 0.125: N_("MORALE IS HIGH"), 0.25: N_("MORALE IS SUPERB"), } # severity CRI = 3 MAJ = 2 MIN = 1 INFO = 0 NONE = INFO DISABLED = -1 msgSeverity = { CRI: N_("Critical"), MAJ: N_("Major"), MIN: N_("Minor"), INFO: N_("Info"), DISABLED: N_("Disabled"), } sevColors = { CRI: (0xff, 0x80, 0x80), MAJ: (0xff, 0xff, 0x00), MIN: None, NONE: (0xc0, 0xc0, 0xc0), DISABLED: (0x80, 0x80, 0x80), } gameScenarios = { Const.SCENARIO_SINGLE: N_("Single"), Const.SCENARIO_COOP: N_("Cooperative"), Const.SCENARIO_BRAWL: N_("Brawl"), Const.SCENARIO_OUTERSPACE: N_("Outer Space") } gameScenarioDescriptions = { Const.SCENARIO_SINGLE: N_("Single player game to enjoy freebuilding, learn the game, and try new strategies. Usually some AI opponents try to slow you down. You can pause galaxy any time, as well as finish it. Endless game, set your own goals."), Const.SCENARIO_COOP: N_("Cooperative game pits you and other commanders against strong AI opposition. Learn how to play along other players to achieve common goal. Cooperation is not enforced by game, but it is recommended to utilize all pacts available. Game ends when AI empires cease to exist."), Const.SCENARIO_BRAWL: N_("Brawl is a mode where you fight other commanders for supremacy. There is no other way to win, than to conquer everything. Usually there are no agressive AI present. You win, when you are the only human commander in the galaxy."), Const.SCENARIO_OUTERSPACE: N_("Original and complete mode. True experience, full of fights between commanders, sprawling AI, diplomacy and backstabbing. Recommended to veteran players with good grasp of game concepts. To win this game, you have to convince others to vote for you, and if you have enough backing, elect you to become the Imperator of the galaxy.") } galaxyTypeDescriptions = { 'Circle1SP': N_("Basic training galaxy, with mutant as the only agressive enemy. Recommended for new players."), 'Circle2CP': N_("Cooperative galaxy, where you and another commander fend off and defeat sprawling mutant menace. Recommended to inexperienced players."), 'Circle3BP': N_("Tiny galaxy to brawl with two other commanders. Tactics prevail here, as there is not enough planets to make long term strategies viable."), 'Circle3SP': N_("More complex single player galaxy, with classic starting group of three commanders. Mutant is the only agressive enemy, two friendly Rebels start in the vicinity."), 'Circle3CP': N_("Cooperative galaxy, where you and two other commanders fend off and defeat sprawling mutant menace. Recommended to inexperienced players."), 'Circle5BP': N_("Small galaxy to brawl with four other commanders. Trust no one and keep watching your back."), 'Circle9P': N_("Smallest galaxy that contains full diplomacy rules set, limited strategic resources, and fully implements game mechanics. This galaxy is recommended for beginners who seek more casual gameplay with other like minded players."), 'Circle42P': N_("Original galaxy, place of epic battles and complex intrigues. Recommended only to the experienced players. It may become time consuming."), 'Circle65P': N_("Majestic galaxy of unmatched size. Be prepared to work primarily through diplomacy, as management of huge empire required for conquest would take all your time. Only for veteran players of many galaxies."), } gameChallenges = { Const.T_AIPLAYER: N_("Rebel"), Const.T_AIRENPLAYER: N_("Renegade"), Const.T_AIMUTPLAYER: N_("Mutant"), Const.T_AIPIRPLAYER: N_("Pirate"), Const.T_AIEDENPLAYER: N_("EDEN"), } # StarMapWidget overlays OVERLAY_OWNER = "owner" OVERLAY_DIPLO = "diplomacy" OVERLAY_BIO = "bio" OVERLAY_FAME = "fame" OVERLAY_MIN = "min" OVERLAY_SLOT = "slot" OVERLAY_STARGATE = "stargate" OVERLAY_DOCK = "dock" OVERLAY_MORALE = "morale" OVERLAY_PIRATECOLONYCOST = "piratecolony" OVERLAY_TYPES = [OVERLAY_OWNER, OVERLAY_DIPLO, OVERLAY_BIO, OVERLAY_FAME, OVERLAY_MIN, OVERLAY_SLOT, OVERLAY_STARGATE, OVERLAY_DOCK, OVERLAY_MORALE, OVERLAY_PIRATECOLONYCOST] # colors playerHighlightColor = (0xff, 0xa5, 0x4d) playersHighlightColorsOld = { 32935: (0x55, 0x55, 0x55), # plasmon 32964: (0x00, 0xa0, 0xa0), # niki 32921: (0xaa, 0xaa, 0xaa), # medved 33216: (0xff, 0x00, 0x00), # artanis 32917: (0x88, 0x00, 0x00), # johanka 33400: (0xaa, 0x00, 0x00), # lev 33166: (0x33, 0x00, 0x00), # pedasr 32606: (0x00, 0x55, 0x55), # starlord 33266: (0x00, 0xaa, 0xff), # mcc } playersHighlightColors = { } objectFocus = { } savePassword = False # i18n del N_
ospaceteam/outerspace
client/osci/gdata.py
Python
gpl-2.0
8,560
[ "Galaxy" ]
25c497eca7cf3eaca4c954913db32425b1538a48edbe36e55b54998a6f8cb3e6
#pylint: disable=missing-docstring #################################################################################################### # DO NOT MODIFY THIS HEADER # # MOOSE - Multiphysics Object Oriented Simulation Environment # # # # (c) 2010 Battelle Energy Alliance, LLC # # ALL RIGHTS RESERVED # # # # Prepared by Battelle Energy Alliance, LLC # # Under Contract No. DE-AC07-05ID14517 # # With the U. S. Department of Energy # # # # See COPYRIGHT for full restrictions # #################################################################################################### #pylint: enable=missing-docstring import os import glob import MooseDocs from MooseDocs.MooseMarkdown import MooseMarkdown from MooseDocs.extensions.app_syntax import AppSyntaxExtension def get_default_groups(): """ Return the application group. """ if MooseDocs.ROOT_DIR == MooseDocs.MOOSE_DIR: return [] else: filenames = glob.glob(os.path.join(MooseDocs.ROOT_DIR, 'include', 'base', '*App.h')) if not filenames: return [] return [os.path.basename(filenames[0][:-5]).lower()] return [] def check_options(parser): """ Command-line options for check command. """ parser.add_argument('--config-file', type=str, default='website.yml', help="The configuration file to use for building the documentation using " "MOOSE. (Default: %(default)s)") parser.add_argument('--template', type=str, default='website.html', help="The template html file to utilize (default: %(default)s).") parser.add_argument('--generate', action='store_true', help="When checking the application for complete documentation generate " "any missing markdown documentation files.") parser.add_argument('--update', action='store_true', help="When checking the application for complete documentation generate " "any missing markdown documentation files and update the stubs for " "files that have not been modified.") parser.add_argument('--dump', action='store_true', help="Dump the complete MooseDocs syntax tree to the screen.") parser.add_argument('--groups', default=get_default_groups(), help="Specify the groups to consider in the check, by default only the " "documentation for the application is considered, providing an empty " "list will check all groups (default: %(default)s).") def check(config_file=None, generate=None, update=None, dump=None, template=None, groups=None, **template_args): """ Performs checks and optionally generates stub pages for missing documentation. """ # Create the markdown parser and get the AppSyntaxExtension config = MooseDocs.load_config(config_file, template=template, template_args=template_args) parser = MooseMarkdown(config) ext = parser.getExtension(AppSyntaxExtension) syntax = ext.getMooseAppSyntax() # Dump the complete syntax tree if desired if dump: print syntax # Check all nodes for documentation for node in syntax.findall(): node.check(ext.getConfig('install'), generate=generate, groups=groups, update=update) return 0
liuwenf/moose
python/MooseDocs/commands/check.py
Python
lgpl-2.1
4,200
[ "MOOSE" ]
e4aad2de50566454d8795fe8b4b33afb14b57ba7dd9b01aafcbb3d7e935fc7c8
# ---------------------------------------------------------------------------- # Copyright 2015-2016 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- from __future__ import division from neon import NervanaObject from neon.util.persist import load_class import logging import numpy as np logger = logging.getLogger(__name__) def get_param_list(layer_list): ''' Returns a flattened list of parameters. Each element in the list is a tuple ``((W, dW), states)`` for the parameters ``W``, parameter updates ``dW``, and the current set of ``states``. Args: layer_list (list): List of layers Returns: param_list (list): List of parameters. ''' plist = [] for l in layer_list: ptuple = l.get_params() plist.extend(ptuple) if isinstance(ptuple, list) else plist.append(ptuple) return plist class Optimizer(NervanaObject): ''' The optimizer class handles the gradient update stage of training a neural network. Given the current parameters :math:`w`, update parameters :math:`\Delta w`, and current state :math:`s`, the optimizer specifies an algorithm for performing the update. This base class contains to helper functions for scaling the gradients. specifices the abstract method optimize, which subclasses should implement. The optimize method is called at every minibatch to update the layer parameters. ''' def __init__(self, name=None): """ Class constructor. """ super(Optimizer, self).__init__(name=name) def optimize(self, layer_list, epoch): """ Update the parameters for a provided list of layers. Args: layer_list (list): List of layers to optimize epoch (integer): Epoch count of training """ raise NotImplementedError() def clip_gradient_norm(self, param_list, clip_norm): """ Returns a scaling factor to apply to the gradients. The scaling factor is computed such that the root mean squared average of the scaled gradients across all layers will be less than or equal to the provided clip_norm value. This factor is always <1, so never scales up the gradients. Arguments: param_list (list): List of layer parameters clip_norm (float, optional): Target norm for the gradients. If not provided the returned scale_factor will equal 1. Returns: scale_factor (float): Computed scale factor. """ scale_factor = 1 if clip_norm: grad_list = [grad for (param, grad), states in param_list] grad_square_sums = sum(self.be.sum(self.be.square(grad)) for grad in grad_list) grad_norm = self.be.zeros((1, 1)) grad_norm[:] = self.be.sqrt(grad_square_sums) / self.be.bsz scale_factor = clip_norm / max(float(grad_norm.get()), float(clip_norm)) return scale_factor def clip_gradient_value(self, grad, clip_value=None): """ Element-wise clip a list of gradients to between ``-clip_value`` and ``+clip_value``. Arguments: grad (list): List of gradients for a single layer gradient_clip_value (float, optional): Value to element-wise clip gradients. Defaults to None. Returns: grad (list): List of clipped gradients. """ if clip_value: return self.be.clip(grad, -abs(clip_value), abs(clip_value)) else: return grad class Schedule(NervanaObject): """ Learning rate schedule. By default implements a constant learning rate: .. code-block:: python # Constant learning rate of 0.01 across training epochs optimizer = GradientDescentMomentum(0.01, 0.9, schedule = Schedule()) Otherwise, the schedule multiplies the learning rate by change at every element in ``step_config``. For example, .. code-block:: python schedule = Schedule(step_config=[2, 6], change=0.5) optimizer = GradientDescentMomentum(1.0, 0.9, schedule = Schedule()) will yield a learning rate schedule of: .. csv-table:: :header: "Epoch", "LR" :widths: 20, 10 0, 1.0 1, 1.0 2, 0.5 3, 0.5 4, 0.5 5, 0.5 6, 0.25 7, 0.25 8, 0.25 9, 0.25 """ def __init__(self, step_config=None, change=1.): """ Class constructor. Arguments: step_config (list, optional): Configure the step times (list of epoch indices). Defaults to None (constant). change (int, optional): The learning rate is multiplied by ``change ** steps``, where ``steps`` is the number of steps in the step schedule that have passed. """ if isinstance(step_config, list) and isinstance(change, list): assert len(step_config) == len(change), "change and step_config must have the same" \ "length after step_config is deduplicated to do epoch-level LR assignment." logger.warn("This functionality will be removed from Schedule in the future. " "Please use the StepSchedule class instead.") if isinstance(step_config, int): logger.warn("This functionality will be removed from Schedule in the future. " "Please use the PowerSchedule class instead.") self.step_config = step_config self.change = change self.steps = 0 def get_learning_rate(self, learning_rate, epoch): """ Returns the current learning rate given the epoch and initial learning rate. Arguments: learning_rate (float): Initial learning rate epoch (int): Current epoch, used to calculate the adjusted learning rate Returns: (float): The adjusted learning rate """ # will be moved to StepSchedule in the future if isinstance(self.step_config, list) and isinstance(self.change, list): if epoch in self.step_config: # steps will store the current lr self.steps = self.change[self.step_config.index(epoch)] if self.steps == 0: return learning_rate else: return self.steps # will be moved to PowerSchedule in the future elif isinstance(self.step_config, int): self.steps = np.floor(epoch / self.step_config) elif isinstance(self.step_config, list): self.steps = np.sum(epoch >= np.array(self.step_config)) return float(learning_rate * self.change ** self.steps) class StepSchedule(Schedule): """ Steps the learning rate over training time. To set a step schedule, pass as arguments ``step_config`` and ``change``. The schedule will set the learning rate at ``step[i]`` to ``change[i]``. For example, the call: .. code-block:: python schedule = Schedule(step_config=[2, 6], change=[0.6, 0.4]) will set the learning rate to 0.6 at step 2, and to 0.4 at step 6. """ def __init__(self, step_config, change): """ Class constructor. Arguments: step_config (list): Configure the step times (list of epoch indices) change (list): List of learning rates. Must be same length as step_config """ assert isinstance(step_config, list) and isinstance(change, list), \ "The arguments change and step_config must be lists." assert len(step_config) == len(change), \ "The arguments change and step_config must have the same length." self.step_config = step_config self.change = change self.steps = 0 def get_learning_rate(self, learning_rate, epoch): """ Returns the current learning rate given the epoch and initial learning rate. Arguments: learning_rate (float): Initial learning rate epoch (int): Current epoch, used to calculate the adjusted learning rate Returns: (float): The adjusted learning rate """ if epoch in self.step_config: # steps will store the current lr self.steps = self.change[self.step_config.index(epoch)] if self.steps == 0: return learning_rate else: return self.steps class PowerSchedule(Schedule): """ Multiplies the learning rate by a factor at regular epoch intervals. This schedule will multiply the learning rate by the factor ``change`` every ``step_config`` epochs. For example, .. code-block:: python schedule = Schedule(step_config=2, change=0.5) optimizer = GradientDescentMomentum(0.1, 0.9, schedule=schedule) will yield a learning rate schedule of: .. csv-table:: :header: "Epoch", "LR" :widths: 20, 10 0, 0.1 1, 0.1 2, 0.05 3, 0.05 4, 0.025 5, 0.025 6, 0.0125 7, 0.0125 """ def __init__(self, step_config, change): """ Class constructor. Arguments: step_config (int): Learning rate update interval (in epochs) change (int): Update factor """ assert isinstance(step_config, int), \ "The argument step_config must be an integer." assert not isinstance(change, list), \ "The argument change must be a float or integer." self.step_config = step_config self.change = change self.steps = 0 def get_learning_rate(self, learning_rate, epoch): """ Returns the current learning rate given the epoch and initial learning rate. Arguments: learning_rate (float): Initial learning rate epoch (int): Current epoch, used to calculate the adjusted learning rate. Returns: (float): The adjusted learning rate. """ self.steps = np.floor(epoch / self.step_config) return float(learning_rate * self.change ** self.steps) class ExpSchedule(Schedule): """ Exponential learning rate schedule. This schedule implements .. math:: \\alpha(t) = \\frac{\\alpha_\\circ}{1 + \\beta t} where :math:`\\beta` is the decay rate, and :math:`\\alpha_\\circ` is the initial learning rate. """ def __init__(self, decay): """ Class constructor. Arguments: decay (float): Decay rate. """ self.decay = decay def get_learning_rate(self, learning_rate, epoch): """ Returns the current learning rate given the epoch and initial learning rate. Arguments: learning_rate (float): Initial learning rate epoch (int): Current epoch, used to calculate the adjusted learning rate. Returns: (float): The adjusted learning rate. """ return float(learning_rate / (1. + self.decay * epoch)) class PolySchedule(Schedule): """ Polynomial learning rate schedule. This schedule takes as input the total number of epochs :math:`T` and a power :math:`\\beta`, and produces the learning schedule: .. math:: \\alpha(t) = \\alpha_\\circ \\times\\left(1-\\frac{t}{T}\\right)^\\beta where :math:`\\alpha_\\circ` is the initial learning rate. """ def __init__(self, total_epochs, power): """ Class constructor. Arguments: total_epochs (int): Total number of epochs over which to calculate interpolated decay power (float): Total decay parameter """ self.total_epochs = np.float32(total_epochs) self.power = power def get_learning_rate(self, learning_rate, epoch): """ Returns the current learning rate given the epoch and initial learning rate. Arguments: learning_rate (float): Initial learning rate epoch (int): Current epoch, used to calculate the adjusted learning rate. Returns: (float): The adjusted learning rate. """ return float(learning_rate * (1. - epoch // self.total_epochs) ** self.power) class ShiftSchedule(Schedule): """ Binary shift learning rate schedule. Arguments: interval (int): interval in epochs the learning rate is shifted shift_size (int): amount to shift """ def __init__(self, interval, shift_size=1): self.interval = interval self.shift_size = shift_size def get_learning_rate(self, learning_rate, epoch): total_shift = -1 * self.shift_size * int(epoch/self.interval) return float(self.be.shift(learning_rate, total_shift, value=False).get()) class GradientDescentMomentum(Optimizer): """ Stochastic gradient descent with momentum. Given the parameters :math:`\\theta`, the learning rate :math:`\\alpha`, and the gradients :math:`\\nabla J(\\theta; x)` computed on the minibatch data :math:`x`, SGD updates the parameters via .. math:: \\theta' = \\theta - \\alpha\\nabla J(\\theta; x) Here we implement SGD with momentum. Momentum tracks the history of gradient updates to help the system move faster through saddle points. Given the additional parameters: momentum :math:`\gamma`, weight decay :math:`\lambda`, and current velocity :math:`v`, we use the following update equations .. math:: v' = \\gamma v - \\alpha(\\nabla J(\\theta; x) + \\lambda\\theta) theta' = \\theta + v' Example usage: .. code-block:: python from neon.optimizers import GradientDescentMomentum # use SGD with learning rate 0.01 and momentum 0.9, while # clipping the gradient magnitude to between -5 and 5. opt = GradientDescentMomentum(0.01, 0.9, gradient_clip_value = 5) """ def __init__(self, learning_rate, momentum_coef, stochastic_round=False, wdecay=0.0, gradient_clip_norm=None, gradient_clip_value=None, name=None, schedule=Schedule()): """ Class constructor. Arguments: learning_rate (float): Multiplicative coefficient of updates momentum_coef (float): Coefficient of momentum stochastic_round (bool, optional): Set this to True for stochastic rounding. If False (default) rounding will be to nearest. If True use default width stochastic rounding. Note that this only affects the GPU backend. wdecay (float, optional): Amount of weight decay. Defaults to 0 gradient_clip_norm (float, optional): Target gradient norm. Defaults to None. gradient_clip_value (float, optional): Value to element-wise clip gradients. Defaults to None. name (str, optional): the optimizer's layer's pretty-print name. Defaults to "gdm". schedule (neon.optimizers.optimizer.Schedule, optional): Learning rate schedule. Defaults to a constant learning rate. """ super(GradientDescentMomentum, self).__init__(name=name) self.learning_rate, self.momentum_coef = (learning_rate, momentum_coef) self.gradient_clip_norm = gradient_clip_norm self.gradient_clip_value = gradient_clip_value self.wdecay = wdecay self.schedule = schedule self.stochastic_round = stochastic_round def optimize(self, layer_list, epoch): """ Apply the learning rule to all the layers and update the states. Arguments: layer_list (list): a list of Layer objects to optimize. epoch (int): the current epoch, needed for the Schedule object. """ lrate = self.schedule.get_learning_rate(self.learning_rate, epoch) param_list = get_param_list(layer_list) scale_factor = self.clip_gradient_norm(param_list, self.gradient_clip_norm) for (param, grad), states in param_list: param.rounding = self.stochastic_round if len(states) == 0 and self.momentum_coef != 0: states.append(self.be.zeros_like(grad)) grad = grad / self.be.bsz grad = self.clip_gradient_value(grad, self.gradient_clip_value) if self.momentum_coef == 0: velocity = - lrate * (scale_factor * grad + self.wdecay * param) else: velocity = states[0] velocity[:] = velocity * self.momentum_coef \ - lrate * (scale_factor * grad + self.wdecay * param) param[:] = param + velocity class RMSProp(Optimizer): """ Root Mean Square propagation. Root Mean Square (RMS) propagation protects against vanishing and exploding gradients. In RMSprop, the gradient is divided by a running average of recent gradients. Given the parameters :math:`\\theta`, gradient :math:`\\nabla J`, we keep a running average :math:`\\mu` of the last :math:`1/\\lambda` gradients squared. The update equations are then given by .. math:: \\mu' &= \\lambda\\mu + (1-\\lambda)(\\nabla J)^2 .. math:: \\theta' &= \\theta - \\frac{\\alpha}{\\sqrt{\\mu + \\epsilon} + \\epsilon}\\nabla J where we use :math:`\\epsilon` as a (small) smoothing factor to prevent from dividing by zero. """ def __init__(self, stochastic_round=False, decay_rate=0.95, learning_rate=2e-3, epsilon=1e-6, gradient_clip_norm=None, gradient_clip_value=None, name=None, schedule=Schedule()): """ Class constructor. Arguments: stochastic_round (bool): Set this to True for stochastic rounding. If False rounding will be to nearest. If True will perform stochastic rounding using default width. Only affects the gpu backend. decay_rate (float): decay rate of states learning_rate (float): the multiplication coefficent of updates epsilon (float): smoothing epsilon to avoid divide by zeros gradient_clip_norm (float, optional): Target gradient norm. Defaults to None. gradient_clip_value (float, optional): Value to element-wise clip gradients. Defaults to None. schedule (neon.optimizers.optimizer.Schedule, optional): Learning rate schedule. Defaults to a constant. Notes: Only constant learning rate is supported currently. """ super(RMSProp, self).__init__(name=name) self.state_list = None self.epsilon = epsilon self.decay_rate = decay_rate self.learning_rate = learning_rate self.schedule = schedule self.gradient_clip_norm = gradient_clip_norm self.gradient_clip_value = gradient_clip_value self.stochastic_round = stochastic_round def optimize(self, layer_list, epoch): """ Apply the learning rule to all the layers and update the states. Arguments: layer_list (list): a list of Layer objects to optimize. epoch (int): the current epoch, needed for the Schedule object. """ lrate = self.schedule.get_learning_rate(self.learning_rate, epoch) epsilon, decay = (self.epsilon, self.decay_rate) param_list = get_param_list(layer_list) scale_factor = self.clip_gradient_norm(param_list, self.gradient_clip_norm) for (param, grad), states in param_list: param.rounding = self.stochastic_round if len(states) == 0: states.append(self.be.zeros_like(grad)) grad = grad / self.be.bsz grad = self.clip_gradient_value(grad, self.gradient_clip_value) # update state state = states[0] state[:] = decay * state + self.be.square(grad) * (1.0 - decay) param[:] = param \ - (scale_factor * grad * lrate) / (self.be.sqrt(state + epsilon) + epsilon) class Adagrad(Optimizer): """ Adagrad optimization algorithm. Adagrad is an algorithm that adapts the learning rate individually for each parameter by dividing by the :math:`L_2`-norm of all previous gradients. Given the parameters :math:`\\theta`, gradient :math:`\\nabla J`, accumulating norm :math:`G`, and smoothing factor :math:`\\epsilon`, we use the update equations: .. math:: G' = G + (\\nabla J)^2 .. math:: \\theta' = \\theta - \\frac{\\alpha}{\sqrt{G' + \\epsilon}} \\nabla J where the smoothing factor :math:`\\epsilon` prevents from dividing by zero. By adjusting the learning rate individually for each parameter, Adagrad adapts to the geometry of the error surface. Differently scaled weights have appropriately scaled update steps. Example usage: .. code-block:: python from neon.optimizers import Adagrad # use Adagrad with a learning rate of 0.01 optimizer = Adagrad(learning_rate=0.01, epsilon=1e-6) """ def __init__(self, stochastic_round=False, learning_rate=0.01, epsilon=1e-6, gradient_clip_norm=None, gradient_clip_value=None, name=None): """ Class constructor. Arguments: stochastic_round (bool): Set this to True for stochastic rounding. If False rounding will be to nearest. If True will perform stochastic rounding using default width. Only affects the gpu backend. learning_rate (float): the multiplication coefficent of updates epsilon (float): smoothing epsilon to avoid divide by zeros gradient_clip_norm (float, optional): Target gradient norm. Defaults to None. gradient_clip_value (float, optional): Value to element-wise clip gradients. Defaults to None. Notes: Only constant learning rate is supported currently. """ super(Adagrad, self).__init__(name=name) self.state_list = None self.epsilon = epsilon self.learning_rate = learning_rate self.gradient_clip_norm = gradient_clip_norm self.gradient_clip_value = gradient_clip_value self.stochastic_round = stochastic_round def optimize(self, layer_list, epoch): """ Apply the learning rule to all the layers and update the states. Arguments: layer_list (list): a list of Layer objects to optimize. epoch (int): the current epoch, needed for the Schedule object. """ lrate, epsilon = (self.learning_rate, self.epsilon) param_list = get_param_list(layer_list) scale_factor = self.clip_gradient_norm(param_list, self.gradient_clip_norm) for (param, grad), states in param_list: param.rounding = self.stochastic_round if len(states) == 0: states.append(self.be.zeros_like(grad)) grad = grad / self.be.bsz grad = self.clip_gradient_value(grad, self.gradient_clip_value) # update state state = states[0] state[:] = state + self.be.square(grad) param[:] = param - (scale_factor * grad * lrate) / (self.be.sqrt(state + epsilon)) class Adadelta(Optimizer): """ Adadelta optimization algorithm. Similar to RMSprop, Adadelta tracks the running average of the gradients, :math:`\\mu_J`, over a window size :math:`1/\\lambda`, where :math:`\\lambda` is the parameter ``decay``. Adadelta also tracks an average of the recent update steps, which we denote as :math:`\\mu_\\theta`, and sets the learning rate as the ratio of the two averages: .. math:: \\mu_J' &= \\lambda\\mu_J + (1-\\lambda) (\\nabla J)^2 .. math:: \\Delta \\theta &= \\sqrt{\\frac{\\mu_\\theta + \\epsilon}{\\mu_J' + \\epsilon}} \\nabla J .. math:: \\mu_\\theta &= \\lambda \\mu_\\theta + (1-\\rho) (\\Delta \\theta)^2 .. math:: \\theta &= \\theta - \\Delta \\theta Note that the learning rate is a ratio of the average updates from the previous step, :math:`\\mu_\\theta`, divided by the average gradients including the current step, :math:`\\mu'_J`. Example usage: .. code-block:: python from neon.optimizers import Adadelta # use Adagrad with a learning rate of 0.01 optimizer = Adadelta(decay=0.95, epsilon=1e-6) """ def __init__(self, stochastic_round=False, decay=0.95, epsilon=1e-6, name=None): """ Class constructor. Args: stochastic_round (bool): Set this to True for stochastic rounding. If False rounding will be to nearest. If True will perform stochastic rounding using default width. Only affects the gpu backend. decay: decay parameter in Adadelta epsilon: epsilon parameter in Adadelta """ super(Adadelta, self).__init__(name=name) self.decay = decay self.epsilon = epsilon self.stochastic_round = stochastic_round def optimize(self, layer_list, epoch): """ Apply the learning rule to all the layers and update the states. Arguments: param_list (list): a list of tuples of the form ((param, grad), state), corresponding to parameters, grads, and states of layers to be updated epoch (int): the current epoch, needed for the Schedule object. """ epsilon, decay = (self.epsilon, self.decay) param_list = get_param_list(layer_list) for (param, grad), states in param_list: param.rounding = self.stochastic_round if len(states) == 0: # E[Grad^2], E[Delt^2], updates states.extend([self.be.zeros_like(grad) for i in range(3)]) grad = grad / self.be.bsz states[0][:] = states[0] * decay + (1. - decay) * grad * grad states[2][:] = self.be.sqrt((states[1] + epsilon) / (states[0] + epsilon)) * grad states[1][:] = states[1] * decay + (1. - decay) * states[2] * states[2] param[:] = param - states[2] class Adam(Optimizer): """ Adam optimizer. The Adam optimizer combines features from RMSprop and Adagrad. We accumulate both the first and second moments of the gradient with decay rates :math:`\\beta_1` and :math:`\\beta_2` corresponding to window sizes of :math:`1/\\beta_1` and :math:`1/\\beta_2`, respectively. .. math:: m' &= \\beta_1 m + (1-\\beta_1) \\nabla J .. math:: v' &= \\beta_2 v + (1-\\beta_2) (\\nabla J)^2 We update the parameters by the ratio of the two moments: .. math:: \\theta = \\theta - \\alpha \\frac{\\hat{m}'}{\\sqrt{\\hat{v}'}+\\epsilon} where we compute the bias-corrected moments :math:`\\hat{m}'` and :math:`\\hat{v}'` via .. math:: \\hat{m}' &= m'/(1-\\beta_1^t) .. math:: \\hat{v}' &= v'/(1-\\beta_1^t) Example usage: .. code-block:: python from neon.optimizers import Adam # use Adam optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999) """ def __init__(self, stochastic_round=False, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8, gradient_clip_norm=None, gradient_clip_value=None, name="adam"): """ Class constructor. Args: stochastic_round (bool): Set this to True for stochastic rounding. If False rounding will be to nearest. If True will perform stochastic rounding using default width. Only affects the gpu backend. learning_rate (float): the multiplicative coefficient of updates beta_1 (float): Adam parameter beta1 beta_2 (float): Adam parameter beta2 epsilon (float): numerical stability parameter gradient_clip_norm (float, optional): Target gradient norm. Defaults to None. gradient_clip_value (float, optional): Value to element-wise clip gradients. Defaults to None. """ super(Adam, self).__init__(name=name) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.learning_rate = learning_rate self.stochastic_round = stochastic_round self.gradient_clip_norm = gradient_clip_norm self.gradient_clip_value = gradient_clip_value def optimize(self, layer_list, epoch): """ Apply the learning rule to all the layers and update the states. Arguments: param_list (list): a list of tuples of the form ((param, grad), state), corresponding to parameters, grads, and states of layers to be updated epoch (int): the current epoch, needed for the Schedule object. """ t = epoch + 1 l = self.learning_rate * self.be.sqrt(1 - self.beta_2 ** t) / (1 - self.beta_1 ** t) param_list = get_param_list(layer_list) scale_factor = self.clip_gradient_norm(param_list, self.gradient_clip_norm) for (param, grad), states in param_list: param.rounding = self.stochastic_round if len(states) == 0: # running_1st_mom, running_2nd_mom states.extend([self.be.zeros_like(grad) for i in range(2)]) grad = grad / self.be.bsz grad = self.clip_gradient_value(grad, self.gradient_clip_value) m, v = states m[:] = m * self.beta_1 + (1. - self.beta_1) * grad v[:] = v * self.beta_2 + (1. - self.beta_2) * grad * grad param[:] = param - (scale_factor * l * m) / (self.be.sqrt(v) + self.epsilon) class ShiftAdaMax(Optimizer): """ Shift based AdaMax. http://arxiv.org/pdf/1602.02830v3.pdf """ def __init__(self, stochastic_round=False, learning_rate=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-8, schedule=Schedule(), name="ShiftAdaMax"): """ Args: stochastic_round (bool): Set this to True for stochastic rounding. If False rounding will be to nearest. If True will perform stochastic rounding using default width. Only affects the gpu backend. learning_rate (float): the multiplicative coefficient of updates beta_1 (float): Adam parameter beta1 beta_2 (float): Adam parameter beta2 epsilon (float): numerical stability parameter schedule (neon.optimizers.optimizer.Schedule, optional): Learning rate schedule. Defaults to a constant. """ super(ShiftAdaMax, self).__init__(name=name) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.learning_rate = learning_rate self.stochastic_round = stochastic_round self.schedule = schedule def optimize(self, layer_list, epoch): """ Apply the learning rule to all the layers and update the states. Arguments: param_list (list): a list of tuples of the form ((param, grad), state), corresponding to parameters, grads, and states of layers to be updated epoch (int): the current epoch, needed for the Schedule object. """ t = epoch + 1 lrate = self.schedule.get_learning_rate(self.learning_rate, epoch) l = lrate / (1 - self.beta_1 ** t) param_list = get_param_list(layer_list) for (param, grad), states in param_list: param.rounding = self.stochastic_round if len(states) == 0: # running_1st_mom, running_2nd_mom states.extend([self.be.zeros_like(grad) for i in range(3)]) grad = grad / self.be.bsz m, v, inv_v = states m[:] = m * self.beta_1 + (1. - self.beta_1) * grad v[:] = self.be.maximum(v * self.beta_2, self.be.absolute(grad)) inv_v[:] = 1.0 / (v + self.epsilon) param[:] = param - self.be.shift(self.be.shift(m, inv_v), l) self.be.clip(param, -1, 1, param) class MultiOptimizer(Optimizer): """ A wrapper class for using multiple Optimizers within the same model. To assign different optimizers to different layers we first define the different optimizers: .. code-block:: python from neon.optimizers import GradientDescentMomentum, RMSprop optimizer_A = GradientDescentMomentum(learning_rate=0.01, momentum_coef=0.9) optimizer_B = GradientDescentMomentum(learning_rate=0.05, momentum_coef=0.9) optimizer_C = RMSprop(learning_rate=2e-3, decay_rate=0.95) Then, we instantiate this class and pass a dictionary mapping layers to optimizers. The keys can either be: ``default``, a layer class name (e.g. ``Bias``), or the Layer's name attribute. The latter takes precedence for finer layer-to-layer control. For example, if we have the following layers, .. code-block:: python layers = [] layers.append(Linear(nout = 100, init=Gaussian(), name="layer_one")) layers.append(Linear(nout = 50, init=Gaussian(), name="layer_two")) layers.append(Affine(nout = 5, init=Gaussian(), activation=Softmax())) we can define multiple optimizers with .. code-block:: python from neon.optimizers import MultiOptimizer # dictionary of mappings mapping = {'default': optimizer_A, # default optimizer 'Linear': optimizer_B, # all layers from the Linear class 'layer_two': optimizer_C} # this overrides the previous entry # use multiple optimizers opt = MultiOptimizer(mapping) After definition, we have the following mapping +----------------------+----------------------------+ | Layer | Optimizer | +======================+============================+ | ``layer_one`` | ``optimizer_B`` | +----------------------+----------------------------+ | ``layer_two`` | ``optimizer_C`` | +----------------------+----------------------------+ | ``Affine.Linear`` | ``optimizer_B`` | +----------------------+----------------------------+ | ``Affine.Bias`` | ``optimizer_A`` | +----------------------+----------------------------+ | ``Affine.Softmax`` | ``None (no parameters)`` | +----------------------+----------------------------+ """ def __init__(self, optimizer_mapping, name=None): """ Class constructor. Args: optimizer_mapping (dict): dictionary specifying the mapping of layers to optimizers. Key: ``'default'``, layer class name or layer `name` attribute. Don't name your layers ``'default'``. Value: the optimizer object to use for those layers. """ super(MultiOptimizer, self).__init__(name=name) self.optimizer_mapping = optimizer_mapping assert 'default' in self.optimizer_mapping, "Must specify a default" \ "optimizer in layer type to optimizer mapping" self.map_list = None @classmethod def gen_class(cls, pdict): for key in pdict['optimizer_mapping']: # these should be optimizers typ = pdict['optimizer_mapping'][key]['type'] ocls = load_class(typ) if 'config' not in pdict['optimizer_mapping'][key]: pdict['optimizer_mapping'][key]['config'] = {} conf = pdict['optimizer_mapping'][key]['config'] pdict['optimizer_mapping'][key] = ocls.gen_class(conf) return cls(**pdict) def get_description(self): desc = {'type': self.modulenm} desc['config'] = {'optimizer_mapping': {}} for key in self.optimizer_mapping: opt_desc = self.optimizer_mapping[key].get_description() desc['config']['optimizer_mapping'][key] = opt_desc return desc def _map_optimizers(self, layer_list): """ maps the optimizers to their corresponding layers """ map_list = dict() for layer in layer_list: classname = layer.__class__.__name__ name = layer.name opt = None if name in self.optimizer_mapping: opt = self.optimizer_mapping[name] elif classname in self.optimizer_mapping: opt = self.optimizer_mapping[classname] else: opt = self.optimizer_mapping['default'] if opt not in map_list: map_list[opt] = [layer] else: map_list[opt].append(layer) return map_list def _reset_mapping(self, new_mapping): """ Pass this optimizer a new mapping, and on subsequent optimize call, the mapping will be refreshed (since map_list will be recreated) """ self.optimizer_mapping = new_mapping self.map_list = None def optimize(self, layer_list, epoch): """ Determine which optimizer in the container should go with which layers, then apply their optimize functions to those layers. Notes: We can recalculate ``map_list`` in case ``optimizer_mapping`` changes during training. """ if self.map_list is None: self.map_list = self._map_optimizers(layer_list) for opt in self.map_list: opt.optimize(self.map_list[opt], epoch)
matthijsvk/multimodalSR
code/Experiments/neon-master/neon/optimizers/optimizer.py
Python
mit
40,063
[ "Gaussian" ]
1633e9a7cad0e80811427adbaf6876f2bad6116243665b3c170dfedf772c26e4
# Compare Algorithms import pandas import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from sklearn import model_selection from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import label_binarize import os import sys config_path = "utilities/" sys.path.append(os.path.abspath(config_path)) from MyAPI import MyAPI api = MyAPI() X, Y = api.get_dataset(0, start_index=0,end_index=20000, nr=20000) # prepare models models = [] models.append(('KNN', KNeighborsClassifier())) models.append(('Decision Tree', DecisionTreeClassifier())) models.append(('Gaussian', GaussianNB())) models.append(('SVM', SVC())) classes=list(set(Y)) # prepare configuration for cross validation test harness seed = 7 # evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = model_selection.KFold(n_splits=10, random_state=seed) cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) # boxplot algorithm comparison fig = plt.figure() fig.suptitle('Algorithm Comparison') ax = fig.add_subplot(111) plt.boxplot(results) ax.set_xticklabels(names) plt.savefig('compare.png')
alod83/osiris
plot/compare_algorithms.py
Python
mit
1,613
[ "Gaussian" ]
1ba223496fed266a6f91dabe42dc1da718cc5044f9a0a3fe6a3d9a026786fc9d
import ocl import camvtk import time import vtk if __name__ == "__main__": print ocl.version() myscreen = camvtk.VTKScreen() stl = camvtk.STLSurf("../stl/gnu_tux_mod.stl") print "STL surface read" myscreen.addActor(stl) stl.SetWireframe() polydata = stl.src.GetOutput() s= ocl.STLSurf() camvtk.vtkPolyData2OCLSTL(polydata, s) print "STLSurf with ", s.size(), " triangles" # define a cutter cutter = ocl.CylCutter(0.6, 5) print cutter print "creating PathDropCutter()" pdc = ocl.PathDropCutter() # create a pdc print "set STL surface" pdc.setSTL(s) print "set cutter" pdc.setCutter(cutter) # set the cutter print "set minimumZ" pdc.minimumZ = -1 # set the minimum Z-coordinate, or "floor" for drop-cutter print "set the sampling interval" pdc.setSampling(0.0123) # some parameters for this "zigzig" pattern ymin=0 ymax=12 Ny=40 # number of lines in the y-direction dy = float(ymax-ymin)/Ny # the y step-over path = ocl.Path() # create an empty path object # add Line objects to the path in this loop for n in xrange(0,Ny): y = ymin+n*dy p1 = ocl.Point(0,y,0) # start-point of line p2 = ocl.Point(9,y,0) # end-point of line l = ocl.Line(p1,p2) # line-object path.append( l ) # add the line to the path print " set the path for pdf " pdc.setPath( path ) print " run the calculation " t_before = time.time() pdc.run() # run drop-cutter on the path t_after = time.time() print "run took ", t_after-t_before," s" print "get the results " clp = pdc.getCLPoints() # get the cl-points from pdf print " render the CL-points" camvtk.drawCLPointCloud(myscreen, clp) #myscreen.addActor( camvtk.PointCloud(pointlist=clp, collist=ccp) ) myscreen.camera.SetPosition(3, 23, 15) myscreen.camera.SetFocalPoint(5, 5, 0) myscreen.render() print " All done." myscreen.iren.Start()
JohnyEngine/CNC
opencamlib/scripts/pathdropcutter_test_1.py
Python
apache-2.0
2,141
[ "VTK" ]
c7e124db64cc3bb5302c5a0f7fd789e99aab4c328de83d15cd684ef90e1020f6
import unittest from itertools import combinations, permutations from phevaluator.hash import hash_quinary from phevaluator.tables import NO_FLUSH_5 class TestNoFlush5Table(unittest.TestCase): TABLE = [0] * len(NO_FLUSH_5) VISIT = [0] * len(NO_FLUSH_5) CUR_RANK = 1 NUM_CARDS = 5 @classmethod def setUpClass(cls): cls.mark_straight_flush() cls.mark_four_of_a_kind() cls.mark_full_house() cls.mark_flush() cls.mark_straight() cls.mark_three_of_a_kind() cls.mark_two_pair() cls.mark_one_pair() cls.mark_high_card() @staticmethod def quinaries(n): return permutations(range(13)[::-1], n) @staticmethod def quinaries_without_duplication(): return combinations(range(13)[::-1], 5) @classmethod def mark_four_of_a_kind(cls): # Order 13C2 lexicographically for base in cls.quinaries(2): hand = [0] * 13 hand[base[0]] = 4 hand[base[1]] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_full_house(cls): for base in cls.quinaries(2): hand = [0] * 13 hand[base[0]] = 3 hand[base[1]] = 2 hash_ = hash_quinary(hand, cls.NUM_CARDS) cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_straight(cls): for lowest in range(9)[::-1]: # From 10 to 2 hand = [0] * 13 for i in range(lowest, lowest + 5): hand[i] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 # Five High Straight Flush base = [12, 3, 2, 1, 0] hand = [0] * 13 for pos in base: hand[pos] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_three_of_a_kind(cls): for base in cls.quinaries(3): hand = [0] * 13 hand[base[0]] = 3 hand[base[1]] = 1 hand[base[2]] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) if cls.VISIT[hash_] == 0: cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_two_pair(cls): for base in cls.quinaries(3): hand = [0] * 13 hand[base[0]] = 2 hand[base[1]] = 2 hand[base[2]] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) if cls.VISIT[hash_] == 0: cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_one_pair(cls): for base in cls.quinaries(4): hand = [0] * 13 hand[base[0]] = 2 hand[base[1]] = 1 hand[base[2]] = 1 hand[base[3]] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) if cls.VISIT[hash_] == 0: cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_high_card(cls): for base in cls.quinaries_without_duplication(): hand = [0] * 13 hand[base[0]] = 1 hand[base[1]] = 1 hand[base[2]] = 1 hand[base[3]] = 1 hand[base[4]] = 1 hash_ = hash_quinary(hand, cls.NUM_CARDS) if cls.VISIT[hash_] == 0: cls.TABLE[hash_] = cls.CUR_RANK cls.VISIT[hash_] = 1 cls.CUR_RANK += 1 @classmethod def mark_straight_flush(cls): # A-5 High Straight Flush: 10 cls.CUR_RANK += 10 @classmethod def mark_flush(cls): # Selecting 5 cards in 13: 13C5 # Need to exclude straight: -10 cls.CUR_RANK += int(13 * 12 * 11 * 10 * 9 / (5 * 4 * 3 * 2)) - 10 def test_noflush5_table(self): self.assertListEqual(self.TABLE, NO_FLUSH_5) if __name__ == "__main__": unittest.main()
HenryRLee/PokerHandEvaluator
python/tests/table_tests/test_hashtable5.py
Python
apache-2.0
4,398
[ "VisIt" ]
7966de771333a029c9ccab2e15b565f43e31ad994c58534ad1ef442cc6863113
''' ray optics ''' from numpy import pi from ocelot.optics.elements import * import numpy as np intersection_tol = 1.e-6 class Ray(object): def __init__(self,r0=[0,0,0], k=[0,0,1], lamb = 2.0): self.r0 = [np.array(r0)] self.k = [np.array(k)] self.lamb = lamb self.s = [1] self.c = 3.e8 self.obj = [OptDrift()] @property def w(self): """I'm the 'x' property.""" print("getter of w called") return (2.*pi * self.c) / self.lamb @w.setter def w(self, value): print("setter of w called" ) self.lamb = (2.*pi*self.c) / self.value def find_intersections(ray, geo): """ find the first intersection point of a ray with geometry """ s = np.inf obj = None r_loc = np.array([0,0]) no = None for o in geo(): debug('checking intersection:', o.id, o.r, o.no) nk = np.dot(o.no, ray.k[-1]) nr = np.dot(o.no, o.r - ray.r0[-1]) #print nr, nk if nr*nk > 0: #TODO: check that intersection is on aperture s_int= nr/nk #nr/nk is path length to intersection along the ray if s_int < s and s_int > intersection_tol: no = o.no r_int = ray.r0[-1] + s_int * ray.k[-1] debug('r_int=', r_int) # check intersection with elliptic 'aperture' r_loc = r_int - o.r debug('r_loc unrotated=', r_loc) phi = np.arccos(o.no[2]/ np.linalg.norm(o.no)) r_loc[1] = r_loc[1] * cos(phi) + r_loc[2] * sin(phi) r_loc[2] = r_loc[2] * cos(phi) - r_loc[1] * sin(phi) debug('r_loc=', r_loc, 'size=',o.size) # correct intersection for curved elements if o.__class__ == EllipticMirror: # note that a[0] is the major axis #r_loc[0] = r_loc[0] * cos(o.roll) + r_loc[1] * sin(o.roll) #r_loc[1] = r_loc[1] * cos(o.roll) - r_loc[0] * sin(o.roll) debug('r_loc=', r_loc, 'size=',o.size) kz = ray.k[-1][2] ky = ray.k[-1][1] rz = r_int[2] ry = r_int[1] - o.a[1] az = o.a[0] ay = o.a[1] #debug('angle=', np.arctan(ry/rz) / pi) a_ = kz**2/ az**2 + ky**2/ ay**2 b_ = -2*(kz*rz / az**2 + ky*ry / ay**2) c_ = rz **2/ az**2 + ry**2/ ay**2 - 1. d_ = b_**2 - 4*a_*c_ s1 = (- b_ + np.sqrt(d_) ) / (2.*a_) s2 = (- b_ - np.sqrt(d_) ) / (2.*a_) s_cor = np.min([s1,s2]) #debug('D=', d_, 's12=',s1,s2, s_cor) #debug( (rz - s_cor*kz)**2 / az**2 + (ry - s_cor*ky)**2 / ay**2 ) #debug( (rz )**2 / az**2 + (ry )**2 / ay**2 ) debug('s_old=', s_int) s_int = s_int - s_cor debug('s_new=', s_int) r_int = r_int - s_cor * ray.k[-1] r_loc = r_int - o.r #r_loc[1] = r_loc[1] * cos(phi) #r_loc[2] = r_loc[2] * sin(phi) debug('r_loc_new=', r_int, r_loc) ang = arctan2(1./az*r_loc[2], 1./ay*(-r_loc[1] + ay)) #debug(r_loc[2], r_loc[1] - ay) debug('ellipse angle=', ang) debug('local coord:', az*sin(ang), -ay*cos(ang) + ay) no = np.array([0, cos(ang),-ay/az*sin(ang)]) / np.sqrt(ay**2/az**2*sin(ang)**2 + cos(ang)**2 ) debug('no=',no) debug(o.no) if (r_loc[0]/o.size[0])**2 + (r_loc[1]/o.size[1])**2 <= 1: s = s_int obj = o debug('fits aperture') else: debug('fits aperture not') return s, obj, r_loc, no def refl_matrix(no): x, y, z = no M = np.matrix([[-1. + 2.*x**2, 2.*x*y, 2.*x*z], [2.*y*x, -1. + y**2*(1.+1), y*z*(1.+1)], [2.*z*x, 2.*z*y , -1. + 2.*z**2]]) return M def trace(ray, geo): """ tracing the ray, starting from last segment """ n_reflect = 0 n_reflect_max = 4 while n_reflect < n_reflect_max: debug('ray at: ', ray.r0[-1]) # ray length to intersection s, obj, r_loc, no = find_intersections(ray, geo) if s == np.inf: info('ray leaves geometry, terminating') break debug('intersection: s=', s, 'obj:', obj.id, 'normal', no) #propagate to boundary ray.s[-1] = s r0_new = ray.r0[-1] + ray.k[-1] * ray.s[-1] # reflect if obj.__class__ == Mirror: debug('reflecting off', obj.id) k_new = np.asarray(np.dot( refl_matrix(obj.no), -ray.k[-1]))[0] debug(ray.k[-1], '--->', k_new) s_new = 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) n_reflect += 1 elif obj.__class__ == EllipticMirror: debug('reflecting off', obj.id) debug('no=',no,'k=',ray.k[-1]) ''' cs = np.dot(no, ray.k[-1]) / ( np.linalg.norm(no) * np.linalg.norm(ray.k[-1]) ) debug('cos=',cs) if np.abs(cs) > 1: print 'warning, reflection angle adjustment by ', cs + 1.0 if cs > 1: cs = 1.0 else: cs = -1.0 phi = np.arccos( cs ) debug('ray/normal angle', phi / pi ,'pi') sgn = np.dot([1,0,0],np.cross(no, ray.k[-1])) if np.linalg.norm(sgn) < 1.e-9: sgn = sgn / np.linalg.norm(sgn) else: sgn = 1.0 debug('sgn=',sgn) phi = (2*phi - pi) * sgn debug('e:rotating by:', phi / pi, 'pi') M = np.matrix([[1, 0, 0], [0, cos(phi), sin(phi)], [0, -sin(phi), cos(phi)]]) k_new = np.asarray(np.dot(M, ray.k[-1]))[0] ''' k_new = np.asarray(np.dot( refl_matrix(no), -ray.k[-1]))[0] debug(ray.k[-1], '--->', k_new) s_new = 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) n_reflect += 1 elif obj.__class__ == Grating: debug('reflecting off', obj.id) debug(np.dot(obj.no, ray.k[-1]) / ( np.linalg.norm(obj.no) * np.linalg.norm(ray.k[-1]) )) phi = np.arccos( np.dot(obj.no, ray.k[-1]) / ( np.linalg.norm(obj.no) * np.linalg.norm(ray.k[-1]) ) ) debug('ray/normal angle', phi / pi ,'pi') sgn = np.dot([1,0,0],np.cross(obj.no, ray.k[-1])) phi = (2*phi - pi) * sgn * (1+ 0.1 * ray.lamb) debug('rotating by:', phi / pi, 'pi') M = np.matrix([[1, 0, 0], [0, cos(phi), sin(phi)], [0, -sin(phi), cos(phi)]]) k_new = np.asarray(np.dot(M, ray.k[-1]))[0] #print '###',ray.k[-1].shape, '###',obj.no #k_new = rotate_pi(ray.k[-1], obj.no ) #k_new - debug('k_new--->',k_new) s_new = 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) n_reflect += 1 elif obj.__class__ == Aperture: if (r_loc[0] / obj.d[0])**2 + (r_loc[1] / obj.d[1])**2 > 1: debug('ray stopped at aperture') break else: r0_new = r0_new + ray.k[-1]*intersection_tol * 2 k_new = ray.k[-1] s_new = ray.s[-1] n_reflect += 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) elif obj.__class__ == Crystal: r0_new = r0_new + ray.k[-1]*intersection_tol * 2 k_new = ray.k[-1] s_new = ray.s[-1] n_reflect += 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) elif obj.__class__ == Lense: debug('tracing thru lense, f=',obj.f, ' [m]') r0_new = r0_new + ray.k[-1]*intersection_tol * 2 k_new = np.array([ray.k[-1][0]- r_loc[0]*ray.k[-1][2] / obj.f, ray.k[-1][1] - r_loc[1]*ray.k[-1][2] / obj.f, ray.k[-1][2] ]) s_new = ray.s[-1] n_reflect += 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) elif obj.__class__ == Detector: debug('detector hit') obj.hit(r_loc) k_new = ray.k[-1] s_new = ray.s[-1] n_reflect += 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) else: warn('no propagator available, optics element:', obj) r0_new = r0_new + ray.k[-1]*intersection_tol * 2 k_new = ray.k[-1] s_new = ray.s[-1] n_reflect += 1 ray.r0.append(r0_new) ray.k.append(k_new) ray.s.append(s_new) ray.obj.append(obj)
ocelot-collab/ocelot
ocelot/optics/ray.py
Python
gpl-3.0
10,620
[ "CRYSTAL" ]
97ffb4ae71b95abaeed7c35b597c994119f316c02a266c977d4271d20cc80739
# Copyright 2006, 2007, 2008, 2009 Brailcom, o.p.s. # # Author: Tomas Cerha <[email protected]> # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., Franklin Street, Fifth Floor, # Boston MA 02110-1301 USA. # # [[[TODO: richb - Pylint is giving us a bunch of warnings along these # lines throughout this file: # # W0142:202:SpeechServer._send_command: Used * or ** magic # # So for now, we just disable these warnings in this module.]]] # # pylint: disable-msg=W0142 """Provides an Orca speech server for Speech Dispatcher backend.""" __id__ = "$Id$" __version__ = "$Revision$" __date__ = "$Date$" __author__ = "Tomas Cerha <[email protected]>" __copyright__ = "Copyright (c) 2006-2008 Brailcom, o.p.s." __license__ = "LGPL" from gi.repository import GLib import re import time from . import chnames from . import debug from . import guilabels from . import messages from . import speechserver from . import settings from . import orca_state from . import punctuation_settings from .acss import ACSS try: import speechd except: _speechd_available = False else: _speechd_available = True try: getattr(speechd, "CallbackType") except AttributeError: _speechd_version_ok = False else: _speechd_version_ok = True PUNCTUATION = re.compile('[^\w\s]', re.UNICODE) ELLIPSIS = re.compile('(\342\200\246|\.\.\.\s*)') class SpeechServer(speechserver.SpeechServer): # See the parent class for documentation. _active_servers = {} DEFAULT_SERVER_ID = 'default' _SERVER_NAMES = {DEFAULT_SERVER_ID: guilabels.DEFAULT_SYNTHESIZER} def getFactoryName(): return guilabels.SPEECH_DISPATCHER getFactoryName = staticmethod(getFactoryName) def getSpeechServers(): servers = [] default = SpeechServer._getSpeechServer(SpeechServer.DEFAULT_SERVER_ID) if default is not None: servers.append(default) for module in default.list_output_modules(): servers.append(SpeechServer._getSpeechServer(module)) return servers getSpeechServers = staticmethod(getSpeechServers) def _getSpeechServer(cls, serverId): """Return an active server for given id. Attempt to create the server if it doesn't exist yet. Returns None when it is not possible to create the server. """ if serverId not in cls._active_servers: cls(serverId) # Don't return the instance, unless it is succesfully added # to `_active_Servers'. return cls._active_servers.get(serverId) _getSpeechServer = classmethod(_getSpeechServer) def getSpeechServer(info=None): if info is not None: thisId = info[1] else: thisId = SpeechServer.DEFAULT_SERVER_ID return SpeechServer._getSpeechServer(thisId) getSpeechServer = staticmethod(getSpeechServer) def shutdownActiveServers(): for server in list(SpeechServer._active_servers.values()): server.shutdown() shutdownActiveServers = staticmethod(shutdownActiveServers) # *** Instance methods *** def __init__(self, serverId): super(SpeechServer, self).__init__() self._id = serverId self._client = None self._current_voice_properties = {} self._acss_manipulators = ( (ACSS.RATE, self._set_rate), (ACSS.AVERAGE_PITCH, self._set_pitch), (ACSS.GAIN, self._set_volume), (ACSS.FAMILY, self._set_family), ) if not _speechd_available: debug.println(debug.LEVEL_WARNING, "Speech Dispatcher interface not installed.") return if not _speechd_version_ok: debug.println(debug.LEVEL_WARNING, "Speech Dispatcher version 0.6.2 or later is required.") return # The following constants must be initialized in runtime since they # depend on the speechd module being available. self._PUNCTUATION_MODE_MAP = { settings.PUNCTUATION_STYLE_ALL: speechd.PunctuationMode.ALL, settings.PUNCTUATION_STYLE_MOST: speechd.PunctuationMode.SOME, settings.PUNCTUATION_STYLE_SOME: speechd.PunctuationMode.SOME, settings.PUNCTUATION_STYLE_NONE: speechd.PunctuationMode.NONE, } self._CALLBACK_TYPE_MAP = { speechd.CallbackType.BEGIN: speechserver.SayAllContext.PROGRESS, speechd.CallbackType.CANCEL: speechserver.SayAllContext.INTERRUPTED, speechd.CallbackType.END: speechserver.SayAllContext.COMPLETED, #speechd.CallbackType.INDEX_MARK:speechserver.SayAllContext.PROGRESS, } self._default_voice_name = guilabels.SPEECH_DEFAULT_VOICE % serverId try: self._init() except: debug.println(debug.LEVEL_WARNING, "Speech Dispatcher service failed to connect:") debug.printException(debug.LEVEL_WARNING) else: SpeechServer._active_servers[serverId] = self self._lastKeyEchoTime = None def _init(self): self._client = client = speechd.SSIPClient('Orca', component=self._id) client.set_priority(speechd.Priority.MESSAGE) if self._id != self.DEFAULT_SERVER_ID: client.set_output_module(self._id) self._current_voice_properties = {} mode = self._PUNCTUATION_MODE_MAP[settings.verbalizePunctuationStyle] client.set_punctuation(mode) def updateCapitalizationStyle(self): """Updates the capitalization style used by the speech server.""" self._client.set_cap_let_recogn(settings.capitalizationStyle) def updatePunctuationLevel(self): """ Punctuation level changed, inform this speechServer. """ mode = self._PUNCTUATION_MODE_MAP[settings.verbalizePunctuationStyle] self._client.set_punctuation(mode) def _send_command(self, command, *args, **kwargs): if hasattr(speechd, 'SSIPCommunicationError'): try: return command(*args, **kwargs) except speechd.SSIPCommunicationError: debug.println(debug.LEVEL_CONFIGURATION, "Speech Dispatcher connection lost. " "Trying to reconnect.") self.reset() return command(*args, **kwargs) except: pass else: # It is not possible tho catch the error with older SD versions. return command(*args, **kwargs) def _set_rate(self, acss_rate): rate = int(2 * max(0, min(99, acss_rate)) - 98) self._send_command(self._client.set_rate, rate) def _set_pitch(self, acss_pitch): pitch = int(20 * max(0, min(9, acss_pitch)) - 90) self._send_command(self._client.set_pitch, pitch) def _set_volume(self, acss_volume): volume = int(15 * max(0, min(9, acss_volume)) - 35) self._send_command(self._client.set_volume, volume) def _set_family(self, acss_family): familyLocale = acss_family.get(speechserver.VoiceFamily.LOCALE) if not familyLocale: import locale familyLocale, encoding = locale.getdefaultlocale() if familyLocale: lang = familyLocale.split('_')[0] if lang and len(lang) == 2: self._send_command(self._client.set_language, str(lang)) try: # This command is not available with older SD versions. set_synthesis_voice = self._client.set_synthesis_voice except AttributeError: pass else: name = acss_family.get(speechserver.VoiceFamily.NAME) if name != self._default_voice_name: self._send_command(set_synthesis_voice, name) def _apply_acss(self, acss): if acss is None: acss = settings.voices[settings.DEFAULT_VOICE] current = self._current_voice_properties for acss_property, method in self._acss_manipulators: value = acss.get(acss_property) if value is not None: if current.get(acss_property) != value: method(value) current[acss_property] = value elif acss_property == ACSS.AVERAGE_PITCH: method(5.0) current[acss_property] = 5.0 elif acss_property == ACSS.FAMILY \ and acss == settings.voices[settings.DEFAULT_VOICE]: # We need to explicitly reset (at least) the family. # See bgo#626072. # method({}) current[acss_property] = {} def __addVerbalizedPunctuation(self, oldText): """Depending upon the users verbalized punctuation setting, adjust punctuation symbols in the given text to their pronounced equivalents. The pronounced text will either replace the punctuation symbol or be inserted before it. In the latter case, this is to retain spoken prosity. Arguments: - oldText: text to be parsed for punctuation. Returns a text string with the punctuation symbols adjusted accordingly. """ spokenEllipsis = messages.SPOKEN_ELLIPSIS + " " newText = re.sub(ELLIPSIS, spokenEllipsis, oldText) symbols = set(re.findall(PUNCTUATION, newText)) for symbol in symbols: try: level, action = punctuation_settings.getPunctuationInfo(symbol) except: continue if level != punctuation_settings.LEVEL_NONE: # Speech Dispatcher should handle it. # continue charName = " %s " % chnames.getCharacterName(symbol) if action == punctuation_settings.PUNCTUATION_INSERT: charName += symbol newText = re.sub(symbol, charName, newText) if orca_state.activeScript: newText = orca_state.activeScript.utilities.adjustForDigits(newText) return newText def _speak(self, text, acss, **kwargs): if isinstance(text, ACSS): text = '' text = self.__addVerbalizedPunctuation(text) if orca_state.activeScript: text = orca_state.activeScript.\ utilities.adjustForPronunciation(text) # Replace no break space characters with plain spaces since some # synthesizers cannot handle them. See bug #591734. # text = text.replace('\u00a0', ' ') # Replace newline followed by full stop, since # this seems to crash sd, see bgo#618334. # text = text.replace('\n.', '\n') self._apply_acss(acss) self._send_command(self._client.speak, text, **kwargs) def _say_all(self, iterator, orca_callback): """Process another sayAll chunk. Called by the gidle thread. """ try: context, acss = next(iterator) except StopIteration: pass else: def callback(callbackType, index_mark=None): # This callback is called in Speech Dispatcher listener thread. # No subsequent Speech Dispatcher interaction is allowed here, # so we pass the calls to the gidle thread. t = self._CALLBACK_TYPE_MAP[callbackType] if t == speechserver.SayAllContext.PROGRESS: if index_mark: context.currentOffset = int(index_mark) else: context.currentOffset = context.startOffset elif t == speechserver.SayAllContext.COMPLETED: context.currentOffset = context.endOffset GLib.idle_add(orca_callback, context, t) if t == speechserver.SayAllContext.COMPLETED: GLib.idle_add(self._say_all, iterator, orca_callback) self._speak(context.utterance, acss, callback=callback, event_types=list(self._CALLBACK_TYPE_MAP.keys())) return False # to indicate, that we don't want to be called again. def _cancel(self): self._send_command(self._client.cancel) def _change_default_speech_rate(self, step, decrease=False): acss = settings.voices[settings.DEFAULT_VOICE] delta = step * (decrease and -1 or +1) try: rate = acss[ACSS.RATE] except KeyError: rate = 50 acss[ACSS.RATE] = max(0, min(99, rate + delta)) debug.println(debug.LEVEL_CONFIGURATION, "Speech rate is now %d" % rate) self.speak(decrease and messages.SPEECH_SLOWER \ or messages.SPEECH_FASTER, acss=acss) def _change_default_speech_pitch(self, step, decrease=False): acss = settings.voices[settings.DEFAULT_VOICE] delta = step * (decrease and -1 or +1) try: pitch = acss[ACSS.AVERAGE_PITCH] except KeyError: pitch = 5 acss[ACSS.AVERAGE_PITCH] = max(0, min(9, pitch + delta)) debug.println(debug.LEVEL_CONFIGURATION, "Speech pitch is now %d" % pitch) self.speak(decrease and messages.SPEECH_LOWER \ or messages.SPEECH_HIGHER, acss=acss) def _change_default_speech_volume(self, step, decrease=False): acss = settings.voices[settings.DEFAULT_VOICE] delta = step * (decrease and -1 or +1) try: volume = acss[ACSS.GAIN] except KeyError: volume = 5 acss[ACSS.GAIN] = max(0, min(9, volume + delta)) debug.println(debug.LEVEL_CONFIGURATION, "Speech volume is now %d" % volume) self.speak(decrease and messages.SPEECH_SOFTER \ or messages.SPEECH_LOUDER, acss=acss) def getInfo(self): return [self._SERVER_NAMES.get(self._id, self._id), self._id] def getVoiceFamilies(self): # Always offer the configured default voice with a language # set according to the current locale. from locale import getlocale, LC_MESSAGES locale = getlocale(LC_MESSAGES)[0] if locale is None or locale == 'C': lang = None dialect = None else: lang, dialect = locale.split('_') voices = ((self._default_voice_name, lang, None),) try: # This command is not available with older SD versions. list_synthesis_voices = self._client.list_synthesis_voices except AttributeError: pass else: try: voices += self._send_command(list_synthesis_voices) except: pass families = [speechserver.VoiceFamily({ \ speechserver.VoiceFamily.NAME: name, #speechserver.VoiceFamily.GENDER: speechserver.VoiceFamily.MALE, speechserver.VoiceFamily.DIALECT: dialect, speechserver.VoiceFamily.LOCALE: lang}) for name, lang, dialect in voices] return families def speak(self, text=None, acss=None, interrupt=True): #if interrupt: # self._cancel() # "We will not interrupt a key echo in progress." (Said the comment in # speech.py where these next two lines used to live. But the code here # suggests we haven't been doing anything with the lastKeyEchoTime in # years. TODO - JD: Dig into this and if it's truly useless, kill it.) if self._lastKeyEchoTime: interrupt = interrupt and (time.time() - self._lastKeyEchoTime) > 0.5 if text: self._speak(text, acss) def speakUtterances(self, utteranceList, acss=None, interrupt=True): #if interrupt: # self._cancel() for utterance in utteranceList: if utterance: self._speak(utterance, acss) def sayAll(self, utteranceIterator, progressCallback): GLib.idle_add(self._say_all, utteranceIterator, progressCallback) def speakCharacter(self, character, acss=None): self._apply_acss(acss) if character == '\n': self._send_command(self._client.sound_icon, 'end-of-line') return name = chnames.getCharacterName(character) if not name: self._send_command(self._client.char, character) return if orca_state.activeScript: name = orca_state.activeScript.\ utilities.adjustForPronunciation(name) self.speak(name, acss) def speakKeyEvent(self, event): if event.isPrintableKey() and event.event_string.isupper(): acss = settings.voices[settings.UPPERCASE_VOICE] else: acss = ACSS(settings.voices[settings.DEFAULT_VOICE]) event_string = event.getKeyName() if orca_state.activeScript: event_string = orca_state.activeScript.\ utilities.adjustForPronunciation(event_string) lockingStateString = event.getLockingStateString() event_string = "%s %s" % (event_string, lockingStateString) self.speak(event_string, acss=acss) self._lastKeyEchoTime = time.time() def increaseSpeechRate(self, step=5): self._change_default_speech_rate(step) def decreaseSpeechRate(self, step=5): self._change_default_speech_rate(step, decrease=True) def increaseSpeechPitch(self, step=0.5): self._change_default_speech_pitch(step) def decreaseSpeechPitch(self, step=0.5): self._change_default_speech_pitch(step, decrease=True) def increaseSpeechVolume(self, step=0.5): self._change_default_speech_volume(step) def decreaseSpeechVolume(self, step=0.5): self._change_default_speech_volume(step, decrease=True) def stop(self): self._cancel() def shutdown(self): self._client.close() del SpeechServer._active_servers[self._id] def reset(self, text=None, acss=None): self._client.close() self._init() def list_output_modules(self): """Return names of available output modules as a tuple of strings. This method is not a part of Orca speech API, but is used internally by the Speech Dispatcher backend. The returned tuple can be empty if the information can not be obtained (e.g. with an older Speech Dispatcher version). """ try: return self._send_command(self._client.list_output_modules) except AttributeError: return () except speechd.SSIPCommandError: return ()
pvagner/orca
src/orca/speechdispatcherfactory.py
Python
lgpl-2.1
19,547
[ "ORCA" ]
74f7a59cb608d4109ac7d85c0c38338af84cff9c8a705d447217ee13f1ec4fc5
import logging import os import re import shutil from functools import partial, wraps import netCDF4 import numpy as np from django.core.exceptions import ValidationError from django.conf import settings from django.db import models, transaction from django.forms.models import formset_factory, BaseFormSet from django.template import Template, Context from dominate.tags import div, legend, form, button, p, em, a, textarea, _input import hs_file_types.nc_functions.nc_dump as nc_dump import hs_file_types.nc_functions.nc_meta as nc_meta import hs_file_types.nc_functions.nc_utils as nc_utils from .base import AbstractFileMetaData, AbstractLogicalFile, FileTypeContext from hs_app_netCDF.forms import VariableForm, VariableValidationForm, OriginalCoverageForm from hs_app_netCDF.models import NetCDFMetaDataMixin, OriginalCoverage, Variable from hs_core.forms import CoverageTemporalForm, CoverageSpatialForm from hs_core.hydroshare import utils from hs_core.models import Creator, Contributor from hs_core.signals import post_add_netcdf_aggregation from hs_core.enums import RelationTypes class NetCDFFileMetaData(NetCDFMetaDataMixin, AbstractFileMetaData): # the metadata element models are from the netcdf resource type app model_app_label = 'hs_app_netCDF' def get_metadata_elements(self): elements = super(NetCDFFileMetaData, self).get_metadata_elements() elements += [self.original_coverage] elements += list(self.variables.all()) return elements @classmethod def get_metadata_model_classes(cls): metadata_model_classes = super(NetCDFFileMetaData, cls).get_metadata_model_classes() metadata_model_classes['originalcoverage'] = OriginalCoverage metadata_model_classes['variable'] = Variable return metadata_model_classes @property def original_coverage(self): # There can be at most only one instance of type OriginalCoverage associated # with this metadata object return self.ori_coverage.all().first() def _get_opendap_html(self): opendap_div = div(cls="content-block") res_id = self.logical_file.resource.short_id file_name = self.logical_file.aggregation_name opendap_url = f'{settings.THREDDS_SERVER_URL}dodsC/hydroshare/resources/{res_id}/data/contents/{file_name}.html' with opendap_div: legend('OPeNDAP using DAP2') em('The netCDF data in this multidimensional content aggregation may be accessed at the link below ' 'using the OPeNDAP DAP2 protocol enabled on the HydroShare deployment of Unidata’s THREDDS data server. ' 'This enables direct and programmable access to this data through ') a(" OPeNDAP client software", href="https://www.opendap.org/support/OPeNDAP-clients", target="_blank") with div(style="margin-top:10px;"): a(opendap_url, href=opendap_url, target='_blank') return opendap_div.render() def get_html(self, **kwargs): """overrides the base class function""" html_string = super(NetCDFFileMetaData, self).get_html() if self.logical_file.resource.raccess.public: html_string += self._get_opendap_html() if self.spatial_coverage: html_string += self.spatial_coverage.get_html() if self.originalCoverage: html_string += self.originalCoverage.get_html() if self.temporal_coverage: html_string += self.temporal_coverage.get_html() variable_legend = legend("Variables") html_string += variable_legend.render() for variable in self.variables.all(): html_string += variable.get_html() # ncdump text from the txt file html_string += self.get_ncdump_html().render() template = Template(html_string) context = Context({}) return template.render(context) def get_html_forms(self, dataset_name_form=True, temporal_coverage=True, **kwargs): """overrides the base class function""" root_div = div("{% load crispy_forms_tags %}") with root_div: self.get_update_netcdf_file_html_form() super(NetCDFFileMetaData, self).get_html_forms() with div(): with div(cls="content-block", id="original-coverage-filetype"): with form(id="id-origcoverage-file-type", action="{{ orig_coverage_form.action }}", method="post", enctype="multipart/form-data"): div("{% crispy orig_coverage_form %}") with div(cls="row", style="margin-top:10px;"): with div(cls="col-md-offset-10 col-xs-offset-6 " "col-md-2 col-xs-6"): button("Save changes", type="button", cls="btn btn-primary pull-right", style="display: none;") with div(cls="content-block", id="spatial-coverage-filetype"): with form(id="id-spatial-coverage-file-type", cls='hs-coordinates-picker', data_coordinates_type="box", action="{{ spatial_coverage_form.action }}", method="post", enctype="multipart/form-data"): div("{% crispy spatial_coverage_form %}") with div(cls="row", style="margin-top:10px;"): with div(cls="col-md-offset-10 col-xs-offset-6 " "col-md-2 col-xs-6"): button("Save changes", type="button", cls="btn btn-primary pull-right", style="display: none;") with div(): legend("Variables") # id has to be variables to get the vertical scrollbar with div(id="variables"): with div("{% for form in variable_formset_forms %}"): with form(id="{{ form.form_id }}", action="{{ form.action }}", method="post", enctype="multipart/form-data", cls="well"): div("{% crispy form %}") with div(cls="row", style="margin-top:10px;"): with div(cls="col-md-offset-10 col-xs-offset-6 " "col-md-2 col-xs-6"): button("Save changes", type="button", cls="btn btn-primary pull-right", style="display: none;") div("{% endfor %}") self.get_ncdump_html() template = Template(root_div.render()) temp_cov_form = self.get_temporal_coverage_form() update_action = "/hsapi/_internal/NetCDFLogicalFile/{0}/{1}/{2}/update-file-metadata/" create_action = "/hsapi/_internal/NetCDFLogicalFile/{0}/{1}/add-file-metadata/" if self.temporal_coverage: temp_action = update_action.format(self.logical_file.id, "coverage", self.temporal_coverage.id) else: temp_action = create_action.format(self.logical_file.id, "coverage") temp_cov_form.action = temp_action orig_cov_form = self.get_original_coverage_form() if self.originalCoverage: temp_action = update_action.format(self.logical_file.id, "originalcoverage", self.originalCoverage.id) else: temp_action = create_action.format(self.logical_file.id, "originalcoverage") orig_cov_form.action = temp_action spatial_cov_form = self.get_spatial_coverage_form(allow_edit=True) if self.spatial_coverage: temp_action = update_action.format(self.logical_file.id, "coverage", self.spatial_coverage.id) else: temp_action = create_action.format(self.logical_file.id, "coverage") spatial_cov_form.action = temp_action context_dict = dict() context_dict["temp_form"] = temp_cov_form context_dict["orig_coverage_form"] = orig_cov_form context_dict["spatial_coverage_form"] = spatial_cov_form context_dict["variable_formset_forms"] = self.get_variable_formset().forms context = Context(context_dict) rendered_html = template.render(context) return rendered_html def get_update_netcdf_file_html_form(self): form_action = "/hsapi/_internal/{}/update-netcdf-file/".format(self.logical_file.id) style = "display:none;" self.refresh_from_db() if self.is_dirty: style = "margin-bottom:15px" root_div = div(id="div-netcdf-file-update", cls="row", style=style) with root_div: with div(cls="col-sm-12"): with div(cls="alert alert-warning alert-dismissible", role="alert"): div("NetCDF file needs to be synced with metadata changes.", cls='space-bottom') _input(id="metadata-dirty", type="hidden", value=self.is_dirty) with form(action=form_action, method="post", id="update-netcdf-file"): button("Update NetCDF File", type="button", cls="btn btn-primary", id="id-update-netcdf-file") return root_div def get_original_coverage_form(self): return OriginalCoverage.get_html_form(resource=None, element=self.originalCoverage, file_type=True) def get_variable_formset(self): VariableFormSetEdit = formset_factory( wraps(VariableForm)(partial(VariableForm, allow_edit=True)), formset=BaseFormSet, extra=0) variable_formset = VariableFormSetEdit( initial=list(self.variables.all().values()), prefix='Variable') for frm in variable_formset.forms: if len(frm.initial) > 0: frm.action = "/hsapi/_internal/%s/%s/variable/%s/update-file-metadata/" % ( "NetCDFLogicalFile", self.logical_file.id, frm.initial['id']) frm.number = frm.initial['id'] return variable_formset def get_ncdump_html(self): """ Generates html code to display the contents of the ncdump text file. The generated html is used for netcdf file type metadata view and edit modes. :return: """ nc_dump_div = div() nc_dump_res_file = None for f in self.logical_file.files.all(): if f.extension == ".txt": nc_dump_res_file = f break if nc_dump_res_file is not None: nc_dump_div = div(style="clear: both", cls="content-block") with nc_dump_div: legend("NetCDF Header Information") p(nc_dump_res_file.full_path[33:]) header_info = nc_dump_res_file.resource_file.read() header_info = header_info.decode('utf-8') textarea(header_info, readonly="", rows="15", cls="input-xlarge", style="min-width: 100%; resize: vertical;") return nc_dump_div @classmethod def validate_element_data(cls, request, element_name): """overriding the base class method""" if element_name.lower() not in [el_name.lower() for el_name in cls.get_supported_element_names()]: err_msg = "{} is nor a supported metadata element for NetCDF file type" err_msg = err_msg.format(element_name) return {'is_valid': False, 'element_data_dict': None, "errors": err_msg} element_name = element_name.lower() if element_name == 'variable': form_data = {} for field_name in VariableValidationForm().fields: try: # when the request comes from the UI, the variable attributes have a prefix of # '-' matching_key = [key for key in request.POST if '-' + field_name in key][0] except IndexError: if field_name in request.POST: matching_key = field_name else: continue form_data[field_name] = request.POST[matching_key] element_form = VariableValidationForm(form_data) elif element_name == 'originalcoverage': element_form = OriginalCoverageForm(data=request.POST) elif element_name == 'coverage' and 'start' not in request.POST: element_form = CoverageSpatialForm(data=request.POST) else: # here we are assuming temporal coverage element_form = CoverageTemporalForm(data=request.POST) if element_form.is_valid(): return {'is_valid': True, 'element_data_dict': element_form.cleaned_data} else: return {'is_valid': False, 'element_data_dict': None, "errors": element_form.errors} class NetCDFLogicalFile(AbstractLogicalFile): metadata = models.OneToOneField(NetCDFFileMetaData, related_name="logical_file") data_type = "Multidimensional" @classmethod def get_allowed_uploaded_file_types(cls): """only .nc file can be set to this logical file group""" return [".nc"] @classmethod def get_main_file_type(cls): """The main file type for this aggregation""" return ".nc" @classmethod def get_allowed_storage_file_types(cls): """file types allowed in this logical file group are: .nc and .txt""" return [".nc", ".txt"] @staticmethod def get_aggregation_display_name(): return 'Multidimensional Content: A multidimensional dataset represented by a NetCDF ' \ 'file (.nc) and text file giving its NetCDF header content' @staticmethod def get_aggregation_term_label(): return "Multidimensional Aggregation" @staticmethod def get_aggregation_type_name(): return "MultidimensionalAggregation" # used in discovery faceting to aggregate native and composite content types @staticmethod def get_discovery_content_type(): """Return a human-readable content type for discovery. This must agree between Composite Types and native types. """ return "Multidimensional (NetCDF)" @classmethod def create(cls, resource): """this custom method MUST be used to create an instance of this class""" netcdf_metadata = NetCDFFileMetaData.objects.create(keywords=[], extra_metadata={}) # Note we are not creating the logical file record in DB at this point # the caller must save this to DB return cls(metadata=netcdf_metadata, resource=resource) @property def supports_resource_file_move(self): """resource files that are part of this logical file can't be moved""" return False @property def supports_resource_file_add(self): """doesn't allow a resource file to be added""" return False @property def supports_resource_file_rename(self): """resource files that are part of this logical file can't be renamed""" return False @property def supports_delete_folder_on_zip(self): """does not allow the original folder to be deleted upon zipping of that folder""" return False def update_netcdf_file(self, user): """ writes metadata to the netcdf file associated with this instance of the logical file :return: """ log = logging.getLogger() nc_res_file = '' txt_res_file = '' for f in self.files.all(): if f.extension == '.nc': nc_res_file = f break for f in self.files.all(): if f.extension == '.txt': txt_res_file = f break if not nc_res_file: msg = "No netcdf file exists for this logical file." log.exception(msg) raise ValidationError(msg) netcdf_file_update(self, nc_res_file, txt_res_file, user) @classmethod def check_files_for_aggregation_type(cls, files): """Checks if the specified files can be used to set this aggregation type :param files: a list of ResourceFile objects :return If the files meet the requirements of this aggregation type, then returns this aggregation class name, otherwise empty string. """ if len(files) != 1: # no files or more than 1 file return "" if files[0].extension not in cls.get_allowed_uploaded_file_types(): return "" return cls.__name__ @classmethod def set_file_type(cls, resource, user, file_id=None, folder_path=''): """ Creates a NetCDFLogicalFile (aggregation) from a netcdf file (.nc) resource file """ log = logging.getLogger() with FileTypeContext(aggr_cls=cls, user=user, resource=resource, file_id=file_id, folder_path=folder_path, post_aggr_signal=post_add_netcdf_aggregation, is_temp_file=True) as ft_ctx: # base file name (no path included) res_file = ft_ctx.res_file file_name = res_file.file_name # file name without the extension - needed for naming the new aggregation folder nc_file_name = file_name[:-len(res_file.extension)] resource_metadata = [] file_type_metadata = [] # file validation and metadata extraction temp_file = ft_ctx.temp_file nc_dataset = nc_utils.get_nc_dataset(temp_file) if isinstance(nc_dataset, netCDF4.Dataset): msg = "NetCDF aggregation. Error when creating aggregation. Error:{}" # extract the metadata from netcdf file res_dublin_core_meta, res_type_specific_meta = nc_meta.get_nc_meta_dict(temp_file) # populate resource_metadata and file_type_metadata lists with extracted metadata add_metadata_to_list(resource_metadata, res_dublin_core_meta, res_type_specific_meta, file_type_metadata, resource) # create the ncdump text file dump_file_name = nc_file_name + "_header_info.txt" for file in resource.files.filter(file_folder=folder_path): # look for and delete an existing header_file before creating it below. fname = os.path.basename(file.resource_file.name) if fname in dump_file_name: file.delete() break dump_file = create_header_info_txt_file(temp_file, nc_file_name) file_folder = res_file.file_folder upload_folder = file_folder dataset_title = res_dublin_core_meta.get('title', nc_file_name) with transaction.atomic(): try: # create a netcdf logical file object logical_file = cls.create_aggregation(dataset_name=dataset_title, resource=resource, res_files=[res_file], new_files_to_upload=[dump_file], folder_path=upload_folder) log.info("NetCDF aggregation creation - a new file was added to the " "resource.") # use the extracted metadata to populate resource metadata for element in resource_metadata: # here k is the name of the element # v is a dict of all element attributes/field names and field values k, v = list(element.items())[0] if k == 'title': # update title element title_element = resource.metadata.title resource.metadata.update_element('title', title_element.id, **v) else: resource.metadata.create_element(k, **v) log.info("NetCDF Aggregation creation - Resource metadata was saved to DB") # use the extracted metadata to populate file metadata for element in file_type_metadata: # here k is the name of the element # v is a dict of all element attributes/field names and field values k, v = list(element.items())[0] if k == 'subject': logical_file.metadata.keywords = v logical_file.metadata.save() # update resource level keywords resource_keywords = [subject.value.lower() for subject in resource.metadata.subjects.all()] for kw in logical_file.metadata.keywords: if kw.lower() not in resource_keywords: resource.metadata.create_element('subject', value=kw) else: logical_file.metadata.create_element(k, **v) log.info("NetCDF aggregation - metadata was saved in aggregation") ft_ctx.logical_file = logical_file except Exception as ex: logical_file.remove_aggregation() msg = msg.format(str(ex)) log.exception(msg) raise ValidationError(msg) return logical_file else: err_msg = "Not a valid NetCDF file. NetCDF aggregation validation failed." log.error(err_msg) raise ValidationError(err_msg) def remove_aggregation(self): """Deletes the aggregation object (logical file) *self* and the associated metadata object. If the aggregation contains a system generated txt file that resource file also will be deleted.""" # need to delete the system generated ncdump txt file txt_file = None for res_file in self.files.all(): if res_file.file_name.lower().endswith(".txt"): txt_file = res_file break super(NetCDFLogicalFile, self).remove_aggregation() if txt_file is not None: txt_file.delete() @classmethod def get_primary_resouce_file(cls, resource_files): """Gets a resource file that has extension .nc from the list of files *resource_files* """ res_files = [f for f in resource_files if f.extension.lower() == '.nc'] return res_files[0] if res_files else None def add_metadata_to_list(res_meta_list, extracted_core_meta, extracted_specific_meta, file_meta_list=None, resource=None): """ Helper function to populate metadata lists (*res_meta_list* and *file_meta_list*) with extracted metadata from the NetCDF file. These metadata lists are then used for creating metadata element objects by the caller. :param res_meta_list: a list to store data to create metadata elements at the resource level :param extracted_core_meta: a dict of extracted dublin core metadata :param extracted_specific_meta: a dict of extracted metadata that is NetCDF specific :param file_meta_list: a list to store data to create metadata elements at the file type level (must be None when this helper function is used for NetCDF resource and must not be None when used for NetCDF file type :param resource: an instance of BaseResource (must be None when this helper function is used for NteCDF resource and must not be None when used for NetCDF file type) :return: """ # add title if resource is not None and file_meta_list is not None: # file type if resource.metadata.title.value.lower() == 'untitled resource': add_title_metadata(res_meta_list, extracted_core_meta) else: # resource type add_title_metadata(res_meta_list, extracted_core_meta) # add abstract (Description element) if resource is not None and file_meta_list is not None: # file type if resource.metadata.description is None: add_abstract_metadata(res_meta_list, extracted_core_meta) else: # resource type add_abstract_metadata(res_meta_list, extracted_core_meta) # add keywords if file_meta_list is not None: # file type add_keywords_metadata(file_meta_list, extracted_core_meta) else: # resource type add_keywords_metadata(res_meta_list, extracted_core_meta, file_type=False) # add creators: if resource is not None: # file type add_creators_metadata(res_meta_list, extracted_core_meta, resource.metadata.creators.all()) else: # resource type add_creators_metadata(res_meta_list, extracted_core_meta, Creator.objects.none()) # add contributors: if resource is not None: # file type add_contributors_metadata(res_meta_list, extracted_core_meta, resource.metadata.contributors.all()) else: # resource type add_contributors_metadata(res_meta_list, extracted_core_meta, Contributor.objects.none()) # add relation of type 'source' (applies only to NetCDF resource type) if extracted_core_meta.get('source') and file_meta_list is None: relation = {'relation': {'type': 'source', 'value': extracted_core_meta['source']}} res_meta_list.append(relation) # add relation of type 'references' (applies only to NetCDF resource type) if extracted_core_meta.get('references') and file_meta_list is None: relation = {'relation': {'type': 'references', 'value': extracted_core_meta['references']}} res_meta_list.append(relation) # add rights (applies only to NetCDF resource type) if extracted_core_meta.get('rights') and file_meta_list is None: raw_info = extracted_core_meta.get('rights') b = re.search("(?P<url>https?://[^\s]+)", raw_info) url = b.group('url') if b else '' statement = raw_info.replace(url, '') if url else raw_info rights = {'rights': {'statement': statement, 'url': url}} res_meta_list.append(rights) # add coverage - period if file_meta_list is not None: # file type add_temporal_coverage_metadata(file_meta_list, extracted_core_meta) else: # resource type add_temporal_coverage_metadata(res_meta_list, extracted_core_meta) # add coverage - box if file_meta_list is not None: # file type add_spatial_coverage_metadata(file_meta_list, extracted_core_meta) else: # resource type add_spatial_coverage_metadata(res_meta_list, extracted_core_meta) # add variables if file_meta_list is not None: # file type add_variable_metadata(file_meta_list, extracted_specific_meta) else: # resource type add_variable_metadata(res_meta_list, extracted_specific_meta) # add original spatial coverage if file_meta_list is not None: # file type add_original_coverage_metadata(file_meta_list, extracted_core_meta) else: # resource type add_original_coverage_metadata(res_meta_list, extracted_core_meta) def add_original_coverage_metadata(metadata_list, extracted_metadata): """ Adds data for the original coverage element to the *metadata_list* :param metadata_list: list to which original coverage data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :return: """ ori_cov = {} if extracted_metadata.get('original-box'): coverage_data = extracted_metadata['original-box'] projection_string_type = "" projection_string_text = "" datum = "" if extracted_metadata.get('projection-info'): projection_string_type = extracted_metadata[ 'projection-info']['type'] projection_string_text = extracted_metadata[ 'projection-info']['text'] datum = extracted_metadata['projection-info']['datum'] ori_cov = {'originalcoverage': {'value': coverage_data, 'projection_string_type': projection_string_type, 'projection_string_text': projection_string_text, 'datum': datum } } if ori_cov: metadata_list.append(ori_cov) def add_creators_metadata(metadata_list, extracted_metadata, existing_creators): """ Adds data for creator(s) to the *metadata_list* :param metadata_list: list to which creator(s) data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :param existing_creators: a QuerySet object for existing creators :return: """ if extracted_metadata.get('creator_name'): name = extracted_metadata['creator_name'] # add creator only if there is no creator already with the same name if not existing_creators.filter(name=name).exists(): email = extracted_metadata.get('creator_email', '') url = extracted_metadata.get('creator_url', '') creator = {'creator': {'name': name, 'email': email, 'homepage': url}} metadata_list.append(creator) def add_contributors_metadata(metadata_list, extracted_metadata, existing_contributors): """ Adds data for contributor(s) to the *metadata_list* :param metadata_list: list to which contributor(s) data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :param existing_contributors: a QuerySet object for existing contributors :return: """ if extracted_metadata.get('contributor_name'): name_list = extracted_metadata['contributor_name'].split(',') for name in name_list: # add contributor only if there is no contributor already with the # same name if not existing_contributors.filter(name=name).exists(): contributor = {'contributor': {'name': name}} metadata_list.append(contributor) def add_title_metadata(metadata_list, extracted_metadata): """ Adds data for the title element to the *metadata_list* :param metadata_list: list to which title data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :return: """ if extracted_metadata.get('title'): res_title = {'title': {'value': extracted_metadata['title']}} metadata_list.append(res_title) def add_abstract_metadata(metadata_list, extracted_metadata): """ Adds data for the abstract (Description) element to the *metadata_list* :param metadata_list: list to which abstract data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :return: """ if extracted_metadata.get('description'): description = {'description': {'abstract': extracted_metadata['description']}} metadata_list.append(description) def add_variable_metadata(metadata_list, extracted_metadata): """ Adds variable(s) related data to the *metadata_list* :param metadata_list: list to which variable data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :return: """ for var_name, var_meta in list(extracted_metadata.items()): meta_info = {} for element, value in list(var_meta.items()): if value != '': meta_info[element] = value metadata_list.append({'variable': meta_info}) def add_spatial_coverage_metadata(metadata_list, extracted_metadata): """ Adds data for one spatial coverage metadata element to the *metadata_list** :param metadata_list: list to which spatial coverage data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :return: """ if extracted_metadata.get('box'): box = {'coverage': {'type': 'box', 'value': extracted_metadata['box']}} metadata_list.append(box) def add_temporal_coverage_metadata(metadata_list, extracted_metadata): """ Adds data for one temporal metadata element to the *metadata_list* :param metadata_list: list to which temporal coverage data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :return: """ if extracted_metadata.get('period'): period = { 'coverage': {'type': 'period', 'value': extracted_metadata['period']}} metadata_list.append(period) def add_keywords_metadata(metadata_list, extracted_metadata, file_type=True): """ Adds data for subject/keywords element to the *metadata_list* :param metadata_list: list to which keyword data needs to be added :param extracted_metadata: a dict containing netcdf extracted metadata :param file_type: If True then this metadata extraction is for netCDF file type, otherwise metadata extraction is for NetCDF resource :return: """ if extracted_metadata.get('subject'): keywords = extracted_metadata['subject'].split(',') if file_type: metadata_list.append({'subject': keywords}) else: for keyword in keywords: metadata_list.append({'subject': {'value': keyword}}) def create_header_info_txt_file(nc_temp_file, nc_file_name): """ Creates the header text file using the *nc_temp_file* :param nc_temp_file: the netcdf file copied from irods to django for metadata extraction :return: """ if nc_dump.get_nc_dump_string_by_ncdump(nc_temp_file): dump_str = nc_dump.get_nc_dump_string_by_ncdump(nc_temp_file) else: dump_str = nc_dump.get_nc_dump_string(nc_temp_file) # file name without the extension temp_dir = os.path.dirname(nc_temp_file) dump_file_name = nc_file_name + '_header_info.txt' dump_file = os.path.join(temp_dir, dump_file_name) if dump_str: # refine dump_str first line first_line = list('netcdf {0} '.format(nc_file_name)) first_line_index = dump_str.index('{') dump_str_list = first_line + list(dump_str)[first_line_index:] dump_str = "".join(dump_str_list) with open(dump_file, 'w') as dump_file_obj: dump_file_obj.write(dump_str) dump_file_obj.close() else: with open(dump_file, 'w') as dump_file_obj: dump_file_obj.write("") dump_file_obj.close() return dump_file def netcdf_file_update(instance, nc_res_file, txt_res_file, user): log = logging.getLogger() # check the instance type file_type = isinstance(instance, NetCDFLogicalFile) # get the file from irods to temp dir temp_nc_file = utils.get_file_from_irods(nc_res_file) nc_dataset = netCDF4.Dataset(temp_nc_file, 'a') try: # update title title = instance.dataset_name if file_type else instance.metadata.title.value if title.lower() != 'untitled resource': if hasattr(nc_dataset, 'title'): delattr(nc_dataset, 'title') nc_dataset.title = title # update keywords keywords = instance.metadata.keywords if file_type \ else [item.value for item in instance.metadata.subjects.all()] if hasattr(nc_dataset, 'keywords'): delattr(nc_dataset, 'keywords') if keywords: nc_dataset.keywords = ', '.join(keywords) # update key/value metadata extra_metadata_dict = instance.metadata.extra_metadata if file_type \ else instance.extra_metadata if hasattr(nc_dataset, 'hs_extra_metadata'): delattr(nc_dataset, 'hs_extra_metadata') if extra_metadata_dict: extra_metadata = [] for k, v in list(extra_metadata_dict.items()): extra_metadata.append("{}:{}".format(k, v)) nc_dataset.hs_extra_metadata = ', '.join(extra_metadata) # update temporal coverage temporal_coverage = instance.metadata.temporal_coverage if file_type \ else instance.metadata.coverages.all().filter(type='period').first() for attr_name in ['time_coverage_start', 'time_coverage_end']: if hasattr(nc_dataset, attr_name): delattr(nc_dataset, attr_name) if temporal_coverage: nc_dataset.time_coverage_start = temporal_coverage.value['start'] nc_dataset.time_coverage_end = temporal_coverage.value['end'] # update spatial coverage spatial_coverage = instance.metadata.spatial_coverage if file_type \ else instance.metadata.coverages.all().filter(type='box').first() for attr_name in ['geospatial_lat_min', 'geospatial_lat_max', 'geospatial_lon_min', 'geospatial_lon_max']: if hasattr(nc_dataset, attr_name): delattr(nc_dataset, attr_name) if spatial_coverage: nc_dataset.geospatial_lat_min = spatial_coverage.value['southlimit'] nc_dataset.geospatial_lat_max = spatial_coverage.value['northlimit'] nc_dataset.geospatial_lon_min = spatial_coverage.value['westlimit'] nc_dataset.geospatial_lon_max = spatial_coverage.value['eastlimit'] # update variables if instance.metadata.variables.all(): dataset_variables = nc_dataset.variables for variable in instance.metadata.variables.all(): if variable.name in list(dataset_variables.keys()): dataset_variable = dataset_variables[variable.name] # update units if hasattr(dataset_variable, 'units'): delattr(dataset_variable, 'units') if variable.unit != 'Unknown': dataset_variable.setncattr('units', variable.unit) # update long_name if hasattr(dataset_variable, 'long_name'): delattr(dataset_variable, 'long_name') if variable.descriptive_name: dataset_variable.setncattr('long_name', variable.descriptive_name) # update method if hasattr(dataset_variable, 'comment'): delattr(dataset_variable, 'comment') if variable.method: dataset_variable.setncattr('comment', variable.method) # update missing value if variable.missing_value: if hasattr(dataset_variable, 'missing_value'): missing_value = dataset_variable.missing_value delattr(dataset_variable, 'missing_value') else: missing_value = '' try: dt = np.dtype(dataset_variable.datatype.name) missing_value = np.fromstring(variable.missing_value + ' ', dtype=dt.type, sep=" ") except: pass if missing_value: dataset_variable.setncattr('missing_value', missing_value) # Update metadata element that only apply to netCDF resource if not file_type: # update summary if hasattr(nc_dataset, 'summary'): delattr(nc_dataset, 'summary') if instance.metadata.description: nc_dataset.summary = instance.metadata.description.abstract # update contributor if hasattr(nc_dataset, 'contributor_name'): delattr(nc_dataset, 'contributor_name') contributor_list = instance.metadata.contributors.all() if contributor_list: res_contri_name = [] for contributor in contributor_list: res_contri_name.append(contributor.name) nc_dataset.contributor_name = ', '.join(res_contri_name) # update creator for attr_name in ['creator_name', 'creator_email', 'creator_url']: if hasattr(nc_dataset, attr_name): delattr(nc_dataset, attr_name) creator = instance.metadata.creators.all().filter(order=1).first() if creator: nc_dataset.creator_name = creator.name if creator.name else creator.organization if creator.email: nc_dataset.creator_email = creator.email if creator.description or creator.homepage: nc_dataset.creator_url = creator.homepage if creator.homepage \ else 'https://www.hydroshare.org' + creator.description # update license if hasattr(nc_dataset, 'license'): delattr(nc_dataset, 'license') if instance.metadata.rights: nc_dataset.license = "{0} {1}".format(instance.metadata.rights.statement, instance.metadata.rights.url) # update reference if hasattr(nc_dataset, 'references'): delattr(nc_dataset, 'references') reference_list = instance.metadata.relations.all().filter(type=RelationTypes.references) if reference_list: res_meta_ref = [] for reference in reference_list: res_meta_ref.append(reference.value) nc_dataset.references = ' \n'.join(res_meta_ref) # update source if hasattr(nc_dataset, 'source'): delattr(nc_dataset, 'source') source_list = instance.metadata.relations.filter(type=RelationTypes.source).all() if source_list: res_meta_source = [] for source in source_list: res_meta_source.append(source.value) nc_dataset.source = ' \n'.join(res_meta_source) # close nc dataset nc_dataset.close() except Exception as ex: log.exception(str(ex)) if os.path.exists(temp_nc_file): shutil.rmtree(os.path.dirname(temp_nc_file)) raise ex # create the ncdump text file nc_file_name = os.path.basename(temp_nc_file).split(".")[0] temp_text_file = create_header_info_txt_file(temp_nc_file, nc_file_name) # push the updated nc file and the txt file to iRODS utils.replace_resource_file_on_irods(temp_nc_file, nc_res_file, user) utils.replace_resource_file_on_irods(temp_text_file, txt_res_file, user) metadata = instance.metadata if file_type: instance.create_aggregation_xml_documents(create_map_xml=False) metadata.is_dirty = False metadata.save() # cleanup the temp dir if os.path.exists(temp_nc_file): shutil.rmtree(os.path.dirname(temp_nc_file))
hydroshare/hydroshare
hs_file_types/models/netcdf.py
Python
bsd-3-clause
44,595
[ "NetCDF" ]
6bb452f85bebf0b2225e0d316a03436cb9f804c78f57d1902166aa84fbf858a0
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, print_function, unicode_literals, \ absolute_import import os import unittest from pymatgen.io.lammps.input import LammpsInput __author__ = 'Kiran Mathew' __email__ = '[email protected]' test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "..", "test_files", "lammps") class TestLammpsInput(unittest.TestCase): def setUp(self): self.template_file = os.path.join(test_dir, "in.peptide.template") self.settings = { "pair_style": "lj/charmm/coul/long 8.0 10.0 10.0", "kspace_style": "pppm 0.0001", "fix_1": "1 all nvt temp 275.0 275.0 100.0 tchain 1", "fix_2": "2 all shake 0.0001 10 100 b 4 6 8 10 12 14 18 a 31" } self.lammps_input = LammpsInput.from_file(self.template_file, self.settings) def test_as_dict(self): d = self.lammps_input.as_dict() d.pop("@class") d.pop("@module") d_test = {} with open(os.path.join(test_dir, "in.peptide.template.with_read_data"), "r") as f: d_test["contents"] = f.read() + "\nlog $${log_file}" d_test["settings"] = self.settings d_test["settings"]["data_file"] = "data.peptide" d_test["delimiter"] = "$$" self.assertDictEqual(d, d_test) def test_read_data_placeholder(self): self.assertIn("data_file", self.lammps_input.settings) self.assertEqual(self.lammps_input.settings["data_file"], "data.peptide") def test_log_placeholder(self): self.assertIn("log_file", self.lammps_input.settings) self.assertEqual(self.lammps_input.settings["log_file"], "log.lammps") def test_string_representation(self): input_file = os.path.join(test_dir, "in.peptide") input_file_lines = str(self.lammps_input).split("\n") with open(input_file) as f: input_file_lines_ans = f.readlines() + ["", "log log.lammps"] for l1, l2 in zip(input_file_lines, input_file_lines_ans): self.assertEqual(l1.strip(), l2.strip()) if __name__ == "__main__": unittest.main()
setten/pymatgen
pymatgen/io/lammps/tests/test_input.py
Python
mit
2,251
[ "CHARMM", "LAMMPS", "pymatgen" ]
76fa6df1f42b5de6ba07d7f660e1be0a0201c4fdd6127119672ab188b84cc363
# -*- coding: utf-8 -*- # Copyright (C) 2019 - 2020 by Pedro Mendes, Rector and Visitors of the # University of Virginia, University of Heidelberg, and University # of Connecticut School of Medicine. # All rights reserved. # Copyright (C) 2017 - 2018 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc., University of Heidelberg, and University of # of Connecticut School of Medicine. # All rights reserved. # Copyright (C) 2010 - 2016 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc., University of Heidelberg, and The University # of Manchester. # All rights reserved. # Copyright (C) 2008 - 2009 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc., EML Research, gGmbH, University of Heidelberg, # and The University of Manchester. # All rights reserved. # Copyright (C) 2006 - 2007 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc. and EML Research, gGmbH. # All rights reserved. import COPASI import unittest from types import * class Test_CDataContainer(unittest.TestCase): def setUp(self): self.datamodel=COPASI.CRootContainer.addDatamodel() self.datamodel.loadModel("calcium_juergen.cps") def test_ObjectFromName(self): metab=self.datamodel.getModel().getMetabolite(1) object=self.datamodel.getObjectFromCN(metab.getCN()) self.assert_(object!=None) self.assert_(object.__class__==COPASI.CMetab) self.assert_(metab.getCN().getString()==object.getCN().getString()) def suite(): tests=[ 'test_ObjectFromName' ] return unittest.TestSuite(map(Test_CDataContainer,tests)) if(__name__ == '__main__'): unittest.TextTestRunner(verbosity=2).run(suite())
copasi/COPASI
copasi/bindings/python/unittests/Test_CCopasiContainer.py
Python
artistic-2.0
1,692
[ "COPASI" ]
c819a8e7e086114d36a35f52ac5ff0668320644fd692257f39f6a5f9d4856e16
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Appcelerator Titanium Mobile # Copyright (c) 2011-2012 by Appcelerator, Inc. All Rights Reserved. # Licensed under the terms of the Apache Public License # Please see the LICENSE included with this distribution for details. # # Android Application Script # import os, sys, shutil, platform, zipfile import string, subprocess, re from xml.etree.ElementTree import ElementTree from StringIO import StringIO from os.path import join, splitext, split, exists from shutil import copyfile from androidsdk import AndroidSDK from compiler import Compiler import bindings this_dir = os.path.dirname(__file__) module_dir = os.path.join(os.path.dirname(this_dir), 'module') common_dir = os.path.join(os.path.dirname(this_dir), 'common') scripts_root = os.path.dirname(this_dir) tools_root = os.path.dirname(scripts_root) baseapp_templates = os.path.join(tools_root, "templates", "baseapp") sys.path.extend([os.path.dirname(this_dir), module_dir, common_dir, os.path.join(tools_root, "thirdparty")]) from mako.template import Template from tiapp import TiAppXML, touch_tiapp_xml from manifest import Manifest from module import ModuleDetector import simplejson ignoreFiles = ['.gitignore', '.cvsignore', '.DS_Store']; ignoreDirs = ['.git','.svn','_svn', 'CVS']; def run(args): return subprocess.Popen(args, stderr=subprocess.STDOUT, stdout=subprocess.PIPE).communicate()[0] def pipe(args1,args2): p1 = subprocess.Popen(args1, stdout=subprocess.PIPE) p2 = subprocess.Popen(args2, stdin=p1.stdout, stdout=subprocess.PIPE) return p2.communicate()[0] def copy_resources(source, target): if not os.path.exists(os.path.expanduser(target)): os.mkdir(os.path.expanduser(target)) for root, dirs, files in os.walk(source): for name in ignoreDirs: if name in dirs: dirs.remove(name) # don't visit ignored directories for file in files: if file in ignoreFiles: continue from_ = join(root, file) to_ = os.path.expanduser(from_.replace(source, target, 1)) to_directory = os.path.expanduser(split(to_)[0]) if not exists(to_directory): os.makedirs(to_directory) print "[TRACE] copying: %s to: %s" % (from_,to_) copyfile(from_, to_) class Android(object): def __init__(self, name, myid, android_sdk_dir, deploy_type, java, ti_sdk_dir): self.name = name # android requires at least one dot in packageid if len(re.findall(r'\.',myid))==0: myid = 'com.%s' % myid self.id = myid self.android_sdk_dir = android_sdk_dir self.ti_sdk_dir = ti_sdk_dir bindings.init(os.path.join(ti_sdk_dir, "android")) # Used in templating self.config = { 'appid': self.id, 'appname' : self.name, 'appversion' : '1', 'apiversion' : '7', #Android 2.1 'deploy_type': deploy_type, 'compile_js': False } self.config['classname'] = Android.strip_classname(self.name) self.deploy_type = deploy_type self.java = java @classmethod def strip_classname(cls, name): classname = ''.join([str.capitalize() for str in re.split('[^A-Za-z0-9_]', name)]) if re.search("^[0-9]", classname) != None: classname = "_" + classname return classname def newdir(self, *segments): path = os.path.join(*segments) if not os.path.exists(path): os.makedirs(path) return path def copyfile(self, file, src, dest): shutil.copy(os.path.join(src, file), os.path.join(dest, file)) def load_template(self, template): return Template(filename=template, output_encoding='utf-8', encoding_errors='replace') def render_android_manifest(self): this_dir = os.path.dirname(sys._getframe(0).f_code.co_filename) tmpl = self.load_template(os.path.join(baseapp_templates, 'android', 'native', 'AndroidManifest.xml')) return tmpl.render(config = self.config) def render(self, this_dir, template_file, dest, dest_file, **kwargs): tmpl = self.load_template(os.path.join(baseapp_templates, 'android', 'native', template_file)) f = None try: print "[TRACE] Generating %s" % os.path.join(dest, dest_file) f = open(os.path.join(dest, dest_file), "w") f.write(tmpl.render(config = self.config, **kwargs)) finally: if f!=None: f.close def build_app_info(self, project_dir): tiapp = ElementTree() assets_tiappxml = os.path.join(project_dir, 'build', 'android', 'bin', 'assets', 'tiapp.xml') self.app_info = {'fullscreen':'false','navbar-hidden':'false'} self.app_properties = {} if not os.path.exists(assets_tiappxml): shutil.copy(os.path.join(project_dir, 'tiapp.xml'), assets_tiappxml) tiapp.parse(open(assets_tiappxml, 'r')) for key in ['id', 'name', 'version', 'publisher', 'url', 'copyright', 'description', 'icon', 'analytics', 'guid', 'navbar-hidden', 'fullscreen']: el = tiapp.find(key) if el != None: self.app_info[key] = el.text for property_el in tiapp.findall("property"): name = property_el.get("name") type = property_el.get("type") value = property_el.text if name == None: continue if type == None: type = "string" if value == None: value = "" self.app_properties[name] = {"type": type, "value": value} def generate_activities(self, app_package_dir): if not 'activities' in self.tiapp.android: return for key in self.tiapp.android['activities'].keys(): activity = self.tiapp.android['activities'][key] print '[DEBUG] generating activity class: ' + activity['classname'] self.render(this_dir, 'JSActivity.java', app_package_dir, activity['classname']+'.java', activity=activity) def generate_services(self, app_package_dir): if not 'services' in self.tiapp.android: return for key in self.tiapp.android['services'].keys(): service = self.tiapp.android['services'][key] service_type = service['service_type'] print '[DEBUG] generating service type "%s", class "%s"' %(service_type, service['classname']) if service_type == 'interval': self.render(this_dir, 'JSIntervalService.java', app_package_dir, service['classname']+'.java', service=service) else: self.render(this_dir, 'JSService.java', app_package_dir, service['classname']+'.java', service=service) def build_modules_info(self, resources_dir, app_bin_dir, include_all_ti_modules=False): self.app_modules = [] (modules, external_child_modules) = bindings.get_all_module_bindings() compiler = Compiler(self.tiapp, resources_dir, self.java, app_bin_dir, None, os.path.dirname(app_bin_dir), include_all_modules=include_all_ti_modules, ti_sdk_dir=self.ti_sdk_dir) compiler.compile(compile_bytecode=False, info_message=None) for module in compiler.modules: module_bindings = [] # TODO: we should also detect module properties for method in compiler.module_methods: if method.lower().startswith(module+'.') and '.' not in method: module_bindings.append(method[len(module)+1:]) module_onAppCreate = None module_class = None module_apiName = None for m in modules.keys(): if modules[m]['fullAPIName'].lower() == module: module_class = m module_apiName = modules[m]['fullAPIName'] if 'onAppCreate' in modules[m]: module_onAppCreate = modules[m]['onAppCreate'] break if module_apiName == None: continue # module wasn't found ext_modules = [] if module_class in external_child_modules: for child_module in external_child_modules[module_class]: if child_module['fullAPIName'].lower() in compiler.modules: ext_modules.append(child_module) self.app_modules.append({ 'api_name': module_apiName, 'class_name': module_class, 'bindings': module_bindings, 'external_child_modules': ext_modules, 'on_app_create': module_onAppCreate }) # discover app modules detector = ModuleDetector(self.project_dir, self.ti_sdk_dir) missing, detected_modules = detector.find_app_modules(self.tiapp, 'android') for missing_module in missing: print '[WARN] Couldn\'t find app module: %s' % missing_module['id'] self.custom_modules = [] for module in detected_modules: if module.jar == None: continue module_jar = zipfile.ZipFile(module.jar) module_bindings = bindings.get_module_bindings(module_jar) if module_bindings is None: continue for module_class in module_bindings['modules'].keys(): module_apiName = module_bindings['modules'][module_class]['apiName'] module_proxy = module_bindings['proxies'][module_class] module_id = module_proxy['proxyAttrs']['id'] module_proxy_class_name = module_proxy['proxyClassName'] module_onAppCreate = None if 'onAppCreate' in module_proxy: module_onAppCreate = module_proxy['onAppCreate'] print '[DEBUG] module_id = %s' % module_id if module_id == module.manifest.moduleid: # make sure that the module was not built before 1.8.0.1 try: module_api_version = int(module.manifest.apiversion) if module_api_version < 2: print "[ERROR] The 'apiversion' for '%s' in the module manifest is less than version 2. The module was likely built against a Titanium SDK pre 1.8.0.1. Please use a version of the module that has 'apiversion' 2 or greater" % module_id touch_tiapp_xml(os.path.join(self.project_dir, 'tiapp.xml')) sys.exit(1) except(TypeError, ValueError): print "[ERROR] The 'apiversion' for '%s' in the module manifest is not a valid value. Please use a version of the module that has an 'apiversion' value of 2 or greater set in it's manifest file" % module_id touch_tiapp_xml(os.path.join(self.project_dir, 'tiapp.xml')) sys.exit(1) print '[DEBUG] appending module: %s' % module_class self.custom_modules.append({ 'module_id': module_id, 'module_apiName': module_apiName, 'proxy_name': module_proxy_class_name, 'class_name': module_class, 'manifest': module.manifest, 'on_app_create': module_onAppCreate }) def create(self, dir, build_time=False, project_dir=None, include_all_ti_modules=False): this_dir = os.path.dirname(sys._getframe(0).f_code.co_filename) # Build up output directory tree if project_dir is None: project_dir = self.newdir(dir, self.name) self.project_dir = project_dir # Paths to Titanium assets that need to be linked into eclipse structure self.config['ti_tiapp_xml'] = os.path.join(project_dir, 'tiapp.xml') self.tiapp = TiAppXML(self.config['ti_tiapp_xml']) resource_dir = os.path.join(project_dir, 'Resources') self.config['ti_resources_dir'] = resource_dir json_contents = open(os.path.join(self.ti_sdk_dir, 'android', 'dependency.json')).read() depends_map = simplejson.loads(json_contents) runtime = depends_map['runtimes']['defaultRuntime'] if self.tiapp.has_app_property("ti.android.runtime"): requested_runtime = self.tiapp.get_app_property("ti.android.runtime") if requested_runtime == "rhino" or requested_runtime == "v8": runtime = requested_runtime else: print "[ERROR] invalid runtime \"" + requested_runtime + "\" requested, must be 'v8' or 'rhino'" sys.exit(1); app_build_dir = self.newdir(project_dir, 'build') app_dir = self.newdir(app_build_dir, 'android') #if os.path.exists(os.path.join(app_dir,'bin')): # shutil.rmtree(os.path.join(app_dir,'bin')) if os.path.exists(os.path.join(app_dir,'src')): shutil.rmtree(os.path.join(app_dir,'src')) if os.path.exists(os.path.join(app_dir,'res')): shutil.rmtree(os.path.join(app_dir,'res')) app_bin_dir = self.newdir(app_dir, 'bin') app_lib_dir = self.newdir(app_dir, 'lib') app_src_dir = self.newdir(app_dir, 'src') app_res_dir = self.newdir(app_dir, 'res') app_gen_dir = self.newdir(app_dir, 'gen') app_bin_classes_dir = self.newdir(app_bin_dir, 'classes') app_res_drawable_dir = self.newdir(app_res_dir, 'drawable') app_assets_dir = self.newdir(app_dir, 'assets') app_package_dir = self.newdir(app_gen_dir, *self.id.split('.')) app_bin_assets_dir = self.newdir(app_bin_dir, 'assets') self.build_app_info(project_dir) self.build_modules_info(resource_dir, app_bin_dir, include_all_ti_modules=include_all_ti_modules) # Create android source self.render(this_dir, 'AppInfo.java', app_package_dir, self.config['classname'] + 'AppInfo.java', app_properties = self.app_properties, app_info = self.app_info) self.render(this_dir, 'AndroidManifest.xml', app_dir, 'AndroidManifest.xml') self.render(this_dir, 'App.java', app_package_dir, self.config['classname'] + 'Application.java', app_modules = self.app_modules, custom_modules = self.custom_modules, runtime = runtime) self.render(this_dir, 'Activity.java', app_package_dir, self.config['classname'] + 'Activity.java') self.generate_activities(app_package_dir) self.generate_services(app_package_dir) self.render(this_dir, 'classpath', app_dir, '.classpath') self.render(this_dir, 'project', app_dir, '.project') self.render(this_dir, 'default.properties', app_dir, 'default.properties') print "[TRACE] Generating app.json" f = None try: f = open(os.path.join(app_bin_assets_dir, "app.json"), "w") f.write(simplejson.dumps({"app_modules":self.app_modules})) finally: if f is not None: f.close() # Don't override a pre-existing .gitignore in case users have their own preferences # for what should be in it. (LH #2446) if not os.path.exists(os.path.join(app_dir, '.gitignore')): self.render(this_dir, 'gitignore', app_dir, '.gitignore') else: print "[TRACE] Skipping copying gitignore -> .gitignore because already exists" android_project_resources = os.path.join(project_dir,'Resources','android') if build_time==False and os.path.exists(android_project_resources): shutil.rmtree(android_project_resources) if not os.path.exists(android_project_resources): copy_resources(os.path.join(baseapp_templates, "android","resources"), android_project_resources) if __name__ == '__main__': # this is for testing only for the time being if len(sys.argv) != 6 or sys.argv[1]=='--help': print "Usage: %s <name> <id> <directory> <android_sdk> <titanium_sdk_dir>" % os.path.basename(sys.argv[0]) sys.exit(1) sdk = AndroidSDK(sys.argv[4]) android = Android(sys.argv[1], sys.argv[2], sdk, None, 'java', sys.argv[5]) android.create(sys.argv[3])
appcelerator/titanium_mobile_tooling
scripts/android/android.py
Python
apache-2.0
14,251
[ "VisIt" ]
3aaa38262de212ad4fdec28e31ebbbd68084a45d950b976bbc1022b45b53f853
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """PTransform and descendants. A PTransform is an object describing (not executing) a computation. The actual execution semantics for a transform is captured by a runner object. A transform object always belongs to a pipeline object. A PTransform derived class needs to define the expand() method that describes how one or more PValues are created by the transform. The module defines a few standard transforms: FlatMap (parallel do), GroupByKey (group by key), etc. Note that the expand() methods for these classes contain code that will add nodes to the processing graph associated with a pipeline. As support for the FlatMap transform, the module also defines a DoFn class and wrapper class that allows lambda functions to be used as FlatMap processing functions. """ from __future__ import absolute_import import copy import inspect import operator import os import sys from apache_beam import error from apache_beam import pvalue from apache_beam import typehints from apache_beam.internal import pickler from apache_beam.internal import util from apache_beam.transforms.display import HasDisplayData from apache_beam.transforms.display import DisplayDataItem from apache_beam.typehints import getcallargs_forhints from apache_beam.typehints import TypeCheckError from apache_beam.typehints import validate_composite_type_param from apache_beam.typehints import WithTypeHints from apache_beam.typehints.trivial_inference import instance_to_type class _PValueishTransform(object): """Visitor for PValueish objects. A PValueish is a PValue, or list, tuple, dict of PValuesish objects. This visits a PValueish, contstructing a (possibly mutated) copy. """ def visit(self, node, *args): return getattr( self, 'visit_' + node.__class__.__name__, lambda x, *args: x)(node, *args) def visit_list(self, node, *args): return [self.visit(x, *args) for x in node] def visit_tuple(self, node, *args): return tuple(self.visit(x, *args) for x in node) def visit_dict(self, node, *args): return {key: self.visit(value, *args) for (key, value) in node.items()} class _SetInputPValues(_PValueishTransform): def visit(self, node, replacements): if id(node) in replacements: return replacements[id(node)] else: return super(_SetInputPValues, self).visit(node, replacements) class _MaterializedDoOutputsTuple(pvalue.DoOutputsTuple): def __init__(self, deferred, pvalue_cache): super(_MaterializedDoOutputsTuple, self).__init__( None, None, deferred._tags, deferred._main_tag) self._deferred = deferred self._pvalue_cache = pvalue_cache def __getitem__(self, tag): return self._pvalue_cache.get_unwindowed_pvalue(self._deferred[tag]) class _MaterializePValues(_PValueishTransform): def __init__(self, pvalue_cache): self._pvalue_cache = pvalue_cache def visit(self, node): if isinstance(node, pvalue.PValue): return self._pvalue_cache.get_unwindowed_pvalue(node) elif isinstance(node, pvalue.DoOutputsTuple): return _MaterializedDoOutputsTuple(node, self._pvalue_cache) else: return super(_MaterializePValues, self).visit(node) class GetPValues(_PValueishTransform): def visit(self, node, pvalues=None): if pvalues is None: pvalues = [] self.visit(node, pvalues) return pvalues elif isinstance(node, (pvalue.PValue, pvalue.DoOutputsTuple)): pvalues.append(node) else: super(GetPValues, self).visit(node, pvalues) class ZipPValues(_PValueishTransform): """Pairs each PValue in a pvalueish with a value in a parallel out sibling. Sibling should have the same nested structure as pvalueish. Leaves in sibling are expanded across nested pvalueish lists, tuples, and dicts. For example ZipPValues().visit({'a': pc1, 'b': (pc2, pc3)}, {'a': 'A', 'b', 'B'}) will return [('a', pc1, 'A'), ('b', pc2, 'B'), ('b', pc3, 'B')] """ def visit(self, pvalueish, sibling, pairs=None, context=None): if pairs is None: pairs = [] self.visit(pvalueish, sibling, pairs, context) return pairs elif isinstance(pvalueish, (pvalue.PValue, pvalue.DoOutputsTuple)): pairs.append((context, pvalueish, sibling)) else: super(ZipPValues, self).visit(pvalueish, sibling, pairs, context) def visit_list(self, pvalueish, sibling, pairs, context): if isinstance(sibling, (list, tuple)): for ix, (p, s) in enumerate(zip( pvalueish, list(sibling) + [None] * len(pvalueish))): self.visit(p, s, pairs, 'position %s' % ix) else: for p in pvalueish: self.visit(p, sibling, pairs, context) def visit_tuple(self, pvalueish, sibling, pairs, context): self.visit_list(pvalueish, sibling, pairs, context) def visit_dict(self, pvalueish, sibling, pairs, context): if isinstance(sibling, dict): for key, p in pvalueish.items(): self.visit(p, sibling.get(key), pairs, key) else: for p in pvalueish.values(): self.visit(p, sibling, pairs, context) class PTransform(WithTypeHints, HasDisplayData): """A transform object used to modify one or more PCollections. Subclasses must define an expand() method that will be used when the transform is applied to some arguments. Typical usage pattern will be: input | CustomTransform(...) The expand() method of the CustomTransform object passed in will be called with input as an argument. """ # By default, transforms don't have any side inputs. side_inputs = () # Used for nullary transforms. pipeline = None # Default is unset. _user_label = None def __init__(self, label=None): super(PTransform, self).__init__() self.label = label @property def label(self): return self._user_label or self.default_label() @label.setter def label(self, value): self._user_label = value def default_label(self): return self.__class__.__name__ def with_input_types(self, input_type_hint): """Annotates the input type of a PTransform with a type-hint. Args: input_type_hint: An instance of an allowed built-in type, a custom class, or an instance of a typehints.TypeConstraint. Raises: TypeError: If 'type_hint' is not a valid type-hint. See typehints.validate_composite_type_param for further details. Returns: A reference to the instance of this particular PTransform object. This allows chaining type-hinting related methods. """ validate_composite_type_param(input_type_hint, 'Type hints for a PTransform') return super(PTransform, self).with_input_types(input_type_hint) def with_output_types(self, type_hint): """Annotates the output type of a PTransform with a type-hint. Args: type_hint: An instance of an allowed built-in type, a custom class, or a typehints.TypeConstraint. Raises: TypeError: If 'type_hint' is not a valid type-hint. See typehints.validate_composite_type_param for further details. Returns: A reference to the instance of this particular PTransform object. This allows chaining type-hinting related methods. """ validate_composite_type_param(type_hint, 'Type hints for a PTransform') return super(PTransform, self).with_output_types(type_hint) def type_check_inputs(self, pvalueish): self.type_check_inputs_or_outputs(pvalueish, 'input') def infer_output_type(self, unused_input_type): return self.get_type_hints().simple_output_type(self.label) or typehints.Any def type_check_outputs(self, pvalueish): self.type_check_inputs_or_outputs(pvalueish, 'output') def type_check_inputs_or_outputs(self, pvalueish, input_or_output): hints = getattr(self.get_type_hints(), input_or_output + '_types') if not hints: return arg_hints, kwarg_hints = hints if arg_hints and kwarg_hints: raise TypeCheckError( 'PTransform cannot have both positional and keyword type hints ' 'without overriding %s._type_check_%s()' % ( self.__class__, input_or_output)) root_hint = ( arg_hints[0] if len(arg_hints) == 1 else arg_hints or kwarg_hints) for context, pvalue_, hint in ZipPValues().visit(pvalueish, root_hint): if pvalue_.element_type is None: # TODO(robertwb): It's a bug that we ever get here. (typecheck) continue if hint and not typehints.is_consistent_with(pvalue_.element_type, hint): at_context = ' %s %s' % (input_or_output, context) if context else '' raise TypeCheckError( '%s type hint violation at %s%s: expected %s, got %s' % ( input_or_output.title(), self.label, at_context, hint, pvalue_.element_type)) def _infer_output_coder(self, input_type=None, input_coder=None): """Returns the output coder to use for output of this transform. Note: this API is experimental and is subject to change; please do not rely on behavior induced by this method. The Coder returned here should not be wrapped in a WindowedValueCoder wrapper. Args: input_type: An instance of an allowed built-in type, a custom class, or a typehints.TypeConstraint for the input type, or None if not available. input_coder: Coder object for encoding input to this PTransform, or None if not available. Returns: Coder object for encoding output of this PTransform or None if unknown. """ # TODO(ccy): further refine this API. return None def clone(self, new_label): """Clones the current transform instance under a new label.""" transform = copy.copy(self) transform.label = new_label return transform def expand(self, input_or_inputs): raise NotImplementedError def __str__(self): return '<%s>' % self._str_internal() def __repr__(self): return '<%s at %s>' % (self._str_internal(), hex(id(self))) def _str_internal(self): return '%s(PTransform)%s%s%s' % ( self.__class__.__name__, ' label=[%s]' % self.label if (hasattr(self, 'label') and self.label) else '', ' inputs=%s' % str(self.inputs) if (hasattr(self, 'inputs') and self.inputs) else '', ' side_inputs=%s' % str(self.side_inputs) if self.side_inputs else '') def _check_pcollection(self, pcoll): if not isinstance(pcoll, pvalue.PCollection): raise error.TransformError('Expecting a PCollection argument.') if not pcoll.pipeline: raise error.TransformError('PCollection not part of a pipeline.') def get_windowing(self, inputs): """Returns the window function to be associated with transform's output. By default most transforms just return the windowing function associated with the input PCollection (or the first input if several). """ # TODO(robertwb): Assert all input WindowFns compatible. return inputs[0].windowing def __rrshift__(self, label): return _NamedPTransform(self, label) def __or__(self, right): """Used to compose PTransforms, e.g., ptransform1 | ptransform2.""" if isinstance(right, PTransform): return ChainedPTransform(self, right) else: return NotImplemented def __ror__(self, left, label=None): """Used to apply this PTransform to non-PValues, e.g., a tuple.""" pvalueish, pvalues = self._extract_input_pvalues(left) pipelines = [v.pipeline for v in pvalues if isinstance(v, pvalue.PValue)] if pvalues and not pipelines: deferred = False # pylint: disable=wrong-import-order, wrong-import-position from apache_beam import pipeline from apache_beam.utils.pipeline_options import PipelineOptions # pylint: enable=wrong-import-order, wrong-import-position p = pipeline.Pipeline( 'DirectRunner', PipelineOptions(sys.argv)) else: if not pipelines: if self.pipeline is not None: p = self.pipeline else: raise ValueError('"%s" requires a pipeline to be specified ' 'as there are no deferred inputs.'% self.label) else: p = self.pipeline or pipelines[0] for pp in pipelines: if p != pp: raise ValueError( 'Mixing value from different pipelines not allowed.') deferred = not getattr(p.runner, 'is_eager', False) # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.core import Create # pylint: enable=wrong-import-order, wrong-import-position replacements = {id(v): p | 'CreatePInput%s' % ix >> Create(v) for ix, v in enumerate(pvalues) if not isinstance(v, pvalue.PValue) and v is not None} pvalueish = _SetInputPValues().visit(pvalueish, replacements) self.pipeline = p result = p.apply(self, pvalueish, label) if deferred: return result else: # Get a reference to the runners internal cache, otherwise runner may # clean it after run. cache = p.runner.cache p.run().wait_until_finish() return _MaterializePValues(cache).visit(result) def _extract_input_pvalues(self, pvalueish): """Extract all the pvalues contained in the input pvalueish. Returns pvalueish as well as the flat inputs list as the input may have to be copied as inspection may be destructive. By default, recursively extracts tuple components and dict values. Generally only needs to be overriden for multi-input PTransforms. """ # pylint: disable=wrong-import-order from apache_beam import pipeline # pylint: enable=wrong-import-order if isinstance(pvalueish, pipeline.Pipeline): pvalueish = pvalue.PBegin(pvalueish) def _dict_tuple_leaves(pvalueish): if isinstance(pvalueish, tuple): for a in pvalueish: for p in _dict_tuple_leaves(a): yield p elif isinstance(pvalueish, dict): for a in pvalueish.values(): for p in _dict_tuple_leaves(a): yield p else: yield pvalueish return pvalueish, tuple(_dict_tuple_leaves(pvalueish)) class ChainedPTransform(PTransform): def __init__(self, *parts): super(ChainedPTransform, self).__init__(label=self._chain_label(parts)) self._parts = parts def _chain_label(self, parts): return '|'.join(p.label for p in parts) def __or__(self, right): if isinstance(right, PTransform): # Create a flat list rather than a nested tree of composite # transforms for better monitoring, etc. return ChainedPTransform(*(self._parts + (right,))) else: return NotImplemented def expand(self, pval): return reduce(operator.or_, self._parts, pval) class PTransformWithSideInputs(PTransform): """A superclass for any PTransform (e.g. FlatMap or Combine) invoking user code. PTransforms like FlatMap invoke user-supplied code in some kind of package (e.g. a DoFn) and optionally provide arguments and side inputs to that code. This internal-use-only class contains common functionality for PTransforms that fit this model. """ def __init__(self, fn, *args, **kwargs): if isinstance(fn, type) and issubclass(fn, typehints.WithTypeHints): # Don't treat Fn class objects as callables. raise ValueError('Use %s() not %s.' % (fn.__name__, fn.__name__)) self.fn = self.make_fn(fn) # Now that we figure out the label, initialize the super-class. super(PTransformWithSideInputs, self).__init__() if (any([isinstance(v, pvalue.PCollection) for v in args]) or any([isinstance(v, pvalue.PCollection) for v in kwargs.itervalues()])): raise error.SideInputError( 'PCollection used directly as side input argument. Specify ' 'AsIter(pcollection) or AsSingleton(pcollection) to indicate how the ' 'PCollection is to be used.') self.args, self.kwargs, self.side_inputs = util.remove_objects_from_args( args, kwargs, pvalue.PCollectionView) self.raw_side_inputs = args, kwargs # Prevent name collisions with fns of the form '<function <lambda> at ...>' self._cached_fn = self.fn # Ensure fn and side inputs are picklable for remote execution. self.fn = pickler.loads(pickler.dumps(self.fn)) self.args = pickler.loads(pickler.dumps(self.args)) self.kwargs = pickler.loads(pickler.dumps(self.kwargs)) # For type hints, because loads(dumps(class)) != class. self.fn = self._cached_fn def with_input_types( self, input_type_hint, *side_inputs_arg_hints, **side_input_kwarg_hints): """Annotates the types of main inputs and side inputs for the PTransform. Args: input_type_hint: An instance of an allowed built-in type, a custom class, or an instance of a typehints.TypeConstraint. *side_inputs_arg_hints: A variable length argument composed of of an allowed built-in type, a custom class, or a typehints.TypeConstraint. **side_input_kwarg_hints: A dictionary argument composed of of an allowed built-in type, a custom class, or a typehints.TypeConstraint. Example of annotating the types of side-inputs: FlatMap().with_input_types(int, int, bool) Raises: TypeError: If 'type_hint' is not a valid type-hint. See typehints.validate_composite_type_param for further details. Returns: A reference to the instance of this particular PTransform object. This allows chaining type-hinting related methods. """ super(PTransformWithSideInputs, self).with_input_types(input_type_hint) for si in side_inputs_arg_hints: validate_composite_type_param(si, 'Type hints for a PTransform') for si in side_input_kwarg_hints.values(): validate_composite_type_param(si, 'Type hints for a PTransform') self.side_inputs_types = side_inputs_arg_hints return WithTypeHints.with_input_types( self, input_type_hint, *side_inputs_arg_hints, **side_input_kwarg_hints) def type_check_inputs(self, pvalueish): type_hints = self.get_type_hints().input_types if type_hints: args, kwargs = self.raw_side_inputs def element_type(side_input): if isinstance(side_input, pvalue.PCollectionView): return side_input.element_type else: return instance_to_type(side_input) arg_types = [pvalueish.element_type] + [element_type(v) for v in args] kwargs_types = {k: element_type(v) for (k, v) in kwargs.items()} argspec_fn = self.process_argspec_fn() bindings = getcallargs_forhints(argspec_fn, *arg_types, **kwargs_types) hints = getcallargs_forhints(argspec_fn, *type_hints[0], **type_hints[1]) for arg, hint in hints.items(): if arg.startswith('%unknown%'): continue if hint is None: continue if not typehints.is_consistent_with( bindings.get(arg, typehints.Any), hint): raise typehints.TypeCheckError( 'Type hint violation for \'%s\': requires %s but got %s for %s' % (self.label, hint, bindings[arg], arg)) def process_argspec_fn(self): """Returns an argspec of the function actually consuming the data. """ raise NotImplementedError def make_fn(self, fn): # TODO(silviuc): Add comment describing that this is meant to be overriden # by methods detecting callables and wrapping them in DoFns. return fn def default_label(self): return '%s(%s)' % (self.__class__.__name__, self.fn.default_label()) class CallablePTransform(PTransform): """A class wrapper for a function-based transform.""" def __init__(self, fn): # pylint: disable=super-init-not-called # This is a helper class for a function decorator. Only when the class # is called (and __call__ invoked) we will have all the information # needed to initialize the super class. self.fn = fn self._args = () self._kwargs = {} def display_data(self): res = {'fn': (self.fn.__name__ if hasattr(self.fn, '__name__') else self.fn.__class__), 'args': DisplayDataItem(str(self._args)).drop_if_default('()'), 'kwargs': DisplayDataItem(str(self._kwargs)).drop_if_default('{}')} return res def __call__(self, *args, **kwargs): super(CallablePTransform, self).__init__() self._args = args self._kwargs = kwargs return self def expand(self, pcoll): # Since the PTransform will be implemented entirely as a function # (once called), we need to pass through any type-hinting information that # may have been annotated via the .with_input_types() and # .with_output_types() methods. kwargs = dict(self._kwargs) args = tuple(self._args) try: if 'type_hints' in inspect.getargspec(self.fn).args: args = (self.get_type_hints(),) + args except TypeError: # Might not be a function. pass return self.fn(pcoll, *args, **kwargs) def default_label(self): if self._args: return '%s(%s)' % ( label_from_callable(self.fn), label_from_callable(self._args[0])) else: return label_from_callable(self.fn) def ptransform_fn(fn): """A decorator for a function-based PTransform. Args: fn: A function implementing a custom PTransform. Returns: A CallablePTransform instance wrapping the function-based PTransform. This wrapper provides an alternative, simpler way to define a PTransform. The standard method is to subclass from PTransform and override the expand() method. An equivalent effect can be obtained by defining a function that an input PCollection and additional optional arguments and returns a resulting PCollection. For example:: @ptransform_fn def CustomMapper(pcoll, mapfn): return pcoll | ParDo(mapfn) The equivalent approach using PTransform subclassing:: class CustomMapper(PTransform): def __init__(self, mapfn): super(CustomMapper, self).__init__() self.mapfn = mapfn def expand(self, pcoll): return pcoll | ParDo(self.mapfn) With either method the custom PTransform can be used in pipelines as if it were one of the "native" PTransforms:: result_pcoll = input_pcoll | 'label' >> CustomMapper(somefn) Note that for both solutions the underlying implementation of the pipe operator (i.e., `|`) will inject the pcoll argument in its proper place (first argument if no label was specified and second argument otherwise). """ return CallablePTransform(fn) def label_from_callable(fn): if hasattr(fn, 'default_label'): return fn.default_label() elif hasattr(fn, '__name__'): if fn.__name__ == '<lambda>': return '<lambda at %s:%s>' % ( os.path.basename(fn.func_code.co_filename), fn.func_code.co_firstlineno) else: return fn.__name__ else: return str(fn) class _NamedPTransform(PTransform): def __init__(self, transform, label): super(_NamedPTransform, self).__init__(label) self.transform = transform def __ror__(self, pvalueish): return self.transform.__ror__(pvalueish, self.label) def expand(self, pvalue): raise RuntimeError("Should never be expanded directly.")
jasonkuster/incubator-beam
sdks/python/apache_beam/transforms/ptransform.py
Python
apache-2.0
24,237
[ "VisIt" ]
ead86e7ea09bfd223da32b4606822850cc2eabfea47200f363f8ca313d38cc20
#!/usr/bin/env python __author__ = "waroquiers" import unittest import numpy as np from pymatgen.util.testing import PymatgenTest from pymatgen.analysis.chemenv.utils.math_utils import ( _cartesian_product, cosinus_step, divisors, get_center_of_arc, get_linearly_independent_vectors, power3_step, powern_parts_step, prime_factors, scale_and_clamp, smootherstep, smoothstep, ) class MathUtilsTest(PymatgenTest): def test_list_cartesian_product(self): list_of_lists = [[0, 1], [2, 5, 4], [5]] self.assertEqual( _cartesian_product(lists=list_of_lists), [[0, 2, 5], [1, 2, 5], [0, 5, 5], [1, 5, 5], [0, 4, 5], [1, 4, 5]], ) list_of_lists = [[0, 1], [2, 5, 4], []] self.assertEqual(_cartesian_product(lists=list_of_lists), []) list_of_lists = [[1], [3], [2]] self.assertEqual(_cartesian_product(lists=list_of_lists), [[1, 3, 2]]) list_of_lists = [[7]] self.assertEqual(_cartesian_product(lists=list_of_lists), [[7]]) def test_math_utils(self): ff = prime_factors(250) self.assertEqual(ff, [5, 5, 5, 2]) div = divisors(560) self.assertEqual( div, [ 1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560, ], ) center = get_center_of_arc([0.0, 0.0], [1.0, 0.0], 0.5) self.assertEqual(center, (0.5, 0.0)) def test_linearly_independent_vectors(self): v1 = np.array([1, 0, 0]) v2 = np.array([0, 1, 0]) v3 = np.array([0, 0, 1]) v4 = np.array([-1, 0, 0]) v5 = np.array([1, 1, 0]) independent_vectors = get_linearly_independent_vectors([v1, v2, v3]) self.assertEqual(len(independent_vectors), 3) independent_vectors = get_linearly_independent_vectors([v1, v2, v4]) self.assertEqual(len(independent_vectors), 2) independent_vectors = get_linearly_independent_vectors([v1, v2, v5]) self.assertEqual(len(independent_vectors), 2) independent_vectors = get_linearly_independent_vectors([v1, v2, v3, v4, v5]) self.assertEqual(len(independent_vectors), 3) def test_scale_and_clamp(self): edge0 = 7.0 edge1 = 11.0 clamp0 = 0.0 clamp1 = 1.0 vals = np.linspace(5.0, 12.0, num=8) self.assertEqual( scale_and_clamp(vals, edge0, edge1, clamp0, clamp1).tolist(), [0.0, 0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.0], ) def test_smoothstep(self): vals = np.linspace(5.0, 12.0, num=8) self.assertEqual(smoothstep(vals, edges=[0.0, 1.0]).tolist(), [1.0] * 8) self.assertEqual( smoothstep(vals, edges=[7.0, 11.0]).tolist(), [0.0, 0.0, 0.0, 0.15625, 0.5, 0.84375, 1.0, 1.0], ) def test_smootherstep(self): vals = np.linspace(5.0, 12.0, num=8) self.assertEqual(smootherstep(vals, edges=[0.0, 1.0]).tolist(), [1.0] * 8) self.assertEqual( smootherstep(vals, edges=[7.0, 11.0]).tolist(), [0.0, 0.0, 0.0, 0.103515625, 0.5, 0.896484375, 1.0, 1.0], ) def test_power3_step(self): vals = np.linspace(5.0, 12.0, num=8) self.assertEqual(power3_step(vals, edges=[0.0, 1.0]).tolist(), [1.0] * 8) self.assertEqual( power3_step(vals, edges=[7.0, 11.0]).tolist(), [0.0, 0.0, 0.0, 0.15625, 0.5, 0.84375, 1.0, 1.0], ) def test_cosinus_step(self): vals = np.linspace(5.0, 12.0, num=8) self.assertEqual(cosinus_step(vals, edges=[0.0, 1.0]).tolist(), [1.0] * 8) self.assertArrayAlmostEqual( cosinus_step(vals, edges=[7.0, 11.0]).tolist(), [0.0, 0.0, 0.0, 0.14644660940672616, 0.5, 0.8535533905932737, 1.0, 1.0], 5, ) def test_powern_parts_step(self): vals = np.linspace(5.0, 12.0, num=8) self.assertEqual(powern_parts_step(vals, edges=[0.0, 1.0], nn=2).tolist(), [1.0] * 8) self.assertEqual(powern_parts_step(vals, edges=[0.0, 1.0], nn=3).tolist(), [1.0] * 8) self.assertEqual(powern_parts_step(vals, edges=[0.0, 1.0], nn=4).tolist(), [1.0] * 8) self.assertEqual( powern_parts_step(vals, edges=[7.0, 11.0], nn=2).tolist(), [0.0, 0.0, 0.0, 0.125, 0.5, 0.875, 1.0, 1.0], ) self.assertEqual( powern_parts_step(vals, edges=[7.0, 11.0], nn=3).tolist(), [0.0, 0.0, 0.0, 0.0625, 0.5, 0.9375, 1.0, 1.0], ) self.assertEqual( powern_parts_step(vals, edges=[7.0, 11.0], nn=4).tolist(), [0.0, 0.0, 0.0, 0.03125, 0.5, 0.96875, 1.0, 1.0], ) if __name__ == "__main__": unittest.main()
vorwerkc/pymatgen
pymatgen/analysis/chemenv/utils/tests/test_math_utils.py
Python
mit
5,110
[ "pymatgen" ]
b61d969685843b2a112cbd61b35eedbeb0bca13090d8ad4290965cc7bc8cbc4c
# Placeholder because util moved # Remove this in version 1.0 from __future__ import absolute_import import warnings with warnings.catch_warnings(): warnings.simplefilter('always', DeprecationWarning) warnings.warn(("util has moved to MDAnalysis.lib.util " "and will be removed from here in release 1.0"), DeprecationWarning) from ..lib.util import *
kain88-de/mdanalysis
package/MDAnalysis/core/util.py
Python
gpl-2.0
398
[ "MDAnalysis" ]
ca1387a1088ed4df3f16198a31402f63bf0df7835aa0a71d67ed73f8b9c1c392
# tronutils: Utilities library for a TronBot for the Google AI Challenge 2010 # Copyright (C) 2010 Corey Abshire # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os, sys, random, tron, dijkstra, brandes from collections import deque #_____________________________________________________________________ # Constants and Enumerations # # Dictionary for translating direction codes to names. DIR_NAMES = { tron.NORTH : 'NORTH' , tron.SOUTH : 'SOUTH' , tron.EAST : 'EAST' , tron.WEST : 'WEST' } # Dictionary for translating direction codes to abbreviations. DIR_ABBRS = dict(zip(DIR_NAMES.keys(), [s[0] for s in DIR_NAMES.values()])) #_____________________________________________________________________ # Board File I/O # def read_board(filename): "Read a board from a map file." f = open(filename) width,height = [int(s) for s in f.readline().strip().split()] board = [s[:width] for s in f.readlines()] f.close() return tron.Board(width, height, board) def write_board(board, filename): "Write the given board out to a file in the same format as the maps." f = open(filename, 'w') f.write('%d %d\n' % (board.width, board.height)) for line in board.board: f.write('%s\n' % line) f.close() def print_board(board): "Print the board to standard out in the same format as the maps." print board.width, board.height for line in board.board: print line def list_files(path): "Lists all the files in path, including path as the prefix." return [path + filename for filename in os.listdir(path)] #_____________________________________________________________________ # Board Manipulation and Querying # def valid_coords(board, (y,x)): "Are the coordinates within the board dimensions?" return 0 <= y < board.height \ and 0 <= x < board.width def tile_is_a(kind_of): "Return a tile matcher that checks if the tile at coords is kind_of." def fn(board, coords): if valid_coords(board, coords): return board[coords] == kind_of return fn def invert(predicate): "Create the logical inverse of the given predicate." return lambda *args: not predicate(*args) is_wall = tile_is_a(tron.WALL) is_floor = tile_is_a(tron.FLOOR) is_nonwall = invert(tile_is_a(tron.WALL)) def tiles_matching(board, predicate): "Collect all tiles on the board matching fn." tiles = [] for y in xrange(board.height): for x in xrange(board.width): if predicate(board, (y,x)): tiles.append((y,x)) return tiles def adjacent(board, coords, predicate): "Find all tiles on board adjacent to coords matching the predicate." return [a for a in board.adjacent(coords) if predicate(board, a)] def set_char(s, i, c): "Return a copy of s with the character at index i replaced with c." return s[:i] + c + s[i+1:] def apply_move(board, player, move): "Create a copy of board where move has been applied to player." lines = [line for line in board.board] # shallow copy (y1,x1) = board.find(player) (y2,x2) = board.rel(move, (y1,x1)) lines[y1] = set_char(lines[y1], x1, tron.WALL) lines[y2] = set_char(lines[y2], x2, player) return tron.Board(board.width, board.height, lines) def apply_move_fn(board, move_fn, player=tron.ME, max_len=sys.maxint): "Apply move_fn repeatedly to build a path on the board." path = [] while not is_game_over(board) and len(path) < max_len: move = move_fn(board) board = apply_move(board, player, move) coords = board.me() path.append(coords) return path #_____________________________________________________________________ # Board Game Logic # def is_game_over(board): "Determine whether this board is at an end game state." try: return not adjacent(board, board.me(), is_floor) \ or not adjacent(board, board.them(), is_floor) except KeyError: return True # one player disappears if they crash into each other def win_lose_or_draw(board, player): "Did player on board is a win (1), lose (-1), or draw (-0.5)." try: me = board.me() them = board.them() except KeyError: return -0.5 # one player disappears if they crash into each other me_stuck = not adjacent(board, me, is_floor) them_stuck = not adjacent(board, them, is_floor) if me_stuck and them_stuck: return -0.5 elif me_stuck or them_stuck: if player == tron.ME: return me_stuck and -1 or 1 else: return me_stuck and 1 or -1 else: return -0.5 def opponent(player): "Determine the opposite player." if player == tron.ME: return tron.THEM else: return tron.ME def move_made((y1,x1),(y2,x2)): "Return the move needed to get from a to b. Assumes adjacency." if y2 < y1: return tron.NORTH elif y2 > y1: return tron.SOUTH elif x2 > x1: return tron.EAST else : return tron.WEST def distance((y1, x1), (y2, x2)): "Compute the distance in moves between two tiles." return abs(x2 - x1) + abs(y2 - y1) #_____________________________________________________________________ # Board Analysis # def points_around(board, coords, predicate=is_floor): "All the open spaces around coords." # http://mail.python.org/pipermail/image-sig/2005-September/003559.html count = 0 edge = [coords] seen = set() while edge: newedge = [] for tile in edge: for adj in adjacent(board, tile, is_floor): if adj not in seen: count += 1 seen.add(adj) newedge.append(adj) edge = newedge return seen def count_around(board, coords, predicate=is_floor): "Count of all spaces around coords." return len(points_around(board, coords, predicate)) def anticipate(board, coords, pattern, num_moves): pos = coords i = 0; j = 0 while i < num_moves: pos = board.rel(pattern[j], pos) i += 1 j += 1 if j >= len(pattern): j = 0 return pos class Adjacent(): "Dictionary for adjacent tiles on a Tron board." def __init__(self, board, test): self.board = board self.test = test def __getitem__(self, coords): return adjacent(self.board, coords, self.test) def centrality(board): "Compute betweenness centrality for the floor of a Tron board." V = tiles_matching(board, is_floor) A = Adjacent(board, is_floor) return brandes.brandes(V, A) #_____________________________________________________________________ # Shortest Path # class DijkstraNeighbors(): "Adapter for Dijkstra algorithm implementation. Dict of neighbors." def __init__(self, neighbors): self.neighbors = neighbors def __iter__(self): return self.neighbors.__iter__() def __getitem__(self, coords): return 1 # all neighbors are 1 square away in Tron class DijkstraGraph(): "Adapter for Dijkstra algorithm implementation. Graph of tiles." def __init__(self, board, test): self.board = board self.test = test def __getitem__(self, coords): return DijkstraNeighbors(adjacent(self.board, coords, self.test)) def shortest_path(board, start, end, test=is_nonwall): "Return the shortest path between two points on the board." return dijkstra.shortestPath(DijkstraGraph(board, test), start, end) def moves_between(path): "Number of moves it would take for two players to traverse the path." # The path includes both the players tiles, so we just subtract # those 2 from the length of the path to get the moves between. return len(path) - 2 def dijkstra_map(board, start, end, test=is_nonwall): "Run Dijkstra's algorithm and return the distance map." d, p = dijkstra.Dijkstra(DijkstraGraph(board, test), start, end) return d #_____________________________________________________________________ # Depth First Search # def articulation_points(board, root): "Find the points that if were filled would separate the board." sys.setrecursionlimit(2500) V = set(); A = Adjacent(board, is_floor) L = {}; N = {}; c = [0]; P = {}; X = set() def f(v): V.add(v) c[0] += 1 L[v] = N[v] = c[0] for w in A[v]: if w not in V: P[w] = v f(w) if v != root and L[w] >= N[v]: X.add(v) L[v] = min(L[v], L[w]) else: if v in P and P[v] != w: L[v] = min(L[v], N[w]) f(root) return X def root_dfs(root, A, visited=None, preorder_process=lambda x: None): "Given a starting vertex, root, do a depth-first search." # see http://en.wikipedia.org/wiki/Depth-first_search python impl. to_visit = [] if visited is None: visited = set() to_visit.append(root) while len(to_visit) != 0: v = to_visit.pop() if v not in visited: visited.add(v) preorder_process(v) to_visit.extend(A[v]) def touching(t): "Determine which player directions are touching (connected by floor)." for c in t: p = set(p for p,d in c) if tron.ME in p and tron.THEM in p: return True return False def dfs_count_around(board): "Use DFS to count all the spaces on the board around either player." N = [tron.ME, tron.THEM] A = Adjacent(board, is_floor) P = [board.me(), board.them()] C = [{} for p in P] T = [] remaining = set(A[P[0]] + A[P[1]]) while remaining: u = remaining.pop() V = set([]) root_dfs(u, A, V) c = len(V) t = [] for i in range(len(P)): p = P[i] for a in A[p]: if a in V: d = move_made(p, a) C[i][d] = c t.append((N[i],d)) if a in remaining: remaining.remove(a) T.append(t) return C[0], C[1], T, touching(T) def dfs(V,A): # see CLRS (2nd) p. 541 WHITE, GRAY, BLACK = 0, 1, 2 init = lambda x: dict((u, x) for u in V) color, pi, d, f = [init(x) for x in (WHITE, None, 0, 0)] time = [0] depth = [0] max_depth = [0] n = [0] def visit(u): depth[0] += 1 n[0] += 1 max_depth[0] = max(max_depth[0], depth[0]) color[u] = GRAY time[0] += 1 d[u] = time[0] for v in A[u]: if color[v] == WHITE: pi[v] = u visit(v) f[u] = time[0] = time[0] + 1 depth[0] -= 1 for u in V: if color[u] == WHITE: visit(u) return d, f, pi, max_depth[0], n[0] def depth_first_search(board): "Run DFS on a Tron board. Return starts, finishes, preds, depth, numbering." V = tiles_matching(board, is_floor) A = Adjacent(board, is_floor) return dfs(V, A) def components(board, predicate=is_floor): "Return the components on board." A = Adjacent(board, predicate) Va = tiles_matching(board, predicate) d,f,pi = dfs(Va,A) Vb = f.keys() Vb.sort(key=lambda x: f[x]) g,h,pi = dfs(Vb,A) return g,h,pi #_____________________________________________________________________ # Environment Recognition # def find_walls(board): "Find all the walls (contingous series of wall tiles)." wall_tiles_remaining = set(tiles_matching(board, is_wall)) walls = [] while wall_tiles_remaining: wall = set() rest_of_wall = [wall_tiles_remaining.pop()] while rest_of_wall: another = rest_of_wall.pop() wall.add(another) adjacent_walls = adjacent(board, another, is_wall) for x in adjacent_walls: if x not in wall: rest_of_wall.append(x) if x in wall_tiles_remaining: wall_tiles_remaining.remove(x) walls.append(wall) return walls def heat_map(board, paths=20): "Identify hotspots by counting coordinate hits on random paths." points = [p for p in points_around(board, board.me())] heat = {} max_heat = 0 for v in points: heat[v] = 0 for i in xrange(paths): a = random.choice(points) b = random.choice(points) p = shortest_path(board, a, b, is_floor) for v in p: heat[v] += 1 if heat[v] > max_heat: max_heat = heat[v] return heat def distance_map(board, coords): "Find the distance to all floor tiles from coords." seen = set(coords) q = deque([coords]) d = { coords: 0 } while q: p = q.popleft() for a in adjacent(board, p, is_floor): if a not in seen: seen.add(a) q.append(a) d[a] = d[p] + 1 return d def same_distance(board, a, b): "Return all points equidistant from a and b." m = distance_map(board, a) n = distance_map(board, b) keys = set(m.keys()).intersection(set(n.keys())) same = [k for k in keys if m[k] == n[k]] same.sort(key=lambda k: m[k]) return same
jogo279/trobo
opponents/corey_abshire/tronutils.py
Python
bsd-2-clause
14,000
[ "VisIt" ]
ba579f8fa1cdffc0f7af739249f72ee10e073215017e723878533f1b3b8cfef6
import struct, sys, zlib, StringIO, time def get_block_bounds(filename): """Pre block starts start 0-indexted, end 1-indexted :param filename: filename :type filename: string :return: 0-index start and 1-index end :rtype: array of arrays with the [start end] of each block """ bs = [] with open(filename,'rb') as inf: while True: bytes1 = inf.read(12) if len(bytes1) < 12: break bs.append([inf.tell()-12]) gzip_id1,gzip_id2,compression_method,flag,mtime,xfl,osval,xlen=struct.unpack('<BBBBIBBH',bytes1) # ready to look in extra field bytes2 = inf.read(xlen) # all the extra field stuff s = StringIO.StringIO(bytes2) obsslen = 0 blocksize = 0 while True: v1 = s.read(4) if len(v1) == 0: break if len(v1) < 4: sys.stderr.write("lack header values ERROR\n") return False s1,s2,slen = struct.unpack('<BBH',v1) if s1 == 66 and s2 == 67: has_id = True obsslen = slen blocksize = struct.unpack('<H',s.read(slen))[0] else: v = s.read(slen) chunk = inf.read(blocksize-1-xlen-19) inf.read(9) bs[-1].append(inf.tell()) return bs def is_bgzf(filename): """Pre: filename to test if it is a bgzf format Post: True or False :param filename: :type filename: string :return: if its a bgzf :rtype: bool """ with open(filename,'rb') as inf: bytes1 = inf.read(12) if len(bytes1) != 12: sys.stderr.write("File length ERROR\n") return False try: gzip_id1,gzip_id2,compression_method,flag,mtime,xfl,osval,xlen=struct.unpack('<BBBBIBBH',bytes1) except: sys.stderr.write("Unpack ERROR\n") return False if gzip_id1 != 31: sys.stderr.write("ID1 ERROR\n") return False if gzip_id2 != 139: sys.stderr.write("ID2 ERROR\n") return False if compression_method != 8: sys.stderr.write("Compression Method ERROR\n") return False if flag != 4: sys.stderr.write("flg ERROR\n") return False if xlen < 6: sys.stderr.write("no extra fields ERROR\n") # ready to look in extra field bytes2 = inf.read(xlen) # all the extra field stuff if len(bytes2) != xlen: sys.stderr.write("file length ERROR\n") return False s = StringIO.StringIO(bytes2) has_id = False obsslen = 0 while True: v1 = s.read(4) if len(v1) == 0: break if len(v1) < 4: sys.stderr.write("lack header values ERROR\n") return False s1,s2,slen = struct.unpack('<BBH',v1) if s1 == 66 and s2 == 67: has_id = True obsslen = slen v = s.read(slen) if len(v) != slen: sys.stderr.write("extra field read ERROR\n") return False if not has_id or not obsslen == 2: sys.stderr.write("no proper extra header ERROR\n") return False return True class reader: """ Methods adapted from biopython's bgzf.py (optional) blockStart is the byte start location of a block (optional) innerStart says how far into a decompressed bock to start :param handle: :param blockStart: start from here (optional) :param innerStart: start from here (optional) :type handle: stream :type blockStart: int :type innerStart: int """ def __init__(self,handle,blockStart=None,innerStart=None): self.fh = handle self._pointer = 0 self._block_start = 0 if blockStart: self.fh.seek(blockStart) self._pointer = blockStart #holds block_size and data self._buffer = self._load_block() self._buffer_pos = 0 if innerStart: self._buffer_pos = innerStart def get_block_start(self): return self._block_start def get_inner_start(self): return self._buffer_pos def seek(self,blockStart,innerStart): self.fh.seek(blockStart) self._pointer = blockStart self._buffer_pos = 0 self._buffer = self._load_block() self._buffer_pos = innerStart def read(self,size): """read size bytes and return them""" done = 0 #number of bytes that have been read so far v = '' while True: if size-done < len(self._buffer['data']) - self._buffer_pos: v += self._buffer['data'][self._buffer_pos:self._buffer_pos+(size-done)] self._buffer_pos += (size-done) #self.pointer += size return v else: # we need more buffer vpart = self._buffer['data'][self._buffer_pos:] self._buffer = self._load_block() v += vpart self._buffer_pos = 0 if len(self._buffer['data'])==0: return v done += len(vpart) def _load_block(self): #pointer_start = self.fh.tell() if not self.fh: return {'block_size':0,'data':''} #self._block_start = self.fh.tell() self._block_start = self._pointer magic = self.fh.read(4) self._pointer += 4 if len(magic) < 4: #print 'end?' #print len(self.fh.read()) return {'block_size':0,'data':''} gzip_mod_time, gzip_extra_flags, gzip_os,extra_len = struct.unpack("<LBBH",self.fh.read(8)) self._pointer += 8 pos = 0 block_size = None #get block_size while pos < extra_len: subfield_id = self.fh.read(2) self._pointer += 2 subfield_len = struct.unpack("<H",self.fh.read(2))[0] self._pointer += 2 subfield_data = self.fh.read(subfield_len) self._pointer += subfield_len pos += subfield_len+4 if subfield_id == 'BC': block_size = struct.unpack("<H",subfield_data)[0]+1 #print 'blocksize :'+str(block_size) #block_size is determined deflate_size = block_size - 1 - extra_len - 19 #deflate_size = block_size - extra_len - 19 d = zlib.decompressobj(-15) data = d.decompress(self.fh.read(deflate_size))+d.flush() self._pointer += deflate_size expected_crc = self.fh.read(4) self._pointer += 4 expected_size = struct.unpack("<I",self.fh.read(4))[0] self._pointer += 4 #print len(data) #print expected_size if expected_size != len(data): sys.stderr.write("ERROR unexpected size\n") sys.exit() crc = zlib.crc32(data) if crc < 0: crc = struct.pack("<i",crc) else: crc = struct.pack("<I",crc) if crc != expected_crc: sys.stderr.write("ERROR crc fail\n") sys.exit() #print self._pointer-self._block_start #print 'bsize '+str(block_size) return {'block_size':block_size, 'data':data} class writer: """ Give it the handle of the stream to write to""" def __init__(self,handle): #self.path = filename self.fh = handle self.buffer_size = 64000 self.buffer = bytearray() def __del__(self): self.close() def write(self,bytes): self.buffer+=bytes if len(self.buffer) < self.buffer_size: return True while len(self.buffer) >= self.buffer_size: dobytes = self.buffer[0:self.buffer_size] self.buffer = self.buffer[self.buffer_size:] self._do_block(dobytes) return def close(self): if len(self.buffer) == 0: return True self._do_block(self.buffer) self.buffer = [] return True def _do_block(self,bytes): # now we can output this isize = len(bytes) s = StringIO.StringIO(bytes) d = zlib.compressobj(9,zlib.DEFLATED,-zlib.MAX_WBITS) data = d.compress(str(bytes))+d.flush() datasize = len(data) output = bytearray() output += struct.pack('<B',31) #IDentifier1 output += struct.pack('<B',139) #IDentifier2 output += struct.pack('<B',8) #Compression Method output += struct.pack('<B',4) #FLaGs output += struct.pack('<I',int(time.time())) #Modification TIME output += struct.pack('<B',0) #eXtra FLags output += struct.pack('<B',0x03) #Operating System = Unix output += struct.pack('<H',6) #eXtra LENgth # Subfields output += struct.pack('<B',66) #Subfield Identifier 1 output += struct.pack('<B',67) # Subfield Identifier 2 output += struct.pack('<H',2) #Subfield Length outsize = datasize+19+6 output += struct.pack('<H',outsize) #Total block size minus one output += data crc = zlib.crc32(str(bytes)) if crc < 0: output += struct.pack("<i",crc) else: output+= struct.pack("<I",crc) output += struct.pack("<I",isize) #isize self.fh.write(str(output))
jason-weirather/py-seq-tools
seqtools/format/bgzf.py
Python
apache-2.0
8,243
[ "Biopython" ]
dca01e1424f4078e8dc84cbb000f549247086590dc610295dfd031f833d1be84
#-*- coding: utf8 # Author: David C. Lambert [dcl -at- panix -dot- com] # Copyright(c) 2013 # License: Simple BSD """The :mod:`random_layer` module implements Random Layer transformers. Random layers are arrays of hidden unit activations that are random functions of input activation values (dot products for simple activation functions, distances from prototypes for radial basis functions). They are used in the implementation of Extreme Learning Machines (ELMs), but can be used as a general input mapping. """ from abc import ABCMeta, abstractmethod from math import sqrt import numpy as np import scipy.sparse as sp from scipy.spatial.distance import cdist, pdist, squareform from sklearn.metrics import pairwise_distances from sklearn.utils import check_random_state, check_array from sklearn.utils.extmath import safe_sparse_dot from sklearn.base import BaseEstimator, TransformerMixin __all__ = ['RandomLayer', 'MLPRandomLayer', 'RBFRandomLayer', 'GRBFRandomLayer', ] class BaseRandomLayer(BaseEstimator, TransformerMixin): """Abstract Base Class for random layers""" __metaclass__ = ABCMeta _internal_activation_funcs = dict() @classmethod def activation_func_names(cls): """Get list of internal activation function names""" return cls._internal_activation_funcs.keys() # take n_hidden and random_state, init components_ and # input_activations_ def __init__(self, n_hidden=20, random_state=0, activation_func=None, activation_args=None): self.n_hidden = n_hidden self.random_state = random_state self.activation_func = activation_func self.activation_args = activation_args self.components_ = dict() self.input_activations_ = None # keyword args for internally defined funcs self._extra_args = dict() @abstractmethod def _generate_components(self, X): """Generate components of hidden layer given X""" @abstractmethod def _compute_input_activations(self, X): """Compute input activations given X""" # compute input activations and pass them # through the hidden layer transfer functions # to compute the transform def _compute_hidden_activations(self, X): """Compute hidden activations given X""" self._compute_input_activations(X) acts = self.input_activations_ if (callable(self.activation_func)): args_dict = self.activation_args if (self.activation_args) else {} X_new = self.activation_func(acts, **args_dict) else: func_name = self.activation_func func = self._internal_activation_funcs[func_name] X_new = func(acts, **self._extra_args) return X_new # perform fit by generating random components based # on the input array def fit(self, X, y=None): """Generate a random hidden layer. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training set: only the shape is used to generate random component values for hidden units y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- self """ X = check_array(X) self._generate_components(X) return self # perform transformation by calling compute_hidden_activations # (which will normally call compute_input_activations first) def transform(self, X, y=None): """Generate the random hidden layer's activations given X as input. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data to transform y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- X_new : numpy array of shape [n_samples, n_components] """ X = check_array(X) if (self.components_ is None): raise ValueError('No components initialized') return self._compute_hidden_activations(X) class RandomLayer(BaseRandomLayer): """RandomLayer is a transformer that creates a feature mapping of the inputs that corresponds to a layer of hidden units with randomly generated components. The transformed values are a specified function of input activations that are a weighted combination of dot product (multilayer perceptron) and distance (rbf) activations: input_activation = alpha * mlp_activation + (1-alpha) * rbf_activation mlp_activation(x) = dot(x, weights) + bias rbf_activation(x) = rbf_width * ||x - center||/radius alpha and rbf_width are specified by the user weights and biases are taken from normal distribution of mean 0 and sd of 1 centers are taken uniformly from the bounding hyperrectangle of the inputs, and radii are max(||x-c||)/sqrt(n_centers*2) The input activation is transformed by a transfer function that defaults to numpy.tanh if not specified, but can be any callable that returns an array of the same shape as its argument (the input activation array, of shape [n_samples, n_hidden]). Functions provided are 'sine', 'tanh', 'tribas', 'inv_tribas', 'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric', or 'inv_multiquadric'. Parameters ---------- `n_hidden` : int, optional (default=20) Number of units to generate `alpha` : float, optional (default=0.5) Mixing coefficient for distance and dot product input activations: activation = alpha*mlp_activation + (1-alpha)*rbf_width*rbf_activation `rbf_width` : float, optional (default=1.0) multiplier on rbf_activation `user_components`: dictionary, optional (default=None) dictionary containing values for components that woud otherwise be randomly generated. Valid key/value pairs are as follows: 'radii' : array-like of shape [n_hidden] 'centers': array-like of shape [n_hidden, n_features] 'biases' : array-like of shape [n_hidden] 'weights': array-like of shape [n_features, n_hidden] `activation_func` : {callable, string} optional (default='tanh') Function used to transform input activation It must be one of 'tanh', 'sine', 'tribas', 'inv_tribas', 'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric', 'inv_multiquadric' or a callable. If None is given, 'tanh' will be used. If a callable is given, it will be used to compute the activations. `activation_args` : dictionary, optional (default=None) Supplies keyword arguments for a callable activation_func `random_state` : int, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the hidden unit weights at fit time. Attributes ---------- `input_activations_` : numpy array of shape [n_samples, n_hidden] Array containing dot(x, hidden_weights) + bias for all samples `components_` : dictionary containing two keys: `bias_weights_` : numpy array of shape [n_hidden] `hidden_weights_` : numpy array of shape [n_features, n_hidden] See Also -------- """ # triangular activation function _tribas = (lambda x: np.clip(1.0 - np.fabs(x), 0.0, 1.0)) # inverse triangular activation function _inv_tribas = (lambda x: np.clip(np.fabs(x), 0.0, 1.0)) # sigmoid activation function _sigmoid = (lambda x: 1.0/(1.0 + np.exp(-x))) # hard limit activation function _hardlim = (lambda x: np.array(x > 0.0, dtype=float)) _softlim = (lambda x: np.clip(x, 0.0, 1.0)) # gaussian RBF _gaussian = (lambda x: np.exp(-pow(x, 2.0))) # multiquadric RBF _multiquadric = (lambda x: np.sqrt(1.0 + pow(x, 2.0))) # inverse multiquadric RBF _inv_multiquadric = (lambda x: 1.0/(np.sqrt(1.0 + pow(x, 2.0)))) # internal activation function table _internal_activation_funcs = {'sine': np.sin, 'tanh': np.tanh, 'tribas': _tribas, 'inv_tribas': _inv_tribas, 'sigmoid': _sigmoid, 'softlim': _softlim, 'hardlim': _hardlim, 'gaussian': _gaussian, 'multiquadric': _multiquadric, 'inv_multiquadric': _inv_multiquadric, } def __init__(self, n_hidden=20, alpha=0.5, random_state=None, activation_func='tanh', activation_args=None, user_components=None, rbf_width=1.0): super(RandomLayer, self).__init__(n_hidden=n_hidden, random_state=random_state, activation_func=activation_func, activation_args=activation_args) if (isinstance(self.activation_func, str)): func_names = self._internal_activation_funcs.keys() if (self.activation_func not in func_names): msg = "unknown activation function '%s'" % self.activation_func raise ValueError(msg) self.alpha = alpha self.rbf_width = rbf_width self.user_components = user_components self._use_mlp_input = (self.alpha != 0.0) self._use_rbf_input = (self.alpha != 1.0) def _get_user_components(self, key): """Look for given user component""" try: return self.user_components[key] except (TypeError, KeyError): return None def _compute_radii(self): """Generate RBF radii""" # use supplied radii if present radii = self._get_user_components('radii') # compute radii if (radii is None): centers = self.components_['centers'] n_centers = centers.shape[0] max_dist = np.max(pairwise_distances(centers)) radii = np.ones(n_centers) * max_dist/sqrt(2.0 * n_centers) self.components_['radii'] = radii def _compute_centers(self, X, sparse, rs): """Generate RBF centers""" # use supplied centers if present centers = self._get_user_components('centers') # use points taken uniformly from the bounding # hyperrectangle if (centers is None): n_features = X.shape[1] if (sparse): fxr = xrange(n_features) cols = [X.getcol(i) for i in fxr] min_dtype = X.dtype.type(1.0e10) sp_min = lambda col: np.minimum(min_dtype, np.min(col.data)) min_Xs = np.array(map(sp_min, cols)) max_dtype = X.dtype.type(-1.0e10) sp_max = lambda col: np.maximum(max_dtype, np.max(col.data)) max_Xs = np.array(map(sp_max, cols)) else: min_Xs = X.min(axis=0) max_Xs = X.max(axis=0) spans = max_Xs - min_Xs ctrs_size = (self.n_hidden, n_features) centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size) self.components_['centers'] = centers def _compute_biases(self, rs): """Generate MLP biases""" # use supplied biases if present biases = self._get_user_components('biases') if (biases is None): b_size = self.n_hidden biases = rs.normal(size=b_size) self.components_['biases'] = biases def _compute_weights(self, X, rs): """Generate MLP weights""" # use supplied weights if present weights = self._get_user_components('weights') if (weights is None): n_features = X.shape[1] hw_size = (n_features, self.n_hidden) weights = rs.normal(size=hw_size) self.components_['weights'] = weights def _generate_components(self, X): """Generate components of hidden layer given X""" rs = check_random_state(self.random_state) if (self._use_mlp_input): self._compute_biases(rs) self._compute_weights(X, rs) if (self._use_rbf_input): self._compute_centers(X, sp.issparse(X), rs) self._compute_radii() def _compute_input_activations(self, X): """Compute input activations given X""" n_samples = X.shape[0] mlp_acts = np.zeros((n_samples, self.n_hidden)) if (self._use_mlp_input): b = self.components_['biases'] w = self.components_['weights'] mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b) rbf_acts = np.zeros((n_samples, self.n_hidden)) if (self._use_rbf_input): radii = self.components_['radii'] centers = self.components_['centers'] scale = self.rbf_width * (1.0 - self.alpha) rbf_acts = scale * cdist(X, centers)/radii self.input_activations_ = mlp_acts + rbf_acts class MLPRandomLayer(RandomLayer): """Wrapper for RandomLayer with alpha (mixing coefficient) set to 1.0 for MLP activations only""" def __init__(self, n_hidden=20, random_state=None, activation_func='tanh', activation_args=None, weights=None, biases=None): user_components = {'weights': weights, 'biases': biases} super(MLPRandomLayer, self).__init__(n_hidden=n_hidden, random_state=random_state, activation_func=activation_func, activation_args=activation_args, user_components=user_components, alpha=1.0) class RBFRandomLayer(RandomLayer): """Wrapper for RandomLayer with alpha (mixing coefficient) set to 0.0 for RBF activations only""" def __init__(self, n_hidden=20, random_state=None, activation_func='gaussian', activation_args=None, centers=None, radii=None, rbf_width=1.0): user_components = {'centers': centers, 'radii': radii} super(RBFRandomLayer, self).__init__(n_hidden=n_hidden, random_state=random_state, activation_func=activation_func, activation_args=activation_args, user_components=user_components, rbf_width=rbf_width, alpha=0.0) class GRBFRandomLayer(RBFRandomLayer): """Random Generalized RBF Hidden Layer transformer Creates a layer of radial basis function units where: f(a), s.t. a = ||x-c||/r with c the unit center and f() is exp(-gamma * a^tau) where tau and r are computed based on [1] Parameters ---------- `n_hidden` : int, optional (default=20) Number of units to generate, ignored if centers are provided `grbf_lambda` : float, optional (default=0.05) GRBF shape parameter `gamma` : {int, float} optional (default=1.0) Width multiplier for GRBF distance argument `centers` : array of shape (n_hidden, n_features), optional (default=None) If provided, overrides internal computation of the centers `radii` : array of shape (n_hidden), optional (default=None) If provided, overrides internal computation of the radii `use_exemplars` : bool, optional (default=False) If True, uses random examples from the input to determine the RBF centers, ignored if centers are provided `random_state` : int or RandomState instance, optional (default=None) Control the pseudo random number generator used to generate the centers at fit time, ignored if centers are provided Attributes ---------- `components_` : dictionary containing two keys: `radii_` : numpy array of shape [n_hidden] `centers_` : numpy array of shape [n_hidden, n_features] `input_activations_` : numpy array of shape [n_samples, n_hidden] Array containing ||x-c||/r for all samples See Also -------- ELMRegressor, ELMClassifier, SimpleELMRegressor, SimpleELMClassifier, SimpleRandomLayer References ---------- .. [1] Fernandez-Navarro, et al, "MELM-GRBF: a modified version of the extreme learning machine for generalized radial basis function neural networks", Neurocomputing 74 (2011), 2502-2510 """ # def _grbf(acts, taus): # """GRBF activation function""" # return np.exp(np.exp(-pow(acts, taus))) _grbf = (lambda acts, taus: np.exp(np.exp(-pow(acts, taus)))) _internal_activation_funcs = {'grbf': _grbf} def __init__(self, n_hidden=20, grbf_lambda=0.001, centers=None, radii=None, random_state=None): super(GRBFRandomLayer, self).__init__(n_hidden=n_hidden, activation_func='grbf', centers=centers, radii=radii, random_state=random_state) self.grbf_lambda = grbf_lambda self.dN_vals = None self.dF_vals = None self.tau_vals = None # get centers from superclass, then calculate tau_vals # according to ref [1] def _compute_centers(self, X, sparse, rs): """Generate centers, then compute tau, dF and dN vals""" super(GRBFRandomLayer, self)._compute_centers(X, sparse, rs) centers = self.components_['centers'] sorted_distances = np.sort(squareform(pdist(centers))) self.dF_vals = sorted_distances[:, -1] self.dN_vals = sorted_distances[:, 1]/100.0 #self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape) tauNum = np.log(np.log(self.grbf_lambda) / np.log(1.0 - self.grbf_lambda)) tauDenom = np.log(self.dF_vals/self.dN_vals) self.tau_vals = tauNum/tauDenom self._extra_args['taus'] = self.tau_vals # get radii according to ref [1] def _compute_radii(self): """Generate radii""" denom = pow(-np.log(self.grbf_lambda), 1.0/self.tau_vals) self.components_['radii'] = self.dF_vals/denom
holandajunior/ExtremeLearningMachine
Python-ELM/src/random_layer.py
Python
mit
18,813
[ "Gaussian" ]
8ab2cc84500d1f94cdc1b156e880fc52e5446d6275a20da99c17b4e8dc257b2b
""" Support for generating the options for a SelectToolParameter dynamically (based on the values of other parameters or other aspects of the current state) """ import operator, sys, os, logging import basic, validation from galaxy.util import string_as_bool log = logging.getLogger(__name__) class Filter( object ): """ A filter takes the current options list and modifies it. """ @classmethod def from_element( cls, d_option, elem ): """Loads the proper filter by the type attribute of elem""" type = elem.get( 'type', None ) assert type is not None, "Required 'type' attribute missing from filter" return filter_types[type.strip()]( d_option, elem ) def __init__( self, d_option, elem ): self.dynamic_option = d_option self.elem = elem def get_dependency_name( self ): """Returns the name of any depedencies, otherwise None""" return None def filter_options( self, options, trans, other_values ): """Returns a list of options after the filter is applied""" raise TypeError( "Abstract Method" ) class StaticValueFilter( Filter ): """ Filters a list of options on a column by a static value. Type: static_value Required Attributes: value: static value to compare to column: column in options to compare with Optional Attributes: keep: Keep columns matching value (True) Discard columns matching value (False) """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.value = elem.get( "value", None ) assert self.value is not None, "Required 'value' attribute missing from filter" self.column = elem.get( "column", None ) assert self.column is not None, "Required 'column' attribute missing from filter, when loading from file" self.column = int ( self.column ) self.keep = string_as_bool( elem.get( "keep", 'True' ) ) def filter_options( self, options, trans, other_values ): rval = [] for fields in options: if ( self.keep and fields[self.column] == self.value ) or ( not self.keep and fields[self.column] != self.value ): rval.append( fields ) return rval class DataMetaFilter( Filter ): """ Filters a list of options on a column by a dataset metadata value. Type: data_meta When no 'from_' source has been specified in the <options> tag, this will populate the options list with (meta_value, meta_value, False). Otherwise, options which do not match the metadata value in the column are discarded. Required Attributes: ref: Name of input dataset key: Metadata key to use for comparison column: column in options to compare with (not required when not associated with input options) Optional Attributes: multiple: Option values are multiple, split column by separator (True) separator: When multiple split by this (,) """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.ref_name = elem.get( "ref", None ) assert self.ref_name is not None, "Required 'ref' attribute missing from filter" d_option.has_dataset_dependencies = True self.key = elem.get( "key", None ) assert self.key is not None, "Required 'key' attribute missing from filter" self.column = elem.get( "column", None ) if self.column is None: assert self.dynamic_option.file_fields is None and self.dynamic_option.dataset_ref_name is None, "Required 'column' attribute missing from filter, when loading from file" else: self.column = int ( self.column ) self.multiple = string_as_bool( elem.get( "multiple", "False" ) ) self.separator = elem.get( "separator", "," ) def get_dependency_name( self ): return self.ref_name def filter_options( self, options, trans, other_values ): def compare_meta_value( file_value, dataset_value ): if isinstance( dataset_value, list ): if self.multiple: file_value = file_value.split( self.separator ) for value in dataset_value: if value not in file_value: return False return True return file_value in dataset_value if self.multiple: return dataset_value in file_value.split( self.separator ) return file_value == dataset_value assert self.ref_name in other_values or ( trans is not None and trans.workflow_building_mode), "Required dependency '%s' not found in incoming values" % self.ref_name ref = other_values.get( self.ref_name, None ) if not isinstance( ref, self.dynamic_option.tool_param.tool.app.model.HistoryDatasetAssociation ): return [] #not a valid dataset meta_value = ref.metadata.get( self.key, None ) if meta_value is None: #assert meta_value is not None, "Required metadata value '%s' not found in referenced dataset" % self.key return [ ( disp_name, basic.UnvalidatedValue( optval ), selected ) for disp_name, optval, selected in options ] if self.column is not None: rval = [] for fields in options: if compare_meta_value( fields[self.column], meta_value ): rval.append( fields ) return rval else: if not isinstance( meta_value, list ): meta_value = [meta_value] for value in meta_value: options.append( ( value, value, False ) ) return options class ParamValueFilter( Filter ): """ Filters a list of options on a column by the value of another input. Type: param_value Required Attributes: ref: Name of input value column: column in options to compare with Optional Attributes: keep: Keep columns matching value (True) Discard columns matching value (False) """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.ref_name = elem.get( "ref", None ) assert self.ref_name is not None, "Required 'ref' attribute missing from filter" self.column = elem.get( "column", None ) assert self.column is not None, "Required 'column' attribute missing from filter" self.column = int ( self.column ) self.keep = string_as_bool( elem.get( "keep", 'True' ) ) def get_dependency_name( self ): return self.ref_name def filter_options( self, options, trans, other_values ): if trans is not None and trans.workflow_building_mode: return [] assert self.ref_name in other_values, "Required dependency '%s' not found in incoming values" % self.ref_name ref = str( other_values.get( self.ref_name, None ) ) rval = [] for fields in options: if ( self.keep and fields[self.column] == ref ) or ( not self.keep and fields[self.column] != ref ): rval.append( fields ) return rval class UniqueValueFilter( Filter ): """ Filters a list of options to be unique by a column value. Type: unique_value Required Attributes: column: column in options to compare with """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.column = elem.get( "column", None ) assert self.column is not None, "Required 'column' attribute missing from filter" self.column = int ( self.column ) def get_dependency_name( self ): return self.dynamic_option.dataset_ref_name def filter_options( self, options, trans, other_values ): rval = [] skip_list = [] for fields in options: if fields[self.column] not in skip_list: rval.append( fields ) skip_list.append( fields[self.column] ) return rval class MultipleSplitterFilter( Filter ): """ Turns a single line of options into multiple lines, by splitting a column and creating a line for each item. Type: multiple_splitter Required Attributes: column: column in options to compare with Optional Attributes: separator: Split column by this (,) """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.separator = elem.get( "separator", "," ) self.columns = elem.get( "column", None ) assert self.columns is not None, "Required 'columns' attribute missing from filter" self.columns = [ int ( column ) for column in self.columns.split( "," ) ] def filter_options( self, options, trans, other_values ): rval = [] for fields in options: for column in self.columns: for field in fields[column].split( self.separator ): rval.append( fields[0:column] + [field] + fields[column:] ) return rval class AdditionalValueFilter( Filter ): """ Adds a single static value to an options list. Type: add_value Required Attributes: value: value to appear in select list Optional Attributes: name: Display name to appear in select list (value) index: Index of option list to add value (APPEND) """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.value = elem.get( "value", None ) assert self.value is not None, "Required 'value' attribute missing from filter" self.name = elem.get( "name", None ) if self.name is None: self.name = self.value self.index = elem.get( "index", None ) if self.index is not None: self.index = int( self.index ) def filter_options( self, options, trans, other_values ): rval = list( options ) add_value = [] for i in range( self.dynamic_option.largest_index + 1 ): add_value.append( "" ) add_value[self.dynamic_option.columns['value']] = self.value add_value[self.dynamic_option.columns['name']] = self.name if self.index is not None: rval.insert( self.index, add_value ) else: rval.append( add_value ) return rval class RemoveValueFilter( Filter ): """ Removes a value from an options list. Type: remove_value Required Attributes: value: value to remove from select list or ref: param to refer to or meta_ref: dataset to refer to key: metadata key to compare to """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.value = elem.get( "value", None ) self.ref_name = elem.get( "ref", None ) self.meta_ref = elem.get( "meta_ref", None ) self.metadata_key = elem.get( "key", None ) assert self.value is not None or ( ( self.ref_name is not None or self.meta_ref is not None )and self.metadata_key is not None ), ValueError( "Required 'value' or 'ref' and 'key' attributes missing from filter" ) self.multiple = string_as_bool( elem.get( "multiple", "False" ) ) self.separator = elem.get( "separator", "," ) def filter_options( self, options, trans, other_values ): if trans is not None and trans.workflow_building_mode: return options assert self.value is not None or ( self.ref_name is not None and self.ref_name in other_values ) or (self.meta_ref is not None and self.meta_ref in other_values ) or ( trans is not None and trans.workflow_building_mode), Exception( "Required dependency '%s' or '%s' not found in incoming values" % ( self.ref_name, self.meta_ref ) ) def compare_value( option_value, filter_value ): if isinstance( filter_value, list ): if self.multiple: option_value = option_value.split( self.separator ) for value in filter_value: if value not in filter_value: return False return True return option_value in filter_value if self.multiple: return filter_value in option_value.split( self.separator ) return option_value == filter_value value = self.value if value is None: if self.ref_name is not None: value = other_values.get( self.ref_name ) else: data_ref = other_values.get( self.meta_ref ) if not isinstance( data_ref, self.dynamic_option.tool_param.tool.app.model.HistoryDatasetAssociation ): return options #cannot modify options value = data_ref.metadata.get( self.metadata_key, None ) return [ ( disp_name, optval, selected ) for disp_name, optval, selected in options if not compare_value( optval, value ) ] class SortByColumnFilter( Filter ): """ Sorts an options list by a column Type: sort_by Required Attributes: column: column to sort by """ def __init__( self, d_option, elem ): Filter.__init__( self, d_option, elem ) self.column = elem.get( "column", None ) assert self.column is not None, "Required 'column' attribute missing from filter" self.column = int( self.column ) def filter_options( self, options, trans, other_values ): rval = [] for i, fields in enumerate( options ): for j in range( 0, len( rval ) ): if fields[self.column] < rval[j][self.column]: rval.insert( j, fields ) break else: rval.append( fields ) return rval filter_types = dict( data_meta = DataMetaFilter, param_value = ParamValueFilter, static_value = StaticValueFilter, unique_value = UniqueValueFilter, multiple_splitter = MultipleSplitterFilter, add_value = AdditionalValueFilter, remove_value = RemoveValueFilter, sort_by = SortByColumnFilter ) class DynamicOptions( object ): """Handles dynamically generated SelectToolParameter options""" def __init__( self, elem, tool_param ): def load_from_parameter( from_parameter, transform_lines = None ): obj = self.tool_param for field in from_parameter.split( '.' ): obj = getattr( obj, field ) if transform_lines: obj = eval( transform_lines ) return self.parse_file_fields( obj ) self.tool_param = tool_param self.columns = {} self.filters = [] self.file_fields = None self.largest_index = 0 self.dataset_ref_name = None # True if the options generation depends on one or more other parameters # that are dataset inputs self.has_dataset_dependencies = False self.validators = [] self.converter_safe = True # Parse the <options> tag self.separator = elem.get( 'separator', '\t' ) self.line_startswith = elem.get( 'startswith', None ) data_file = elem.get( 'from_file', None ) dataset_file = elem.get( 'from_dataset', None ) from_parameter = elem.get( 'from_parameter', None ) if data_file is not None or dataset_file is not None or from_parameter is not None: for column_elem in elem.findall( 'column' ): name = column_elem.get( 'name', None ) assert name is not None, "Required 'name' attribute missing from column def" index = column_elem.get( 'index', None ) assert index is not None, "Required 'index' attribute missing from column def" index = int( index ) self.columns[name] = index if index > self.largest_index: self.largest_index = index assert 'value' in self.columns, "Required 'value' column missing from column def" if 'name' not in self.columns: self.columns['name'] = self.columns['value'] if data_file is not None: data_file = data_file.strip() if not os.path.isabs( data_file ): data_file = os.path.join( self.tool_param.tool.app.config.tool_data_path, data_file ) self.file_fields = self.parse_file_fields( open( data_file ) ) elif dataset_file is not None: self.dataset_ref_name = dataset_file self.has_dataset_dependencies = True self.converter_safe = False elif from_parameter is not None: transform_lines = elem.get( 'transform_lines', None ) self.file_fields = list( load_from_parameter( from_parameter, transform_lines ) ) # Load filters for filter_elem in elem.findall( 'filter' ): self.filters.append( Filter.from_element( self, filter_elem ) ) # Load Validators for validator in elem.findall( 'validator' ): self.validators.append( validation.Validator.from_element( self.tool_param, validator ) ) def parse_file_fields( self, reader ): rval = [] for line in reader: if line.startswith( '#' ) or ( self.line_startswith and not line.startswith( self.line_startswith ) ): continue line = line.rstrip( "\n\r" ) if line: fields = line.split( self.separator ) if self.largest_index < len( fields ): rval.append( fields ) return rval def get_dependency_names( self ): """ Return the names of parameters these options depend on -- both data and other param types. """ rval = [] if self.dataset_ref_name: rval.append( self.dataset_ref_name ) for filter in self.filters: depend = filter.get_dependency_name() if depend: rval.append( depend ) return rval def get_fields( self, trans, other_values ): if self.dataset_ref_name: dataset = other_values.get( self.dataset_ref_name, None ) assert dataset is not None, "Required dataset '%s' missing from input" % self.dataset_ref_name if not dataset: return [] #no valid dataset in history options = self.parse_file_fields( open( dataset.file_name ) ) else: options = list( self.file_fields ) for filter in self.filters: options = filter.filter_options( options, trans, other_values ) return options def get_options( self, trans, other_values ): rval = [] if self.file_fields is not None or self.dataset_ref_name is not None: options = self.get_fields( trans, other_values ) for fields in options: rval.append( ( fields[self.columns['name']], fields[self.columns['value']], False ) ) else: for filter in self.filters: rval = filter.filter_options( rval, trans, other_values ) return rval
volpino/Yeps-EURAC
lib/galaxy/tools/parameters/dynamic_options.py
Python
mit
19,570
[ "Galaxy" ]
7888874ff11e5b8840f11778224dfe608aaa1b6dedb0282d51d066ebaf288736
# Copyright (c) 2015, Henrique Miranda # All rights reserved. # # This file is part of the yambopy project # from yambopy import * from yambopy.plot import * import os class YamboBSEAbsorptionSpectra(YamboSaveDB): """ Create a file with information about the excitons from Yambo files """ def __init__(self,job_string,path='.'): """ Parameters: job_string - the job_string used for yambo. yambo -J <job_string> path - the folder where the yambo run was made """ #look for the save folder self.save=path+'/SAVE' if not os.path.isdir(self.save): raise ValueError('SAVE folder not found in %s'%self.save) YamboSaveDB.__init__(self,save=self.save) self.job_string = job_string self.data = {"excitons":[], "lattice": self.lat, "atypes": self.atomic_numbers, "atoms": self.atomic_positions} self.atoms = None self.excitons = None #use YamboOut to read the absorption spectra self.path = path #try to find o-* files in path, if not use path/job_string paths = [path, "%s/%s"%(path,job_string)] for p in paths: y = YamboOut(p,save_folder=path) absorptionspectra = y.get_data(('eps','diago')) #if we read the files then continue if absorptionspectra != {}: break #trap the errors here if absorptionspectra == {}: raise ValueError('Could not find the o-*diago*eps files in %s. Make sure you diagonalized the BSE hamiltonian in yambo.'%paths) #we just use one of them key = list(absorptionspectra)[0] for key,value in absorptionspectra[key].items(): self.data[key] = value def get_excitons(self,min_intensity=0.1,max_energy=4,Degen_Step=0.0): """ Obtain the excitons using ypp Parameters: min_intensity - Only plot excitons with intensity larger than this value (default: 0.1) max_energy - Only plot excitons with energy below this value (default: 4 eV) Degen_Step - Only plot excitons whose energy is different by more that this value (default: 0.0) """ filename = "%s/o-%s.exc_E_sorted"%(self.path,self.job_string) if not os.path.isfile(filename): os.system("cd %s; ypp -e s -J %s"%(self.path,self.job_string)) self.excitons = np.loadtxt(filename) #filter with energy self.excitons = self.excitons[self.excitons[:,0]<max_energy] #filter with intensity self.excitons = self.excitons[self.excitons[:,1]>min_intensity] #filter with degen if Degen_Step: #create a list with differences in energy new_excitons = [] prev_exc = 0 for exc in self.excitons: e,i,index = exc #if the energy of this exciton is too diferent then we add it to the list if abs(e-prev_exc)<Degen_Step: new_excitons[-1][1] += i continue new_excitons.append([e,i,index]) intensity = 0 prev_exc = e self.excitons = np.array(new_excitons) #create dictionary with excitons excitons = self.data["excitons"] for e,intensity,i in self.excitons: exciton = {"energy": e, "intensity": intensity, "index": i} excitons.append(exciton) return self.excitons def get_wavefunctions(self, FFTGvecs=30, Cells=[1,1,1], Hole=[0,0,0], Direction="123", Format="x", Degen_Step=0.0100, MinWeight=1e-8, repx=range(-1,2), repy=range(-1,2), repz=range(-1,2), wf=False): """ Collect all the wavefuncitons with an intensity larger than self.threshold Parameters: FFTGvecs - Number of FFTGvecs. Related to how accurate the representation is Cells - Number of cells to plot in real space Hole - Define the hole position in cartesian coordinates Direction - Choose the directions to plot along Format - Choose the format to plot in. Can be: x for xcrysden or g for gnuplot (default: 'x' for xcrysden) Degen_Step - Threshold to merge degenerate states. If the difference in energy between the states is smaller than this value their wavefunctions will be plotted together repx - Number or repetitions along the x direction repy - Number or repetitions along the x direction repz - Number or repetitions along the x direction wf - Get the wavefuncitons in real space or not (default: False) """ if self.excitons is None: raise ValueError( "Excitons not present. Run YamboBSEAbsorptionSpectra.get_excitons() first" ) self.data["excitons"] = [] #create a ypp file using YamboIn for reading the wavefunction yppwf = YamboIn('ypp -e w -V all',filename='ypp.in',folder=self.path) yppwf['Format'] = Format yppwf['Direction'] = Direction yppwf['FFTGvecs'] = [FFTGvecs,'Ry'] yppwf['Degen_Step'] = [Degen_Step,'eV'] yppwf['Hole'] = [Hole,''] yppwf['Cells'] = [Cells,''] #create a ypp file using YamboIn for reading the excitonic weights yppew = YamboIn('ypp -e a',filename='ypp.in',folder=self.path) yppew['MinWeight'] = MinWeight yppew['Degen_Step'] = Degen_Step keywords = ["lattice", "atoms", "atypes", "nx", "ny", "nz"] for exciton in self.excitons: #get info e,intensity,i = exciton if wf: ############################################################## # Excitonic Wavefunction ############################################################## #create ypp input for the wavefunction file and run yppwf["States"] = "%d - %d"%(i,i) yppwf.write("%s/yppwf_%d.in"%(self.path,i)) filename = "o-%s.exc_%dd_%d%s"%(self.job_string,len(Direction),i,{"g":"","x":".xsf"}[Format] ) print filename if not os.path.isfile(filename): os.system("cd %s; ypp -F yppwf_%d.in -J %s"%(self.path,i,self.job_string)) #read the excitonic wavefunction if Format == 'x': ewf = YamboExcitonWaveFunctionXSF() else: ewf = YamboExcitonWaveFunctionGnuplot() ewf.read_file("%s/%s"%(self.path,filename)) data = ewf.get_data() for word in keywords: if word in data: self.data[word] = data[word] #calculate center of mass of atoms lat = np.array(data["lattice"]) center_atom = np.zeros([3]) for atype,x,y,z in data["atoms"]: center_atom += np.array([x,y,z]) center_atom /= len(data["atoms"]) center_atom_red = car_red([center_atom],lat)[0] #shift wavefunctions grid to center of mass nx = data['nx'] ny = data['ny'] nz = data['nz'] #make center_atom_red commensurate with fft center_atom_red = center_atom_red * np.array([nx,ny,nz]) center_atom_red_int = [int(x) for x in center_atom_red] displacement = np.array([nx,ny,nz])/2-center_atom_red_int dx,dy,dz = displacement # shift grid # http://www.xcrysden.org/doc/XSF.html dg = np.array(data["datagrid"]).reshape([nz,ny,nx]) dg = np.roll(dg,dx,axis=2) dg = np.roll(dg,dy,axis=1) dg = np.roll(dg,dz,axis=0) data["datagrid"] = dg.flatten() #shift atoms atoms = [] dx,dy,dz = red_car([displacement/np.array([nx,ny,nz],dtype=float)],lat)[0] for atype,x,y,z in data["atoms"]: atoms.append([atype,x+dx,y+dy,z+dz]) self.data["atoms"] = atoms ############################################################## # Excitonic Amplitudes ############################################################## #create ypp input for the amplitudes file and run yppew["States"] = "%d - %d"%(i,i) yppew.write("%s/yppew_%d.in"%(self.path,i)) filename = "%s/o-%s.exc_weights_at_%d"%(self.path,self.job_string,i) if not os.path.isfile(filename): os.system("cd %s; ypp -F yppew_%d.in -J %s"%(self.path,i,self.job_string)) #read the excitonic weigths ew = YamboExcitonWeight(filename,save=self.save,path=self.path) qpts, weights = ew.calc_kpts_weights(repx=repx,repy=repy,repz=repz) ############ # Save data ############ exciton = {"energy": e, "intensity": intensity, "weights": weights, "qpts": qpts, "index": i} if wf: exciton["hole"] = Hole exciton["datagrid"] = np.array(data["datagrid"]) self.data["excitons"].append(exciton) def write_json(self,filename="absorptionspectra"): """ Write a jsonfile with the absorption spectra and the wavefunctions of certain excitons """ print "writing json file...", JsonDumper(self.data,"%s.json"%filename) print "done!"
palful/yambopy
yambopy/bse/bse_absorption.py
Python
bsd-3-clause
10,079
[ "Yambo" ]
05ad07cfbd62841ee2937f566884c1982b13702148cee9cbf1ee13b48b7e3ece
#!/usr/bin/env python ## ## See COPYING file distributed along with the ncanda-data-integration package ## for the copyright and license terms ## """ XNAT Sessions Report Check for valid scanning sessions and time windows by first caching all the XNAT session XML files and then parsing these files for necessary info. Note that to create the XML file cache you need to run with --update Example ======= - When running for the first time run ./xnat_sessions_report.py --update so that the cach (located at experimentsdir) is created - Update the cache (stored in experimentsdir) and generate the baseline report ./xnat_sessions_report.py --update --baseline - Use the existing cache to extract 10 in the followup window ./xnat_sessions_report.py --num_extract 10 --min 180 --max 540 """ from __future__ import print_function import os import sys import pandas as pd import sibispy from sibispy import sibislogger as slog import xnat_extractor as xe verbose = None def get_scan_type_pairs(modality): """ Get a dictionary of series description based on modality :param modality: str (anatomy, diffusion, functional) :return: dict """ scan_type_pairs = dict(scan1=None, scan2=None) if modality == 'anatomy': t1_scan_types = ['ncanda-t1spgr-v1', 'ncanda-mprage-v1'] t2_scan_types = ['ncanda-t2fse-v1'] scan_type_pairs.update(scan1=t1_scan_types, scan2=t2_scan_types) elif modality == 'diffusion': print("Has to be updated as check does not include dti30b400 - look in redcap/export_measures") sys.exit() pepolar = ['ncanda-dti6b500pepolar-v1'] dwi = ['ncanda-dti60b1000-v1'] scan_type_pairs.update(scan1=pepolar, scan2=dwi) elif modality == 'functional': fmri = ['ncanda-rsfmri-v1'] fieldmap = ['ncanda-grefieldmap-v1'] scan_type_pairs.update(scan1=fmri, scan2=fieldmap) return scan_type_pairs def main(args=None): # TODO: Handle when T1 and T2 are in separate session (i.e., rescan) # Upload all data experimentsdir if args.update: slog.init_log(False, False,'xnat_sesions_report', 'xnat_sesions_report',None) session = sibispy.Session() session.configure() if not session.configure() : if verbose: print("Error: session configure file was not found") sys.exit() server = session.connect_server('xnat_http', True) if not server: print("Error: could not connect to xnat server!") sys.exit() xe.extract_experiment_xml(session,args.experimentsdir, args.num_extract) # extract info from the experiment XML files experiment = xe.get_experiments_dir_info(args.experimentsdir) # Scan specific information scan = xe.get_experiments_dir_scan_info(args.experimentsdir) # Session info reading = xe.get_experiments_dir_reading_info(args.experimentsdir) df = xe.merge_experiments_scans_reading(experiment, scan, reading) # exclude phantoms, including the traveling human phantoms site_id_pattern = '[A-E]-[0-9]{5}-[MF]-[0-9]' df = df[df.site_id.str.contains(site_id_pattern)] # exclude subjects not part of study df = df[df['subject_id'] != 'NCANDA_S00127'] if args.unknown : print("Sessions that have not yet been quality controlled") scanCheckList = pd.DataFrame() required_scans = ['ncanda-mprage-v1','ncanda-t1spgr-v1','ncanda-t2fse-v1','ncanda-dti6b500pepolar-v1','ncanda-dti30b400-v1','ncanda-dti60b1000-v1','ncanda-grefieldmap-v1','ncanda-rsfmri-v1'] for eid in df.experiment_id.drop_duplicates(): eid_df = df[df.experiment_id == eid] eid_df = eid_df[~pd.isnull(eid_df['quality'])] if not len(eid_df[eid_df['quality'] != 'unknown']) : print(eid) else : unknownScanDF = eid_df[eid_df['quality'] == 'unknown'] mandatoryCheck = unknownScanDF[unknownScanDF['scan_type'].isin(required_scans)] if len(mandatoryCheck) : scanCheckList = scanCheckList.append(mandatoryCheck) print(" ") print("Mandatory scans that have not yet been quality controlled (status unknown)") if len(scanCheckList) : pd.set_option('display.max_rows', len(scanCheckList)) print(scanCheckList['scan_type']) sys.exit() if args.ignore_window or args.session_notes or args.scan_notes : if args.usable : df = df[df['quality'] == 'usable'] columns = ['site_id', 'subject_id', 'experiment_id', 'experiment_date','excludefromanalysis'] if args.ignore_window or args.scan_notes : columns = columns + ['scan_id', 'scan_type', 'quality'] if args.scan_notes : columns = columns + [ 'scan_note'] if args.session_notes : columns = columns + [ 'note' ] result = df[columns] # print result else : df.loc[:, 'experiment_date'] = df.experiment_date.astype('datetime64') result = pd.DataFrame() for subject_id in df.subject_id.drop_duplicates(): subject_df = df[df.subject_id == subject_id] # find the earliest exam date for each given subject grouping = subject_df.groupby('subject_id') baseline_date = grouping['experiment_date'].nsmallest(1) baseline_df = subject_df[subject_df.experiment_date == baseline_date[0]] # Find window for follow-up day_min = pd.datetools.Day(n=args.min) day_max = pd.datetools.Day(n=args.max) followup_min = baseline_df.experiment_date + day_min followup_max = baseline_df.experiment_date + day_max df_min = subject_df.experiment_date > followup_min[0] df_max = subject_df.experiment_date < followup_max[0] followup_df = subject_df[df_min & df_max] # Included followup sessions slightly outside window included = ['NCANDA_E02615', 'NCANDA_E02860'] included_df = subject_df[subject_df.experiment_id.isin(included)] if included_df.shape[0]: followup_df = included_df # Create report for baseline visit if args.baseline: followup_df = baseline_df # filter for specific scan types scan_type_pairs = get_scan_type_pairs(args.modality) scan1 = scan_type_pairs.get('scan1') scan2 = scan_type_pairs.get('scan2') scan1_df = followup_df[followup_df.scan_type.isin(scan1)] scan2_df = followup_df[followup_df.scan_type.isin(scan2)] # Filter quality column if args.usable : scan1_selected = scan1_df[scan1_df.quality == 'usable'] scan2_selected = scan2_df[scan2_df.quality == 'usable'] else : scan1_selected = scan1_df scan2_selected = scan2_df # report columns columns = ['site_id', 'subject_id', 'experiment_id', 'experiment_date', 'excludefromanalysis', 'note', 'scan_type', 'quality', 'scan_note'] scan1_recs = scan1_selected.loc[:, columns].to_records(index=False) scan2_recs = scan2_selected.loc[:, columns].to_records(index=False) scan1_report = pd.DataFrame(scan1_recs, index=scan1_selected.experiment_id) scan2_report = pd.DataFrame(scan2_recs, index=scan2_selected.experiment_id) scan1_scan2_report = scan1_report.join(scan2_report[['scan_type', 'quality', 'scan_note']], lsuffix='_scan1', rsuffix='_scan2', how='inner') if scan1_scan2_report.shape[0]: result = result.append(scan1_scan2_report) # # Write out results # # Remove any duplicate rows due to extra usable scan types (i.e., fieldmaps) result = result.drop_duplicates() result.to_csv(args.outfile, index=False) if __name__ == "__main__": import sys import argparse parser = argparse.ArgumentParser(prog='xnat_sessions_report.py', description=__doc__) parser.add_argument('-c', '--config', type=str, default=os.path.join(os.path.expanduser('~'), '.server_config', 'ncanda.cfg')) parser.add_argument('-b', '--baseline', action='store_true', help='Create report for baseline visit.') parser.add_argument('-e', '--experimentsdir', type=str, default='/tmp/experiments', help='Name of experiments xml directory') parser.add_argument('-m', '--modality', type=str, default='anatomy', choices=['anatomy', 'diffusion', 'functional'], help='Name of experiments xml directory') parser.add_argument('--min', type=int, default=180, help='Minimum days from baseline (to specify followup ' '1y, only impacts final report but not -u option)') parser.add_argument('--max', type=int, default=540, help='Maximum days from baseline (to specify followup ' '1y, only impacts final report but not -u option)') parser.add_argument('--ignore-window', action='store_true', help='Just list sessions regardless of window') parser.add_argument('--usable', action='store_true', help='Only list scans with usable image quality') parser.add_argument('--unknown', action='store_true', help='Only list sessions that have unknown scans, i.e. have not been reviewed') parser.add_argument('--session-notes', action='store_true', help='create report with session notes') parser.add_argument('--scan-notes', action='store_true', help='include scan notes in the report') parser.add_argument('-o', '--outfile', type=str, default='/tmp/usability_report.csv', help='Name of csv file to write.') parser.add_argument('-n', '--num_extract', type=int, help='Number of sessions to extract (only works in ' 'connection with -u)') parser.add_argument('-u', '--update', action='store_true', help='Update the cache of xml files') parser.add_argument('-v', '--verbose', action='store_true', help='Print verbose output.') argv = parser.parse_args() verbose = argv.verbose xe.verbose = argv.verbose sys.exit(main(args=argv))
sibis-platform/ncanda-data-integration
scripts/reporting/xnat_sessions_report.py
Python
bsd-3-clause
11,745
[ "VisIt" ]
11924db1891618d2dfaaa732deb10615d7c600498aaa7dc38bfae243972d14a9
import numpy as np import time import pygmin.utils.readAmberParam as readAmb import ambgmin_ as GMIN import pygmin.potentials.gminpotential as gminpot import pygmin.basinhopping as bh from pygmin.storage import savenlowest from pygmin.NEB import NEB from pygmin.utils.rbtools import * from pygmin.takestep import generic from pygmin.takestep import displace class molSystem: def __init__(self): self.storage = savenlowest.SaveN(10) GMIN.initialize() # self.bondList = bondList def createBasinHopping(self): GMIN.initialize() pot = gminpot.GMINPotental(GMIN) coords = pot.getCoords() step = displace.RandomDisplacement() opt = bh.BasinHopping(coords, pot, takeStep=step, temperature=0.4, storage=self.storage) return opt def drawCylinder(self, X1, X2): from OpenGL import GL,GLUT, GLU z = np.array([0.,0.,1.]) #default cylinder orientation p = X2-X1 #desired cylinder orientation r = np.linalg.norm(p) t = np.cross(z,p) #angle about which to rotate a = np.arccos( np.dot( z,p) / r ) #rotation angle a *= (180. / np.pi) #change units to angles GL.glPushMatrix() GL.glTranslate( X1[0], X1[1], X1[2] ) GL.glRotate( a, t[0], t[1], t[2] ) g=GLU.gluNewQuadric() GLU.gluCylinder(g, .1,0.1,r,30,30) #I can't seem to draw a cylinder GL.glPopMatrix() def draw(self, coordsl, index): from OpenGL import GL,GLUT coords=coordsl.reshape(coordsl.size/3,3) #coords = coords.reshape(GMIN.getNAtoms, 3) com=np.mean(coords, axis=0) for xx in coords: x = xx-com GL.glPushMatrix() GL.glTranslate(x[0],x[1],x[2]) GLUT.glutSolidSphere(0.3,30,30) GL.glPopMatrix() # get bond list from amber params mol = readAmb.readAmberParam() mol.populateBondConn() # draw bonds for atomPairs in mol.bondConn: xyz1 = coords[atomPairs[0]-1] - com xyz2 = coords[atomPairs[1]-1] - com self.drawCylinder(xyz1, xyz2) def createNEB(self, coords1, coords2): pot = gminpot.GMINPotental(GMIN) return NEB.NEB(coords1, coords2, pot, k = 100. ,nimages=20) if __name__ == "__main__": import pygmin.gui.run as gr gr.run_gui(molSystem)
js850/PyGMIN
examples/amber/metenk/run_gui.py
Python
gpl-3.0
2,507
[ "Amber" ]
681272b3e1c4651aba04db353925d435270eee30a73e1ad52434082ca06c6492
from Sire.Mol import * from Sire.IO import * from Sire.Vol import * from Sire.FF import * from Sire.MM import * from Sire.CAS import * from Sire.Cluster import * from Sire.Squire import * from Sire.Maths import * from Sire.Qt import * from Sire.Units import * import time timer = QTime() #read in all of the molecules print("Loading the molecules...") timer.start() mols = PDB().read("test/io/water.pdb") ms = timer.elapsed() print("... took %d ms" % ms) #specify the space in which the molecules are placed space = Cartesian() space = PeriodicBox(Vector(-18.3854,-18.66855,-18.4445), \ Vector( 18.3854, 18.66855, 18.4445)) #specify the type of switching function to use switchfunc = HarmonicSwitchingFunction(80.0) switchfunc = HarmonicSwitchingFunction(15.0, 14.5) molproexe = "../../../../../software/molpro/devel/molpro" #create a forcefield for the molecules molproff1 = MolproFF( space, switchfunc ) molproff2 = MolproFF( space, switchfunc ) molproff3 = MolproFF( space, switchfunc ) molproff1.setMolproExe(molproexe) molproff2.setMolproExe(molproexe) molproff3.setMolproExe(molproexe) #parametise each molecule and add it to the forcefield print("Parametising the molecules...") chgs = AtomicCharges( [0.0, 0.52 * mod_electron, \ 0.52 * mod_electron, \ -1.04 * mod_electron] ) ljs = AtomicLJs( [ LJParameter( 3.15365 * angstrom, \ 0.1550 * kcal_per_mol ), \ LJParameter.dummy(), \ LJParameter.dummy(), \ LJParameter.dummy() ] ) timer.start() for mol in mols: mol.setProperty( "charges", chgs ) mol.setProperty( "ljs", ljs ) qm_mol = mols[0] mm_mols = mols[1:] molproff1.addToMM(mm_mols) molproff2.addToMM(mm_mols) molproff3.addToMM(mm_mols) molproff1.addToQM(qm_mol) molproff2.addToQM(qm_mol) molproff3.addToQM(qm_mol) ms = timer.elapsed() print("... took %d ms" % ms) timer.start() #create a thread processor and calculate the energy in the background threadproc1 = FFThreadProcessor(molproff1) threadproc2 = FFThreadProcessor(molproff2) active_threadproc1 = threadproc1.activate() active_threadproc2 = threadproc2.activate() print("Starting background calculation...") active_threadproc1.recalculateEnergy() active_threadproc2.recalculateEnergy() print("Off it goes....") print("Da de da da da...") #create an FFProcessor, and place the cljff onto it... ffproc1 = FFProcessor(molproff3) print("Is active?", ffproc1.isActive()) active_ffproc1 = ffproc1.activate() print("Is active?", ffproc1.isActive()) print("MAIN THREAD PROCESS") print("Total energy == ",active_threadproc1.energy()) print("Total energy == ",active_threadproc2.energy()) print("Total energy == ",active_ffproc1.energy()) print("Took %d ms" % timer.elapsed())
chryswoods/SireTests
unittests/Squire/threadmolpro.py
Python
gpl-2.0
2,844
[ "Molpro" ]
8376436c730a5d72d29c8b4590fc0c11aaf096d873c749c07e465e7f3b786d3a
"""Quality control and summary metrics for next-gen alignments and analysis. """ import collections import contextlib import csv import os import shutil import subprocess import pandas as pd import lxml.html import yaml from datetime import datetime # allow graceful during upgrades try: import matplotlib matplotlib.use('Agg', force=True) import matplotlib.pyplot as plt plt.ioff() except ImportError: plt = None try: from fadapa import Fadapa except ImportError: Fadapa = None import pybedtools import pysam import toolz as tz import toolz.dicttoolz as dtz from bcbio import bam, utils from bcbio.distributed.transaction import file_transaction, tx_tmpdir from bcbio.log import logger from bcbio.pipeline import config_utils, run_info from bcbio.install import _get_data_dir from bcbio.provenance import do import bcbio.rnaseq.qc from bcbio.rnaseq.coverage import plot_gene_coverage import bcbio.pipeline.datadict as dd from bcbio.variation import bedutils from bcbio import broad # ## High level functions to generate summary def generate_parallel(samples, run_parallel): """Provide parallel preparation of summary information for alignment and variant calling. """ sum_samples = run_parallel("pipeline_summary", samples) qsign_info = run_parallel("qsignature_summary", [sum_samples]) summary_file = write_project_summary(sum_samples, qsign_info) samples = [] for data in sum_samples: if "summary" not in data[0]: data[0]["summary"] = {} data[0]["summary"]["project"] = summary_file if qsign_info: data[0]["summary"]["mixup_check"] = qsign_info[0]["out_dir"] samples.append(data) samples = _add_researcher_summary(samples, summary_file) return samples def pipeline_summary(data): """Provide summary information on processing sample. """ work_bam = data.get("work_bam") if data["sam_ref"] is not None and work_bam and work_bam.endswith(".bam"): logger.info("Generating summary files: %s" % str(data["name"])) data["summary"] = _run_qc_tools(work_bam, data) return [[data]] def prep_pdf(qc_dir, config): """Create PDF from HTML summary outputs in QC directory. Requires wkhtmltopdf installed: http://www.msweet.org/projects.php?Z1 Thanks to: https://www.biostars.org/p/16991/ Works around issues with CSS conversion on CentOS by adjusting CSS. """ html_file = os.path.join(qc_dir, "fastqc", "fastqc_report.html") html_fixed = "%s-fixed%s" % os.path.splitext(html_file) try: topdf = config_utils.get_program("wkhtmltopdf", config) except config_utils.CmdNotFound: topdf = None if topdf and utils.file_exists(html_file): out_file = "%s.pdf" % os.path.splitext(html_file)[0] if not utils.file_exists(out_file): cmd = ("sed 's/div.summary/div.summary-no/' %s | sed 's/div.main/div.main-no/' > %s" % (html_file, html_fixed)) do.run(cmd, "Fix fastqc CSS to be compatible with wkhtmltopdf") cmd = [topdf, html_fixed, out_file] do.run(cmd, "Convert QC HTML to PDF") return out_file def _run_qc_tools(bam_file, data): """Run a set of third party quality control tools, returning QC directory and metrics. :param bam_file: alignments in bam format :param data: dict with all configuration information :returns: dict with output of different tools """ metrics = {} to_run = [] if "fastqc" not in tz.get_in(("config", "algorithm", "tools_off"), data, []): to_run.append(("fastqc", _run_fastqc)) if data["analysis"].lower().startswith("rna-seq"): # to_run.append(("rnaseqc", bcbio.rnaseq.qc.sample_summary)) # to_run.append(("coverage", _run_gene_coverage)) # to_run.append(("complexity", _run_complexity)) to_run.append(("qualimap", _rnaseq_qualimap)) elif data["analysis"].lower().startswith("chip-seq"): to_run.append(["bamtools", _run_bamtools_stats]) else: to_run += [("bamtools", _run_bamtools_stats), ("gemini", _run_gemini_stats)] if data["analysis"].lower().startswith(("standard", "variant2")): to_run.append(["qsignature", _run_qsignature_generator]) if "qualimap" in tz.get_in(("config", "algorithm", "tools_on"), data, []): to_run.append(("qualimap", _run_qualimap)) qc_dir = utils.safe_makedir(os.path.join(data["dirs"]["work"], "qc", data["description"])) metrics = {} for program_name, qc_fn in to_run: cur_qc_dir = os.path.join(qc_dir, program_name) cur_metrics = qc_fn(bam_file, data, cur_qc_dir) metrics.update(cur_metrics) ratio = bam.get_aligned_reads(bam_file, data) # if (ratio < 0.60 and data['config']["algorithm"].get("kraken", None) and # (data["analysis"].lower().startswith("rna-seq") or # data["analysis"].lower().startswith("standard"))): if data['config']["algorithm"].get("kraken", None): cur_metrics = _run_kraken(data, ratio) metrics.update(cur_metrics) bam.remove("%s-downsample%s" % os.path.splitext(bam_file)) metrics["Name"] = data["name"][-1] metrics["Quality format"] = utils.get_in(data, ("config", "algorithm", "quality_format"), "standard").lower() return {"qc": qc_dir, "metrics": metrics} # ## Generate project level QC summary for quickly assessing large projects def write_project_summary(samples, qsign_info=None): """Write project summary information on the provided samples. write out dirs, genome resources, """ work_dir = samples[0][0]["dirs"]["work"] out_file = os.path.join(work_dir, "project-summary.yaml") upload_dir = (os.path.join(work_dir, samples[0][0]["upload"]["dir"]) if "dir" in samples[0][0]["upload"] else "") test_run = samples[0][0].get("test_run", False) date = str(datetime.now()) prev_samples = _other_pipeline_samples(out_file, samples) with open(out_file, "w") as out_handle: yaml.safe_dump({"date": date}, out_handle, default_flow_style=False, allow_unicode=False) if test_run: yaml.safe_dump({"test_run": True}, out_handle, default_flow_style=False, allow_unicode=False) if qsign_info: qsign_out = utils.deepish_copy(qsign_info[0]) qsign_out.pop("out_dir", None) yaml.safe_dump({"qsignature": qsign_out}, out_handle, default_flow_style=False, allow_unicode=False) yaml.safe_dump({"upload": upload_dir}, out_handle, default_flow_style=False, allow_unicode=False) yaml.safe_dump({"bcbio_system": samples[0][0]["config"].get("bcbio_system", "")}, out_handle, default_flow_style=False, allow_unicode=False) yaml.safe_dump({"samples": prev_samples + [_save_fields(sample[0]) for sample in samples]}, out_handle, default_flow_style=False, allow_unicode=False) return out_file def _other_pipeline_samples(summary_file, cur_samples): """Retrieve samples produced previously by another pipeline in the summary output. """ cur_descriptions = set([s[0]["description"] for s in cur_samples]) out = [] if os.path.exists(summary_file): with open(summary_file) as in_handle: for s in yaml.load(in_handle).get("samples", []): if s["description"] not in cur_descriptions: out.append(s) return out def _save_fields(sample): to_save = ["dirs", "genome_resources", "genome_build", "sam_ref", "metadata", "description"] saved = {k: sample[k] for k in to_save if k in sample} if "summary" in sample: saved["summary"] = {"metrics": sample["summary"]["metrics"]} # check if disambiguation was run if "disambiguate" in sample: if utils.file_exists(sample["disambiguate"]["summary"]): disambigStats = _parse_disambiguate(sample["disambiguate"]["summary"]) saved["summary"]["metrics"]["Disambiguated %s reads" % str(sample["genome_build"])] = disambigStats[0] disambigGenome = (sample["config"]["algorithm"]["disambiguate"][0] if isinstance(sample["config"]["algorithm"]["disambiguate"], (list, tuple)) else sample["config"]["algorithm"]["disambiguate"]) saved["summary"]["metrics"]["Disambiguated %s reads" % disambigGenome] = disambigStats[1] saved["summary"]["metrics"]["Disambiguated ambiguous reads"] = disambigStats[2] return saved def _parse_disambiguate(disambiguatestatsfilename): """Parse disambiguation stats from given file. """ disambig_stats = [-1, -1, -1] with open(disambiguatestatsfilename, "r") as in_handle: header = in_handle.readline().strip().split("\t") if header == ['sample', 'unique species A pairs', 'unique species B pairs', 'ambiguous pairs']: disambig_stats_tmp = in_handle.readline().strip().split("\t")[1:] if len(disambig_stats_tmp) == 3: disambig_stats = [int(x) for x in disambig_stats_tmp] return disambig_stats # ## Generate researcher specific summaries def _add_researcher_summary(samples, summary_yaml): """Generate summary files per researcher if organized via a LIMS. """ by_researcher = collections.defaultdict(list) for data in (x[0] for x in samples): researcher = utils.get_in(data, ("upload", "researcher")) if researcher: by_researcher[researcher].append(data["description"]) out_by_researcher = {} for researcher, descrs in by_researcher.items(): out_by_researcher[researcher] = _summary_csv_by_researcher(summary_yaml, researcher, set(descrs), samples[0][0]) out = [] for data in (x[0] for x in samples): researcher = utils.get_in(data, ("upload", "researcher")) if researcher: data["summary"]["researcher"] = out_by_researcher[researcher] out.append([data]) return out def _summary_csv_by_researcher(summary_yaml, researcher, descrs, data): """Generate a CSV file with summary information for a researcher on this project. """ out_file = os.path.join(utils.safe_makedir(os.path.join(data["dirs"]["work"], "researcher")), "%s-summary.tsv" % run_info.clean_name(researcher)) metrics = ["Total reads", "Mapped reads", "Mapped reads pct", "Duplicates", "Duplicates pct"] with open(summary_yaml) as in_handle: with open(out_file, "w") as out_handle: writer = csv.writer(out_handle, dialect="excel-tab") writer.writerow(["Name"] + metrics) for sample in yaml.safe_load(in_handle)["samples"]: if sample["description"] in descrs: row = [sample["description"]] + [utils.get_in(sample, ("summary", "metrics", x), "") for x in metrics] writer.writerow(row) return out_file # ## Run and parse read information from FastQC class FastQCParser: def __init__(self, base_dir, sample=None): self._dir = base_dir self.sample = sample def get_fastqc_summary(self): ignore = set(["Total Sequences", "Filtered Sequences", "Filename", "File type", "Encoding"]) stats = {} for stat_line in self._fastqc_data_section("Basic Statistics")[1:]: k, v = stat_line.split("\t")[:2] if k not in ignore: stats[k] = v return stats def _fastqc_data_section(self, section_name): out = [] in_section = False data_file = os.path.join(self._dir, "fastqc_data.txt") if os.path.exists(data_file): with open(data_file) as in_handle: for line in in_handle: if line.startswith(">>%s" % section_name): in_section = True elif in_section: if line.startswith(">>END"): break out.append(line.rstrip("\r\n")) return out def save_sections_into_file(self): data_file = os.path.join(self._dir, "fastqc_data.txt") if os.path.exists(data_file) and Fadapa: parser = Fadapa(data_file) module = [m[1] for m in parser.summary()][2:9] for m in module: out_file = os.path.join(self._dir, m.replace(" ", "_") + ".tsv") dt = self._get_module(parser, m) dt.to_csv(out_file, sep="\t", index=False) def _get_module(self, parser, module): """ Get module using fadapa package """ dt = [] lines = parser.clean_data(module) header = lines[0] for data in lines[1:]: if data[0].startswith("#"): #some modules have two headers header = data continue if data[0].find("-") > -1: # expand positions 1-3 to 1, 2, 3 f, s = map(int, data[0].split("-")) for pos in range(f, s): dt.append([str(pos)] + data[1:]) else: dt.append(data) dt = pd.DataFrame(dt) dt.columns = [h.replace(" ", "_") for h in header] dt['sample'] = self.sample return dt def _run_gene_coverage(bam_file, data, out_dir): out_file = os.path.join(out_dir, "gene_coverage.pdf") ref_file = utils.get_in(data, ("genome_resources", "rnaseq", "transcripts")) count_file = data["count_file"] if utils.file_exists(out_file): return out_file with file_transaction(data, out_file) as tx_out_file: plot_gene_coverage(bam_file, ref_file, count_file, tx_out_file) return {"gene_coverage": out_file} def _run_kraken(data, ratio): """Run kraken, generating report in specified directory and parsing metrics. Using only first paired reads. """ logger.info("Number of aligned reads < than 0.60 in %s: %s" % (str(data["name"]), ratio)) logger.info("Running kraken to determine contaminant: %s" % str(data["name"])) qc_dir = utils.safe_makedir(os.path.join(data["dirs"]["work"], "qc", data["description"])) kraken_out = os.path.join(qc_dir, "kraken") out = out_stats = None db = data['config']["algorithm"]["kraken"] kraken_cmd = config_utils.get_program("kraken", data["config"]) if db == "minikraken": db = os.path.join(_get_data_dir(), "genomes", "kraken", "minikraken") else: if not os.path.exists(db): logger.info("kraken: no database found %s, skipping" % db) return {"kraken_report": "null"} if not os.path.exists(os.path.join(kraken_out, "kraken_out")): work_dir = os.path.dirname(kraken_out) utils.safe_makedir(work_dir) num_cores = data["config"]["algorithm"].get("num_cores", 1) fn_file = data["files"][0] if fn_file.endswith("bam"): logger.info("kraken: need fasta files as input") return {"kraken_report": "null"} with tx_tmpdir(data, work_dir) as tx_tmp_dir: with utils.chdir(tx_tmp_dir): out = os.path.join(tx_tmp_dir, "kraken_out") out_stats = os.path.join(tx_tmp_dir, "kraken_stats") cat = "zcat" if fn_file.endswith(".gz") else "cat" cl = ("{cat} {fn_file} | {kraken_cmd} --db {db} --quick " "--preload --min-hits 2 " "--threads {num_cores} " "--out {out} --fastq-input /dev/stdin 2> {out_stats}").format(**locals()) do.run(cl, "kraken: %s" % data["name"][-1]) if os.path.exists(kraken_out): shutil.rmtree(kraken_out) shutil.move(tx_tmp_dir, kraken_out) metrics = _parse_kraken_output(kraken_out, db, data) return metrics def _parse_kraken_output(out_dir, db, data): """Parse kraken stat info comming from stderr, generating report with kraken-report """ in_file = os.path.join(out_dir, "kraken_out") stat_file = os.path.join(out_dir, "kraken_stats") out_file = os.path.join(out_dir, "kraken_summary") kraken_cmd = config_utils.get_program("kraken-report", data["config"]) classify = unclassify = None with open(stat_file, 'r') as handle: for line in handle: if line.find(" classified") > -1: classify = line[line.find("(") + 1:line.find(")")] if line.find(" unclassified") > -1: unclassify = line[line.find("(") + 1:line.find(")")] if os.path.getsize(in_file) > 0 and not os.path.exists(out_file): with file_transaction(data, out_file) as tx_out_file: cl = ("{kraken_cmd} --db {db} {in_file} > {tx_out_file}").format(**locals()) do.run(cl, "kraken report: %s" % data["name"][-1]) kraken = {"kraken_clas": classify, "kraken_unclas": unclassify} kraken_sum = _summarize_kraken(out_file) kraken.update(kraken_sum) return kraken def _summarize_kraken(fn): """get the value at species level""" kraken = {} list_sp, list_value = [], [] with open(fn) as handle: for line in handle: cols = line.strip().split("\t") sp = cols[5].strip() if len(sp.split(" ")) > 1 and not sp.startswith("cellular"): list_sp.append(sp) list_value.append(cols[0]) kraken = {"kraken_sp": list_sp, "kraken_value": list_value} return kraken def _run_fastqc(bam_file, data, fastqc_out): """Run fastqc, generating report in specified directory and parsing metrics. Downsamples to 10 million reads to avoid excessive processing times with large files, unless we're running a Standard/QC pipeline. Handles fastqc 0.11+, which use a single HTML file and older versions that use a directory of files + images. The goal is to eventually move to only 0.11+ """ sentry_file = os.path.join(fastqc_out, "fastqc_report.html") if not os.path.exists(sentry_file): work_dir = os.path.dirname(fastqc_out) utils.safe_makedir(work_dir) ds_bam = (bam.downsample(bam_file, data, 1e7) if data.get("analysis", "").lower() not in ["standard"] else None) bam_file = ds_bam if ds_bam else bam_file fastqc_name = os.path.splitext(os.path.basename(bam_file))[0] num_cores = data["config"]["algorithm"].get("num_cores", 1) with tx_tmpdir(data, work_dir) as tx_tmp_dir: with utils.chdir(tx_tmp_dir): cl = [config_utils.get_program("fastqc", data["config"]), "-t", str(num_cores), "--extract", "-o", tx_tmp_dir, "-f", "bam", bam_file] do.run(cl, "FastQC: %s" % data["name"][-1]) tx_fastqc_out = os.path.join(tx_tmp_dir, "%s_fastqc" % fastqc_name) tx_combo_file = os.path.join(tx_tmp_dir, "%s_fastqc.html" % fastqc_name) if os.path.exists("%s.zip" % tx_fastqc_out): os.remove("%s.zip" % tx_fastqc_out) if not os.path.exists(sentry_file) and os.path.exists(tx_combo_file): utils.safe_makedir(fastqc_out) shutil.move(os.path.join(tx_fastqc_out, "fastqc_data.txt"), fastqc_out) shutil.move(tx_combo_file, sentry_file) elif not os.path.exists(sentry_file): if os.path.exists(fastqc_out): shutil.rmtree(fastqc_out) shutil.move(tx_fastqc_out, fastqc_out) parser = FastQCParser(fastqc_out, data["name"][-1]) stats = parser.get_fastqc_summary() parser.save_sections_into_file() return stats def _run_complexity(bam_file, data, out_dir): try: import pandas as pd import statsmodels.formula.api as sm except ImportError: return {"Unique Starts Per Read": "NA"} SAMPLE_SIZE = 1000000 base, _ = os.path.splitext(os.path.basename(bam_file)) utils.safe_makedir(out_dir) out_file = os.path.join(out_dir, base + ".pdf") df = bcbio.rnaseq.qc.starts_by_depth(bam_file, data["config"], SAMPLE_SIZE) if not utils.file_exists(out_file): with file_transaction(data, out_file) as tmp_out_file: df.plot(x='reads', y='starts', title=bam_file + " complexity") fig = plt.gcf() fig.savefig(tmp_out_file) print "file saved as", out_file print "out_dir is", out_dir return bcbio.rnaseq.qc.estimate_library_complexity(df) # ## Qualimap def _parse_num_pct(k, v): num, pct = v.split(" / ") return {k: num.replace(",", "").strip(), "%s pct" % k: pct.strip()} def _parse_qualimap_globals(table): """Retrieve metrics of interest from globals table. """ out = {} want = {"Mapped reads": _parse_num_pct, "Duplication rate": lambda k, v: {k: v}} for row in table.xpath("table/tr"): col, val = [x.text for x in row.xpath("td")] if col in want: out.update(want[col](col, val)) return out def _parse_qualimap_globals_inregion(table): """Retrieve metrics from the global targeted region table. """ out = {} for row in table.xpath("table/tr"): col, val = [x.text for x in row.xpath("td")] if col == "Mapped reads": out.update(_parse_num_pct("%s (in regions)" % col, val)) return out def _parse_qualimap_coverage(table): """Parse summary qualimap coverage metrics. """ out = {} for row in table.xpath("table/tr"): col, val = [x.text for x in row.xpath("td")] if col == "Mean": out["Coverage (Mean)"] = val return out def _parse_qualimap_insertsize(table): """Parse insert size metrics. """ out = {} for row in table.xpath("table/tr"): col, val = [x.text for x in row.xpath("td")] if col == "Median": out["Insert size (Median)"] = val return out def _parse_qualimap_metrics(report_file): """Extract useful metrics from the qualimap HTML report file. """ out = {} parsers = {"Globals": _parse_qualimap_globals, "Globals (inside of regions)": _parse_qualimap_globals_inregion, "Coverage": _parse_qualimap_coverage, "Coverage (inside of regions)": _parse_qualimap_coverage, "Insert size": _parse_qualimap_insertsize, "Insert size (inside of regions)": _parse_qualimap_insertsize} root = lxml.html.parse(report_file).getroot() for table in root.xpath("//div[@class='table-summary']"): header = table.xpath("h3")[0].text if header in parsers: out.update(parsers[header](table)) return out def _bed_to_bed6(orig_file, out_dir): """Convert bed to required bed6 inputs. """ bed6_file = os.path.join(out_dir, "%s-bed6%s" % os.path.splitext(os.path.basename(orig_file))) if not utils.file_exists(bed6_file): with open(bed6_file, "w") as out_handle: for i, region in enumerate(list(x) for x in pybedtools.BedTool(orig_file)): region = [x for x in list(region) if x] fillers = [str(i), "1.0", "+"] full = region + fillers[:6 - len(region)] out_handle.write("\t".join(full) + "\n") return bed6_file def _run_qualimap(bam_file, data, out_dir): """Run qualimap to assess alignment quality metrics. """ report_file = os.path.join(out_dir, "qualimapReport.html") if not os.path.exists(report_file): ds_bam = bam.downsample(bam_file, data, 1e7) bam_file = ds_bam if ds_bam else bam_file utils.safe_makedir(out_dir) num_cores = data["config"]["algorithm"].get("num_cores", 1) qualimap = config_utils.get_program("qualimap", data["config"]) resources = config_utils.get_resources("qualimap", data["config"]) max_mem = config_utils.adjust_memory(resources.get("memory", "1G"), num_cores) cmd = ("unset DISPLAY && {qualimap} bamqc -bam {bam_file} -outdir {out_dir} " "-nt {num_cores} --java-mem-size={max_mem}") species = data["genome_resources"]["aliases"].get("ensembl", "").upper() if species in ["HUMAN", "MOUSE"]: cmd += " -gd {species}" regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data) if regions: bed6_regions = _bed_to_bed6(regions, out_dir) cmd += " -gff {bed6_regions}" do.run(cmd.format(**locals()), "Qualimap: %s" % data["name"][-1]) return _parse_qualimap_metrics(report_file) # ## RNAseq Qualimap def _parse_metrics(metrics): # skipped metrics can sometimes be in unicode, replace unicode with NA if it exists metrics = dtz.valmap(lambda x: 'nan' if isinstance(x, unicode) else x, metrics) missing = set(["Genes Detected", "Transcripts Detected", "Mean Per Base Cov."]) correct = set(["Intergenic pct", "Intronic pct", "Exonic pct"]) to_change = dict({"5'-3' bias": 1, "Intergenic pct": "Intergenic Rate", "Intronic pct": "Intronic Rate", "Exonic pct": "Exonic Rate", "Not aligned": 0, 'Aligned to genes': 0, 'Non-unique alignment': 0, "No feature assigned": 0, "Duplication Rate of Mapped": 1, "Fragment Length Mean": 1, "rRNA": 1, "Ambiguou alignment": 0}) total = ["Not aligned", "Aligned to genes", "No feature assigned"] out = {} total_reads = sum([int(metrics[name]) for name in total]) out['rRNA rate'] = 1.0 * int(metrics["rRNA"]) / total_reads out['Mapped'] = sum([int(metrics[name]) for name in total[1:]]) out['Mapping Rate'] = 1.0 * int(out['Mapped']) / total_reads [out.update({name: 0}) for name in missing] [metrics.update({name: 1.0 * float(metrics[name]) / 100}) for name in correct] for name in to_change: if not to_change[name]: continue if to_change[name] == 1: out.update({name: float(metrics[name])}) else: out.update({to_change[name]: float(metrics[name])}) return out def _detect_duplicates(bam_file, out_dir, config): """ Detect duplicates metrics with Picard """ out_file = os.path.join(out_dir, "dup_metrics") if not utils.file_exists(out_file): broad_runner = broad.runner_from_config(config) (dup_align_bam, metrics_file) = broad_runner.run_fn("picard_mark_duplicates", bam_file, remove_dups=True) shutil.move(metrics_file, out_file) metrics = [] with open(out_file) as in_handle: reader = csv.reader(in_handle, dialect="excel-tab") for line in reader: if line and not line[0].startswith("#"): metrics.append(line) metrics = dict(zip(metrics[0], metrics[1])) return {"Duplication Rate of Mapped": metrics["PERCENT_DUPLICATION"]} def _transform_browser_coor(rRNA_interval, rRNA_coor): """ transform interval format to browser coord: chr:start-end """ with open(rRNA_coor, 'w') as out_handle: with open(rRNA_interval, 'r') as in_handle: for line in in_handle: c, bio, source, s, e = line.split("\t")[:5] if bio.startswith("rRNA"): out_handle.write(("{0}:{1}-{2}\n").format(c, s, e)) def _detect_rRNA(config, bam_file, rRNA_file, ref_file, out_dir, single_end): """ Calculate rRNA with gatk-framework """ if not utils.file_exists(rRNA_file): return {'rRNA': 0} out_file = os.path.join(out_dir, "rRNA.counts") if not utils.file_exists(out_file): out_file = _count_rRNA_reads(bam_file, out_file, ref_file, rRNA_file, single_end, config) with open(out_file) as in_handle: for line in in_handle: if line.find("CountReads counted") > -1: rRNA_reads = line.split()[6] break return {'rRNA': rRNA_reads} def _count_rRNA_reads(in_bam, out_file, ref_file, rRNA_interval, single_end, config): """Use GATK counter to count reads in rRNA genes """ bam.index(in_bam, config) if not utils.file_exists(out_file): with file_transaction(out_file) as tx_out_file: rRNA_coor = os.path.join(os.path.dirname(out_file), "rRNA.list") _transform_browser_coor(rRNA_interval, rRNA_coor) params = ["-T", "CountReads", "-R", ref_file, "-I", in_bam, "-log", tx_out_file, "-L", rRNA_coor, "--filter_reads_with_N_cigar", "-allowPotentiallyMisencodedQuals"] jvm_opts = broad.get_gatk_framework_opts(config) cmd = [config_utils.get_program("gatk-framework", config)] + jvm_opts + params do.run(cmd, "counts rRNA for %s" % in_bam) return out_file def _parse_qualimap_rnaseq(table): """ Retrieve metrics of interest from globals table. """ out = {} for row in table.xpath("table/tr"): col, val = [x.text for x in row.xpath("td")] col = col.replace(":", "").strip() val = val.replace(",", "") m = {col: val} if val.find("/") > -1: m = _parse_num_pct(col, val.replace("%", "")) out.update(m) return out def _parse_rnaseq_qualimap_metrics(report_file): """Extract useful metrics from the qualimap HTML report file. """ out = {} parsers = ["Reads alignment", "Reads genomic origin", "Transcript coverage profile"] root = lxml.html.parse(report_file).getroot() for table in root.xpath("//div[@class='table-summary']"): header = table.xpath("h3")[0].text if header in parsers: out.update(_parse_qualimap_rnaseq(table)) return out def _rnaseq_qualimap(bam_file, data, out_dir): """ Run qualimap for a rnaseq bam file and parse results """ report_file = os.path.join(out_dir, "qualimapReport.html") config = data["config"] gtf_file = dd.get_gtf_file(data) ref_file = dd.get_ref_file(data) single_end = not bam.is_paired(bam_file) if not utils.file_exists(report_file): utils.safe_makedir(out_dir) bam.index(bam_file, config) cmd = _rnaseq_qualimap_cmd(config, bam_file, out_dir, gtf_file, single_end) do.run(cmd, "Qualimap for {}".format(data["name"][-1])) metrics = _parse_rnaseq_qualimap_metrics(report_file) metrics.update(_detect_duplicates(bam_file, out_dir, config)) metrics.update(_detect_rRNA(config, bam_file, gtf_file, ref_file, out_dir, single_end)) metrics.update({"Fragment Length Mean": bam.estimate_fragment_size(bam_file)}) metrics = _parse_metrics(metrics) return metrics def _rnaseq_qualimap_cmd(config, bam_file, out_dir, gtf_file=None, single_end=None): """ Create command lines for qualimap """ qualimap = config_utils.get_program("qualimap", config) resources = config_utils.get_resources("qualimap", config) num_cores = resources.get("cores", 1) max_mem = config_utils.adjust_memory(resources.get("memory", "4G"), num_cores) cmd = ("unset DISPLAY && {qualimap} rnaseq -outdir {out_dir} -a proportional -bam {bam_file} " "-gtf {gtf_file} --java-mem-size={max_mem}").format(**locals()) return cmd # ## Lightweight QC approaches def _parse_bamtools_stats(stats_file): out = {} want = set(["Total reads", "Mapped reads", "Duplicates", "Median insert size"]) with open(stats_file) as in_handle: for line in in_handle: parts = line.split(":") if len(parts) == 2: metric, stat_str = parts metric = metric.split("(")[0].strip() if metric in want: stat_parts = stat_str.split() if len(stat_parts) == 2: stat, pct = stat_parts pct = pct.replace("(", "").replace(")", "") else: stat = stat_parts[0] pct = None out[metric] = stat if pct: out["%s pct" % metric] = pct return out def _parse_offtargets(bam_file): """ Add to metrics off-targets reads if it exitst """ off_target = bam_file.replace(".bam", "-offtarget-stats.yaml") if os.path.exists(off_target): res = yaml.load(open(off_target)) return res return {} def _run_bamtools_stats(bam_file, data, out_dir): """Run bamtools stats with reports on mapped reads, duplicates and insert sizes. """ stats_file = os.path.join(out_dir, "bamtools_stats.txt") if not utils.file_exists(stats_file): utils.safe_makedir(out_dir) bamtools = config_utils.get_program("bamtools", data["config"]) with file_transaction(data, stats_file) as tx_out_file: cmd = "{bamtools} stats -in {bam_file}" if bam.is_paired(bam_file): cmd += " -insert" cmd += " > {tx_out_file}" do.run(cmd.format(**locals()), "bamtools stats", data) out = _parse_bamtools_stats(stats_file) out.update(_parse_offtargets(bam_file)) return out ## Variant statistics from gemini def _run_gemini_stats(bam_file, data, out_dir): """Retrieve high level variant statistics from Gemini. """ out = {} gemini_dbs = [d for d in [tz.get_in(["population", "db"], x) for x in data.get("variants", [])] if d] if len(gemini_dbs) > 0: gemini_db = gemini_dbs[0] gemini_stat_file = "%s-stats.yaml" % os.path.splitext(gemini_db)[0] if not utils.file_uptodate(gemini_stat_file, gemini_db): gemini = config_utils.get_program("gemini", data["config"]) tstv = subprocess.check_output([gemini, "stats", "--tstv", gemini_db]) gt_counts = subprocess.check_output([gemini, "stats", "--gts-by-sample", gemini_db]) dbsnp_count = subprocess.check_output([gemini, "query", gemini_db, "-q", "SELECT count(*) FROM variants WHERE in_dbsnp==1"]) out["Transition/Transversion"] = tstv.split("\n")[1].split()[-1] for line in gt_counts.split("\n"): parts = line.rstrip().split() if len(parts) > 0 and parts[0] != "sample": name, hom_ref, het, hom_var, _, total = parts out[name] = {} out[name]["Variations (heterozygous)"] = int(het) out[name]["Variations (homozygous)"] = int(hom_var) # same total variations for all samples, keep that top level as well. out["Variations (total)"] = int(total) out["Variations (in dbSNP)"] = int(dbsnp_count.strip()) if out.get("Variations (total)") > 0: out["Variations (in dbSNP) pct"] = "%.1f%%" % (out["Variations (in dbSNP)"] / float(out["Variations (total)"]) * 100.0) with open(gemini_stat_file, "w") as out_handle: yaml.safe_dump(out, out_handle, default_flow_style=False, allow_unicode=False) else: with open(gemini_stat_file) as in_handle: out = yaml.safe_load(in_handle) res = {} for k, v in out.iteritems(): if not isinstance(v, dict): res.update({k: v}) if k == data['name'][-1]: res.update(v) return res ## qsignature def _run_qsignature_generator(bam_file, data, out_dir): """ Run SignatureGenerator to create normalize vcf that later will be input of qsignature_summary :param bam_file: (str) path of the bam_file :param data: (list) list containing the all the dictionary for this sample :param out_dir: (str) path of the output :returns: (dict) dict with the normalize vcf file """ position = dd.get_qsig_file(data) mixup_check = dd.get_mixup_check(data) if mixup_check and mixup_check.startswith("qsignature"): if not position: logger.info("There is no qsignature for this species: %s" % tz.get_in(['genome_build'], data)) return {} jvm_opts = "-Xms750m -Xmx2g" limit_reads = 20000000 if mixup_check == "qsignature_full": slice_bam = bam_file jvm_opts = "-Xms750m -Xmx8g" limit_reads = 100000000 else: slice_bam = _slice_chr22(bam_file, data) qsig = config_utils.get_program("qsignature", data["config"]) if not qsig: return {} utils.safe_makedir(out_dir) out_name = os.path.basename(slice_bam).replace("bam", "qsig.vcf") out_file = os.path.join(out_dir, out_name) log_file = os.path.join(out_dir, "qsig.log") cores = dd.get_cores(data) base_cmd = ("{qsig} {jvm_opts} " "org.qcmg.sig.SignatureGenerator " "--noOfThreads {cores} " "-log {log_file} -i {position} " "-i {down_file} ") if not os.path.exists(out_file): down_file = bam.downsample(slice_bam, data, limit_reads) if not down_file: down_file = slice_bam file_qsign_out = "{0}.qsig.vcf".format(down_file) do.run(base_cmd.format(**locals()), "qsignature vcf generation: %s" % data["name"][-1]) if os.path.exists(file_qsign_out): with file_transaction(data, out_file) as file_txt_out: shutil.move(file_qsign_out, file_txt_out) else: raise IOError("File doesn't exist %s" % file_qsign_out) return {'qsig_vcf': out_file} return {} def qsignature_summary(*samples): """Run SignatureCompareRelatedSimple module from qsignature tool. Creates a matrix of pairwise comparison among samples. The function will not run if the output exists :param samples: list with only one element containing all samples information :returns: (dict) with the path of the output to be joined to summary """ warnings, similar = [], [] qsig = config_utils.get_program("qsignature", samples[0][0]["config"]) if not qsig: return [[]] jvm_opts = "-Xms750m -Xmx8g" work_dir = samples[0][0]["dirs"]["work"] count = 0 for data in samples: data = data[0] vcf = tz.get_in(["summary", "metrics", "qsig_vcf"], data) if vcf: count += 1 vcf_name = data["name"][-1] + ".qsig.vcf" out_dir = utils.safe_makedir(os.path.join(work_dir, "qsignature")) if not os.path.lexists(os.path.join(out_dir, vcf_name)): os.symlink(vcf, os.path.join(out_dir, vcf_name)) if count > 0: qc_out_dir = utils.safe_makedir(os.path.join(work_dir, "qc", "qsignature")) out_file = os.path.join(qc_out_dir, "qsignature.xml") out_ma_file = os.path.join(qc_out_dir, "qsignature.ma") out_warn_file = os.path.join(qc_out_dir, "qsignature.warnings") log = os.path.join(work_dir, "qsignature", "qsig-summary.log") if not os.path.exists(out_file): with file_transaction(samples[0][0], out_file) as file_txt_out: base_cmd = ("{qsig} {jvm_opts} " "org.qcmg.sig.SignatureCompareRelatedSimple " "-log {log} -dir {out_dir} " "-o {file_txt_out} ") do.run(base_cmd.format(**locals()), "qsignature score calculation") error, warnings, similar = _parse_qsignature_output(out_file, out_ma_file, out_warn_file, samples[0][0]) return [{'total samples': count, 'similar samples pairs': len(similar), 'warnings samples pairs': len(warnings), 'error samples': list(error), 'out_dir': qc_out_dir}] else: return [] def _parse_qsignature_output(in_file, out_file, warning_file, data): """ Parse xml file produced by qsignature :param in_file: (str) with the path to the xml file :param out_file: (str) with the path to output file :param warning_file: (str) with the path to warning file :returns: (list) with samples that could be duplicated """ name = {} error, warnings, similar = set(), set(), set() same, replicate, related = 0, 0.1, 0.18 mixup_check = dd.get_mixup_check(data) if mixup_check == "qsignature_full": same, replicate, related = 0, 0.01, 0.061 with open(in_file, 'r') as in_handle: with file_transaction(data, out_file) as out_tx_file: with file_transaction(data, warning_file) as warn_tx_file: with open(out_tx_file, 'w') as out_handle: with open(warn_tx_file, 'w') as warn_handle: et = lxml.etree.parse(in_handle) for i in list(et.iter('file')): name[i.attrib['id']] = os.path.basename(i.attrib['name']).replace(".qsig.vcf", "") for i in list(et.iter('comparison')): msg = None pair = "-".join([name[i.attrib['file1']], name[i.attrib['file2']]]) out_handle.write("%s\t%s\t%s\n" % (name[i.attrib['file1']], name[i.attrib['file2']], i.attrib['score'])) if float(i.attrib['score']) == same: msg = 'qsignature ERROR: read same samples:%s\n' error.add(pair) elif float(i.attrib['score']) < replicate: msg = 'qsignature WARNING: read similar/replicate samples:%s\n' warnings.add(pair) elif float(i.attrib['score']) < related: msg = 'qsignature NOTE: read relative samples:%s\n' similar.add(pair) if msg: logger.info(msg % pair) warn_handle.write(msg % pair) return error, warnings, similar def _slice_chr22(in_bam, data): """ return only one BAM file with only chromosome 22 """ sambamba = config_utils.get_program("sambamba", data["config"]) out_file = "%s-chr%s" % os.path.splitext(in_bam) if not utils.file_exists(out_file): bam.index(in_bam, data['config']) with contextlib.closing(pysam.Samfile(in_bam, "rb")) as bamfile: bam_contigs = [c["SN"] for c in bamfile.header["SQ"]] chromosome = "22" if "chr22" in bam_contigs: chromosome = "chr22" with file_transaction(data, out_file) as tx_out_file: cmd = ("{sambamba} slice -o {tx_out_file} {in_bam} {chromosome}").format(**locals()) out = subprocess.check_output(cmd, shell=True) return out_file
verdurin/bcbio-nextgen
bcbio/pipeline/qcsummary.py
Python
mit
43,958
[ "pysam" ]
3fcf43ec1eef81f3e7a453c57c7c2b4b0570bf648f5f624b6fa3f973272d7644
#* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import sys from PyQt5 import QtCore, QtWidgets import peacock from .PostprocessorPlugin import PostprocessorPlugin class AxesSettingsPlugin(QtWidgets.QGroupBox, PostprocessorPlugin): """ Widget for controlling global axes settings. Args: axes[pyplot.Axes]: The axes object to apply the settings. args[tuple]: Passed to QtWidgets.QGroupBox widget Kwargs: key, value pairs are passed to MooseWidget object. """ #: list: List of all possible legend locations legend_loc = ['best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center'] #: pyqtSingal: Should be emitted when the axes have been modified. axesModified = QtCore.pyqtSignal() def __init__(self, *args, **kwargs): peacock.base.MooseWidget.__init__(self) QtWidgets.QWidget.__init__(self, *args) PostprocessorPlugin.__init__(self, **kwargs) self.MainLayout = QtWidgets.QVBoxLayout() self.setLayout(self.MainLayout) # Title self.TitleLayout = QtWidgets.QHBoxLayout() self.TitleLabel = QtWidgets.QLabel('Title:') self.Title = QtWidgets.QLineEdit() self.TitleLayout.addWidget(self.TitleLabel) self.TitleLayout.addWidget(self.Title) # Legend Toggles self.LegendLayout = QtWidgets.QGridLayout() self.Legend = QtWidgets.QCheckBox('Legend (Left) ') self.LegendLocation = QtWidgets.QComboBox() self.Legend2 = QtWidgets.QCheckBox('Legend (Right)') self.Legend2Location = QtWidgets.QComboBox() self.LegendLayout.addWidget(self.Legend, 0, 0) self.LegendLayout.addWidget(self.LegendLocation, 0, 1) self.LegendLayout.addWidget(self.Legend2, 1, 0) self.LegendLayout.addWidget(self.Legend2Location, 1, 1) self.MainLayout.addLayout(self.TitleLayout) self.MainLayout.addLayout(self.LegendLayout) self.setup() def onSetData(self, data): """ Initialize the widget. """ self.onAxesModified() @QtCore.pyqtSlot() def onAxesModified(self): """ Updates the Axes with the settings from this widget. """ # Legend helper function def setup_legend(box, loc, axes): has_data = axes.has_data() box.setEnabled(has_data) checked = box.isChecked() loc.setEnabled(checked and has_data) if has_data and checked: legend = axes.legend(loc=loc.currentText()) legend.set_visible(True) return legend = axes.get_legend() if legend: legend.set_visible(False) # Legends setup_legend(self.Legend, self.LegendLocation, self.axes(0)) setup_legend(self.Legend2, self.Legend2Location, self.axes(1)) # Title self.axes(0).set_title(self.Title.text()) self.axesModified.emit() def repr(self): """ Returns a representation of this widget for use in python script. """ output = [] if self.Legend.isChecked(): loc = self.legend_loc[self.LegendLocation.currentIndex()] output += ["axes0.legend(loc={})".format(repr(loc))] if self.Legend2.isChecked(): loc = self.legend_loc[self.Legend2Location.currentIndex()] output += ["axes1.legend(loc={})".format(repr(loc))] title = str(self.Title.text()) if title: output += ["axes0.set_title({})".format(repr(title))] if output: output.insert(0, '\n# Axes Settings') return output, [] def _setupTitle(self, qobject): """ Setup method for Title widget. """ qobject.editingFinished.connect(self.onAxesModified) def _setupLegend(self, qobject): """ Setup method for left-hand legend toggle widget. """ qobject.clicked.connect(self.onAxesModified) def _setupLegend2(self, qobject): """ Setup method of right-hand legend. """ qobject.clicked.connect(self.onAxesModified) def _setupLegendLocation(self, qobject): """ Setup method for legend (left) position widget. """ qobject.setEnabled(False) for loc in self.legend_loc: qobject.addItem(loc) qobject.currentIndexChanged.connect(self.onAxesModified) def _setupLegend2Location(self, qobject): """ Setup method for legend (right) position widget. """ qobject.setEnabled(False) for loc in self.legend_loc: qobject.addItem(loc) qobject.currentIndexChanged.connect(self.onAxesModified) def main(filenames): from ..PostprocessorViewer import PostprocessorViewer from .FigurePlugin import FigurePlugin from .PostprocessorSelectPlugin import PostprocessorSelectPlugin import mooseutils import matplotlib matplotlib.rcParams["figure.figsize"] = (6.25, 6.25) matplotlib.rcParams["figure.dpi"] = (100) widget = PostprocessorViewer(mooseutils.PostprocessorReader, timeout=None, plugins=[FigurePlugin, AxesSettingsPlugin, PostprocessorSelectPlugin]) widget.onSetFilenames(filenames) control = widget.currentWidget().AxesSettingsPlugin window = widget.currentWidget().FigurePlugin window.setFixedSize(QtCore.QSize(625, 625)) widget.show() return control, widget, window if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) control, widget, window = main(['../../../tests/input/white_elephant_jan_2016.csv']) sys.exit(app.exec_())
harterj/moose
python/peacock/PostprocessorViewer/plugins/AxesSettingsPlugin.py
Python
lgpl-2.1
6,046
[ "MOOSE" ]
3689f1a458896c897dbcbb7b04c82b314841ad175b438acf38a1f7ca4595a6bd
#!/usr/bin/env python2 desc="""Filter pairs with at least one read aligned. """ epilog="""Author: [email protected] Mizerow, 25/06/2014 """ import os, sys import pysam from datetime import datetime from Bio.Seq import Seq def pair2interleaved_fasta(pair): """Report interleaved fasta.""" return "".join(">%s/%s\n%s\n"%(a.qname, i, a.seq) for i, a in enumerate(pair, 1)) def sam2one_aligned(samfn, out, pair2out, verbose): """Parse SAM algs and report pairs with at least on read aligned.""" k = 0 if samfn=="-": sam = pysam.Samfile(samfn, "r") else: sam = pysam.Samfile(samfn) pair = [] for i, a in enumerate(sam, 1): if verbose and not i%1e5: sys.stderr.write(" %s %s\r"%(i, k)) #skip if both unmapped or if secondary or supplementary alg if a.is_unmapped and a.mate_is_unmapped or a.is_secondary or a.flag & 2048: continue #reverse complement if a.is_reverse: a.seq, a.qual = str(Seq(a.seq).reverse_complement()), a.qual[::-1] #count correct k += 1 pair.append(a) #report if len(pair)==2: out.write(pair2out(pair)) pair = [] #report stats info = "%s algs processed. %s [%.2f%s] reads reported.\n" sys.stderr.write(info%(i, k, k*100.0/i, '%')) def main(): import argparse usage = "bwa mem REF read1 read2 | %(prog)s -v" parser = argparse.ArgumentParser(description=desc, epilog=epilog, \ formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--version', action='version', version='1.0b') parser.add_argument("-v", "--verbose", default=False, action="store_true", help="verbose") parser.add_argument("-i", "--sam", default="-", help="input SAM/BAM stream [stdin]") parser.add_argument("-o", "--output", default=sys.stdout, type=argparse.FileType('w'), help="output stream [stdout]") o = parser.parse_args() if o.verbose: sys.stderr.write("Options: %s\n"%str(o)) #define function converting to output format pair2out = pair2interleaved_fasta #process sam2one_aligned(o.sam, o.output, pair2out, o.verbose) if __name__=='__main__': t0 = datetime.now() try: main() except KeyboardInterrupt: sys.stderr.write("\nCtrl-C pressed! \n") except IOError as e: sys.stderr.write("I/O error({0}): {1}\n".format(e.errno, e.strerror)) dt = datetime.now()-t0 sys.stderr.write("#Time elapsed: %s\n"%dt)
lpryszcz/bin
sam2one_aligned.py
Python
gpl-3.0
2,667
[ "BWA", "pysam" ]
c39b1c97c46101f29ba9b78cebf9233386e4e20638eab5deae0e48a7a756a6d9
import unittest, random, sys, time sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_glm, h2o_import as h2i, h2o_exec as h2e def define_params(): paramDict = { 'standardize': [None, 0,1], 'beta_epsilon': [None, 0.0001], 'family': [None, 'gaussian', 'binomial', 'poisson'], 'lambda': [0,1e-8,1e-4,1e-3], 'alpha': [0,0.8,0.75], 'ignored_cols': [1,'C1','1,2','C1,C2'], 'max_iter': [None, 10], 'higher_accuracy': [None, 0, 1], 'use_all_factor_levels': [None, 0, 1], 'lambda_search': [None, 0], # FIX! what if lambda is set when lambda_search=1 'tweedie_variance_power': [None, 0, 1], } return paramDict class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED SEED = h2o.setup_random_seed() h2o.init() @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_GLM2_lambda_search(self): csvPathname = 'covtype/covtype.20k.data' parseResult = h2i.import_parse(bucket='smalldata', path=csvPathname, schema='put', hex_key="covtype.20k") CLASS = 1 # make a binomial version execExpr="B.hex=%s; B.hex[,%s]=(B.hex[,%s]==%s)" % ('covtype.20k', 54+1, 54+1, CLASS) h2e.exec_expr(execExpr=execExpr, timeoutSecs=30) paramDict = define_params() for trial in range(8): params = {} colX = h2o_glm.pickRandGlmParams(paramDict, params) # override choices with these params = { 'response': 54, 'alpha': 0.1, 'max_iter': 8, # 'lambda': 1e-4, # 'lambda': 0, 'lambda': None, 'lambda_search': 1, 'n_folds': 1, } kwargs = params.copy() if 'family' not in kwargs or kwargs['family']=='binomial': bHack = {'destination_key': 'B.hex'} else: bHack = parseResult start = time.time() glm = h2o_cmd.runGLM(timeoutSecs=300, parseResult=bHack, **kwargs) # pass the kwargs with all the params, so we know what we asked for! h2o_glm.simpleCheckGLM(self, glm, None, **kwargs) h2o.check_sandbox_for_errors() print "glm end on ", csvPathname, 'took', time.time() - start, 'seconds' print "Trial #", trial, "completed\n" if __name__ == '__main__': h2o.unit_main()
111t8e/h2o-2
py/testdir_single_jvm/test_GLM2_lambda_search.py
Python
apache-2.0
2,630
[ "Gaussian" ]
69c14962cd2b5df0f586b13f9e95685a730cb6473ff39263b8d4d04126327be3
# ######################################################################### ## This program is part of 'MOOSE', the ## Messaging Object Oriented Simulation Environment. ## Copyright (C) 2015 Upinder S. Bhalla. and NCBS ## It is made available under the terms of the ## GNU Lesser General Public License version 2.1 ## See the file COPYING.LIB for the full notice. ######################################################################### import os import math import time import pylab import numpy import matplotlib.pyplot as plt import moose diffConst = 1e-11 chemdt = 0.001 # Tested various dts, this is reasonable. diffdt = 0.001 plotdt = 0.01 animationdt = 0.01 runtime = 1 useGssa = True sdir = os.path.dirname( __file__ ) def makeModel(): model = moose.Neutral( '/model' ) # Make neuronal model. It has no channels, just for geometry cell = moose.loadModel( os.path.join(sdir,'./spinyNeuron.p'), '/model/cell', 'Neutral' ) print(cell) # We don't want the cell to do any calculations. Disable everything. for i in moose.wildcardFind( '/model/cell/##' ): i.tick = -1 # create container for model model = moose.element( '/model' ) chem = moose.Neutral( '/model/chem' ) # The naming of the compartments is dicated by the places that the # chem model expects to be loaded. compt0 = moose.NeuroMesh( '/model/chem/compt0' ) compt0.separateSpines = 1 compt0.geometryPolicy = 'cylinder' compt1 = moose.SpineMesh( '/model/chem/compt1' ) moose.connect( compt0, 'spineListOut', compt1, 'spineList', 'OneToOne' ) compt2 = moose.PsdMesh( '/model/chem/compt2' ) moose.connect( compt0, 'psdListOut', compt2, 'psdList', 'OneToOne' ) #reacSystem = moose.loadModel( 'simpleOsc.g', '/model/chem', 'ee' ) makeChemModel( compt0, True ) # Populate all 3 compts with the chem system. makeChemModel( compt1, False ) makeChemModel( compt2, True ) compt0.diffLength = 2e-6 # This will be over 100 compartments. # This is the magic command that configures the diffusion compartments. compt0.subTreePath = cell.path + "/#" moose.showfields( compt0 ) # Build the solvers. No need for diffusion in this version. ksolve0 = moose.Ksolve( '/model/chem/compt0/ksolve' ) if useGssa: ksolve1 = moose.Gsolve( '/model/chem/compt1/ksolve' ) ksolve2 = moose.Gsolve( '/model/chem/compt2/ksolve' ) else: ksolve1 = moose.Ksolve( '/model/chem/compt1/ksolve' ) ksolve2 = moose.Ksolve( '/model/chem/compt2/ksolve' ) dsolve0 = moose.Dsolve( '/model/chem/compt0/dsolve' ) dsolve1 = moose.Dsolve( '/model/chem/compt1/dsolve' ) dsolve2 = moose.Dsolve( '/model/chem/compt2/dsolve' ) stoich0 = moose.Stoich( '/model/chem/compt0/stoich' ) stoich1 = moose.Stoich( '/model/chem/compt1/stoich' ) stoich2 = moose.Stoich( '/model/chem/compt2/stoich' ) # Configure solvers stoich0.compartment = compt0 stoich1.compartment = compt1 stoich2.compartment = compt2 stoich0.ksolve = ksolve0 stoich1.ksolve = ksolve1 stoich2.ksolve = ksolve2 stoich0.dsolve = dsolve0 stoich1.dsolve = dsolve1 stoich2.dsolve = dsolve2 stoich0.reacSystemPath = '/model/chem/compt0/#' stoich1.reacSystemPath = '/model/chem/compt1/#' stoich2.reacSystemPath = '/model/chem/compt2/#' assert( stoich0.numVarPools == 1 ) assert( stoich0.numProxyPools == 0 ) assert( stoich0.numRates == 1 ) assert( stoich1.numVarPools == 1 ) assert( stoich1.numProxyPools == 0 ) if useGssa: assert( stoich1.numRates == 2 ) assert( stoich2.numRates == 2 ) else: assert( stoich1.numRates == 1 ) assert( stoich2.numRates == 1 ) assert( stoich2.numVarPools == 1 ) assert( stoich2.numProxyPools == 0 ) dsolve0.buildNeuroMeshJunctions( dsolve1, dsolve2 ) #stoich0.buildXreacs( stoich1 ) #stoich1.buildXreacs( stoich2 ) #stoich0.filterXreacs() #stoich1.filterXreacs() #stoich2.filterXreacs() Ca_input_dend = moose.vec( '/model/chem/compt0/Ca_input' ) print(len( Ca_input_dend )) for i in range( 60 ): Ca_input_dend[ 3 + i * 3 ].conc = 2.0 Ca_input_PSD = moose.vec( '/model/chem/compt2/Ca_input' ) print((len( Ca_input_PSD ))) for i in range( 5 ): Ca_input_PSD[ 2 + i * 2].conc = 1.0 # Create the output tables num = compt0.numDiffCompts - 1 graphs = moose.Neutral( '/model/graphs' ) makeTab( 'Ca_soma', '/model/chem/compt0/Ca[0]' ) makeTab( 'Ca_d1', '/model/chem/compt0/Ca[1]' ) makeTab( 'Ca_d2', '/model/chem/compt0/Ca[2]' ) makeTab( 'Ca_d3', '/model/chem/compt0/Ca[3]' ) makeTab( 'Ca_s3', '/model/chem/compt1/Ca[3]' ) makeTab( 'Ca_s4', '/model/chem/compt1/Ca[4]' ) makeTab( 'Ca_s5', '/model/chem/compt1/Ca[5]' ) makeTab( 'Ca_p3', '/model/chem/compt2/Ca[3]' ) makeTab( 'Ca_p4', '/model/chem/compt2/Ca[4]' ) makeTab( 'Ca_p5', '/model/chem/compt2/Ca[5]' ) def makeTab( plotname, molpath ): tab = moose.Table2( '/model/graphs/' + plotname ) # Make output table # connect up the tables moose.connect( tab, 'requestOut', moose.element( molpath ), 'getConc' ); def makeDisplay(): plt.ion() fig = plt.figure( figsize=(10,12) ) dend = fig.add_subplot( 411 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'Dend voxel #' ) plt.legend() timeLabel = plt.text(200, 0.5, 'time = 0') spine = fig.add_subplot( 412 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'Spine voxel #' ) plt.legend() psd = fig.add_subplot( 413 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'PSD voxel #' ) plt.legend() timeSeries = fig.add_subplot( 414 ) timeSeries.set_ylim( 0, 2 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'time (seconds)' ) plt.legend() Ca = moose.vec( '/model/chem/compt0/Ca' ) Ca_input = moose.vec( '/model/chem/compt0/Ca_input' ) line1, = dend.plot( list(range( len( Ca ))), Ca.conc, label='Ca' ) line2, = dend.plot( list(range( len( Ca_input ))), Ca_input.conc, label='Ca_input' ) dend.set_ylim( 0, 2 ) Ca = moose.vec( '/model/chem/compt1/Ca' ) line3, = spine.plot( list(range( len( Ca ))), Ca.conc, label='Ca' ) spine.set_ylim( 0, 1 ) Ca = moose.vec( '/model/chem/compt2/Ca' ) Ca_input = moose.vec( '/model/chem/compt2/Ca_input' ) line4, = psd.plot( list(range( len( Ca ))), Ca.conc, label='Ca' ) line5, = psd.plot( list(range( len( Ca_input ))), Ca_input.conc, label='Ca_input' ) psd.set_ylim( 0, 1 ) fig.canvas.draw() return ( timeSeries, dend, spine, psd, fig, line1, line2, line3, line4, line5, timeLabel ) def updateDisplay( plotlist ): Ca = moose.vec( '/model/chem/compt0/Ca' ) Ca_input = moose.vec( '/model/chem/compt0/Ca_input' ) plotlist[5].set_ydata( Ca.conc ) plotlist[6].set_ydata( Ca_input.conc ) Ca = moose.vec( '/model/chem/compt1/Ca' ) plotlist[7].set_ydata( Ca.conc ) Ca = moose.vec( '/model/chem/compt2/Ca' ) Ca_input = moose.vec( '/model/chem/compt2/Ca_input' ) plotlist[8].set_ydata( Ca.conc ) plotlist[9].set_ydata( Ca_input.conc ) plotlist[4].canvas.draw() def finalizeDisplay( plotlist, cPlotDt ): for x in moose.wildcardFind( '/model/graphs/#[ISA=Table2]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * cPlotDt line1, = plotlist[0].plot( pos, x.vector, label=x.name ) plotlist[4].canvas.draw() print( "Hit '0' to exit" ) try: raw_input() except NameError as e: #python3 input( ) def makeChemModel( compt, doInput ): """ This function setus up a simple chemical system in which Ca input comes to the dend and to selected PSDs. There is diffusion between PSD and spine head, and between dend and spine head. :: Ca_input ------> Ca // in dend and spine head only. """ # create molecules and reactions Ca = moose.Pool( compt.path + '/Ca' ) Ca.concInit = 0.08*1e-3 Ca.diffConst = diffConst if doInput: Ca_input = moose.BufPool( compt.path + '/Ca_input' ) Ca_input.concInit = 0.08*1e-3 Ca_input.diffConst = diffConst rInput = moose.Reac( compt.path + '/rInput' ) moose.connect( rInput, 'sub', Ca, 'reac' ) moose.connect( rInput, 'prd', Ca_input, 'reac' ) rInput.Kf = 100 # 1/sec rInput.Kb = 100 # 1/sec else: Ca_sink = moose.BufPool( compt.path + '/Ca_sink' ) Ca_sink.concInit = 0.08*1e-3 rSink = moose.Reac( compt.path + '/rSink' ) moose.connect( rSink, 'sub', Ca, 'reac' ) moose.connect( rSink, 'prd', Ca_sink, 'reac' ) rSink.Kf = 10 # 1/sec rSink.Kb = 10 # 1/sec def main(): """ This example illustrates and tests diffusion embedded in the branching pseudo-1-dimensional geometry of a neuron. An input pattern of Ca stimulus is applied in a periodic manner both on the dendrite and on the PSDs of the 13 spines. The Ca levels in each of the dend, the spine head, and the spine PSD are monitored. Since the same molecule name is used for Ca in the three compartments, these are automagially connected up for diffusion. The simulation shows the outcome of this diffusion. This example uses an external electrical model file with basal dendrite and three branches on the apical dendrite. One of those branches has the 13 spines. The model is set up to run using the Ksolve for integration and the Dsolve for handling diffusion. The timesteps here are not the defaults. It turns out that the chem reactions and diffusion in this example are sufficiently fast that the chemDt has to be smaller than default. Note that this example uses rates quite close to those used in production models. The display has four parts: a. animated line plot of concentration against main compartment#. b. animated line plot of concentration against spine compartment#. c. animated line plot of concentration against psd compartment#. d. time-series plot that appears after the simulation has ended. """ makeModel() plotlist = makeDisplay() # Schedule the whole lot - autoscheduling already does this. for i in range( 11, 17 ): moose.setClock( i, chemdt ) # for the chem objects moose.setClock( 10, diffdt ) # for the diffusion moose.setClock( 18, plotdt ) # for the output tables. moose.reinit() t1 = time.time( ) for i in numpy.arange( 0, runtime, animationdt ): moose.start( animationdt ) plotlist[10].set_text( "time = %d" % i ) updateDisplay( plotlist ) print( 'Total time taken %g' % ( time.time() - t1 ) ) finalizeDisplay( plotlist, plotdt ) # Run the 'main' if this script is executed standalone. if __name__ == '__main__': main()
BhallaLab/moose-examples
snippets/diffSpinyNeuron.py
Python
gpl-2.0
10,880
[ "MOOSE", "NEURON" ]
2b5117f4a3f0f22c1676a952932f5d3109da0b9e40def856b1e129b1a8113297
#!/usr/bin/env python ############################################################################### # This script intends to create a model of disk and envelope (Keto&Zhang 2010)# # And would produce SPARX compatible HDF and VTK file used for visualization # ############################################################################### from tables import * from numpy import * from math import * from scipy import optimize disk=1 env=1 writevtk=1 # unit converter Msun2MKS=(6.022E23/0.0028)*0.19889E+31/(100*0.14960E+12)**3 Au2MKS=100*0.14960E+12/(100*365.25*24*60*60) Au2pc=100./206260 prho2tem=1E-3*1.3174*1.6611295681063124e-24*(Au2MKS**2)/1.3806488E-23 km2m=1e3 pc2m=30.857e15 pc2km=30.857e12 mean_molecular_mass=2*1.67*1.67e-27 # kg # resolution and domain size Rc_out = 0.05 #pc Rc_in = 0.0 #Rc_in = 26.*0.0046491/206260 #pc Z_max=0.05 #pc stretch_ratioRc=1.02 stretch_ratioZ=1.02 nr=64 nz=128 np=1 # Physical parameter #parameters from Keto&Zhang rho_e0=7.9e4 *1e6 # Envelope density at Rd (m^-3) Rd_int=6900 # (AU) Ap=5.1 Mt=10.7 # stellar mass (Msun) Rt=26.*0.0046491/206260 p=-1 BT=15.0 vk= 1.2 # Keplerian velocity (km/s) Rd=float(Rd_int)/206260. # Centrifugal Radius (pc) rho_d0=Ap*rho_e0 H0=0.01*Rt Tt=30000. Mar = rho_e0*4.*pi*Rd*Rd*vk*(mean_molecular_mass*pc2m**2*km2m) # mass accretion rate (kg/s) G=4.302e-3 # gravitational constant (pc Msun^-1 (km/s)^2) sigma=5.67037321e-8 # Stefan-Boltzmann constant (W m^-2 K^-4) X_mol=3e-8 X_mol2=3e-10 V_t=3000. #kapp_d="powerlaw, 1.199e+12, 1.000e+04, 1.500e+00" kapp_d="table,jena_bare_e6" T_cmb=2.73 gas_to_dust=100.0 molec="" geom='cyl3d' root="/" if (disk==1 and env==1): vtkfilea='2Denv_disk_Rd'+str(Rd_int)+'.vtk' vtkfileb='2Denv_disk_vel_Rd'+str(Rd_int)+'.vtk' elif(disk==0 and env==1): vtkfilea='2Denv_Rd'+str(Rd_int)+'.vtk' vtkfileb='2Denv_vel_Rd'+str(Rd_int)+'.vtk' elif(disk==1 and env==0): vtkfilea='2Ddisk_Rd'+str(Rd_int)+'.vtk' vtkfileb='2Ddisk_vel_Rd'+str(Rd_int)+'.vtk' def CubicEq(xx): global pp,qq return xx*xx*xx+pp*xx+qq # Define a user record to characterize some kind of particles class Particle(IsDescription): LEVEL=Int32Col(pos=0) POS=Int64Col(pos=1) geom=StringCol(itemsize=6,pos=2) X_max=Float64Col(shape=3,pos=3) X_min=Float64Col(shape=3,pos=4) X_cen=Float64Col(shape=3,pos=5) n_H2=Float64Col(pos=6) T_k=Float64Col(pos=7) X_mol=Float64Col(pos=8) X_pH2=Float64Col(pos=9) X_oH2=Float64Col(pos=10) X_e=Float64Col(pos=11) X_H=Float64Col(pos=12) X_He=Float64Col(pos=13) V_t=Float64Col(pos=14) V_edge=FloatCol(shape=(6,3),pos=15) V_cen=FloatCol(shape=3,pos=16) B_cen=FloatCol(shape=3,pos=17) ds=FloatCol(pos=18) NCHILDREN=Int64Col(pos=19) NAXES=Int64Col(shape=3,pos=20) T_d=Float64Col(pos=21) kapp_d=StringCol(itemsize=64,pos=22) T_ff=Float64Col(pos=23) kapp_ff=StringCol(itemsize=64,pos=24) T_bb=Float64Col(pos=25) def writezone(direc,lev,position,xmax,xmin,naxes): # Create ZONE table table = h5file.createTable(direc, 'ZONE', Particle, "Grid table") particle = table.row particle['LEVEL'] = lev particle['POS'] = position particle['geom'] = geom particle['X_max'] =[ xmax[0],xmax[1],xmax[2] ] particle['X_min'] =[ xmin[0],xmin[1],xmin[2] ] particle['X_cen'] =[ 0.5*(xmin[0]+xmax[0]),0.5*(xmin[1]+xmax[1]),0.5*(xmin[2]+xmax[2]) ] particle['NCHILDREN'] =naxes[0]*naxes[1]*naxes[2] particle['NAXES'] =naxes #Insert a new particle record particle.append() table.flush() del table.attrs.FIELD_0_FILL del table.attrs.FIELD_1_FILL del table.attrs.FIELD_2_FILL del table.attrs.FIELD_3_FILL del table.attrs.FIELD_4_FILL del table.attrs.FIELD_5_FILL del table.attrs.FIELD_6_FILL del table.attrs.FIELD_7_FILL del table.attrs.FIELD_8_FILL del table.attrs.FIELD_9_FILL del table.attrs.FIELD_10_FILL del table.attrs.FIELD_11_FILL del table.attrs.FIELD_12_FILL del table.attrs.FIELD_13_FILL del table.attrs.FIELD_14_FILL del table.attrs.FIELD_15_FILL del table.attrs.FIELD_16_FILL del table.attrs.FIELD_17_FILL del table.attrs.FIELD_18_FILL del table.attrs.FIELD_19_FILL del table.attrs.FIELD_20_FILL del table.attrs.FIELD_21_FILL del table.attrs.FIELD_22_FILL del table.attrs.FIELD_23_FILL del table.attrs.FIELD_24_FILL del table.attrs.FIELD_25_FILL del table.attrs.NROWS def writegrid(direc,lev,naxes,Raxis,Paxis,Zaxis,nc): global pp,qq # Create GRID table table = h5file.createTable(direc, 'GRID', Particle, "Grid table") particle = table.row density=zeros(naxes) temperature=zeros(naxes) Vx=zeros(naxes) Vy=zeros(naxes) Vz=zeros(naxes) mass_env=0. mass_disc=0. total_volume = 0. for i in range(naxes[0]): for j in range(naxes[1]): for k in range(naxes[2]): # write a row of grid table particle['LEVEL'] = lev+1 particle['POS'] = ( naxes[1] * i + j ) * naxes[2] + k particle['geom'] = geom particle['X_max'] =[ Raxis[i+1],Paxis[j+1],Zaxis[k+1] ] particle['X_min'] =[ Raxis[i] ,Paxis[j] ,Zaxis[k] ] particle['X_cen'] = [ 0.5*(Raxis[i]+Raxis[i+1]), 0.5*(Paxis[j]+Paxis[j+1]), 0.5*(Zaxis[k]+Zaxis[k+1]) ] # write out the non-empty-leaf zone Rc = particle['X_cen'][0] phi = particle['X_cen'][1] Z = particle['X_cen'][2] R = sqrt( Rc * Rc + Z * Z) theta = acos( Z / R ) pp = R/Rd-1. qq = -cos(theta)*R/Rd cos_theta0 = optimize.brentq(CubicEq, -1.,1.) if (cos_theta0 > 1. or cos_theta0 < -1.): print cos_theta0,pp,qq volume = 0.5 * ( Raxis[i+1]**2 - Raxis[i]**2 ) * ( Paxis[j+1] - Paxis[j] ) * ( Zaxis[k+1] - Zaxis[k] ) total_volume = total_volume + volume if(env==1): density_env = rho_e0 * ((R/Rd)**(-1.5)) * ((1+cos(theta)/cos_theta0)**(-0.5)) * (1 + ((R/Rd)**(-1)) * (3*cos_theta0**2-1.0) )**(-1) mass_env += density_env*volume else: density_env = 0.0 if (R<=Rd and disk==1): rho_0 = rho_d0*(Rd/Rc)**2.25 H=H0*(Rc/Rt)**1.25 density_disc = rho_0*exp(-(R*R-Rc*Rc)/(2.*H*H)) mass_disc += density_disc*volume else: density_disc =0. density[i,j,k] = density_env + density_disc Vkep = sqrt(G*Mt/R) Vp_disc = sqrt(G*Mt/Rc) Vr_env = -Vkep*sqrt(1.+cos(theta)/cos_theta0) Vt_env = Vkep*((cos_theta0-cos(theta))/sin(theta))*sqrt(1.+cos(theta)/cos_theta0) Vp_env = Vkep*(sqrt(1.-cos_theta0*cos_theta0)/sin(theta))*sqrt(1.+cos(theta)/cos_theta0) if(density[i,j,k]!=0.0): Vr = (density_env*Vr_env)/density[i,j,k] Vt = (density_env*Vt_env)/density[i,j,k] Vp = (density_env*Vp_env+density_disc*Vp_disc)/density[i,j,k] T_env = Tt*(Rt/(2.*R))**(2./(4+p)) T_disc = BT * ( (3.*G*Mt*Mar/(4.*pi*pc2km*pc2km*Rc*Rc*Rc*sigma)) * (1.-sqrt(Rt/Rc)) )**0.25 temperature[i,j,k]=(density_disc*T_disc+density_env*T_env)/density[i,j,k] else: Vr = 0.0 Vt = 0.0 Vp = 0.0 temperature[i,j,k] = 0.0 if(writevtk): Vx[i,j,k] = cos(phi)*sin(theta)*Vr + cos(phi)*cos(theta)*Vt -sin(phi)*Vp Vy[i,j,k] = sin(phi)*sin(theta)*Vr + sin(phi)*cos(theta)*Vt +cos(phi)*Vp Vz[i,j,k] = cos(theta)*Vr - sin(theta)*Vt particle['n_H2'] = density[i,j,k] particle['V_cen'] = [ km2m * ( Vr*sin(theta) + Vt*cos(theta) ), km2m * Vp, km2m * ( Vr*cos(theta) - Vt*sin(theta) ) ] particle['T_k'] = temperature[i,j,k] if ( temperature[i,j,k] >= 90.0 ): particle['X_mol'] = X_mol else: particle['X_mol'] = X_mol2 #particle['X_mol'] = X_mol particle['V_t'] = V_t particle['T_d'] = particle['T_k'] particle['kapp_d'] = kapp_d nc=nc+1 # Insert a new particle record particle.append() mass_env=mass_env*pc2m**3*mean_molecular_mass/0.19889E+31 mass_disc=mass_disc*pc2m**3*mean_molecular_mass/0.19889E+31 print 'Total envelope mass =',mass_env,'(solar mass)' print 'Total disc mass =',mass_disc,'(solar mass)' print 'Total mass =',mass_env+mass_disc,'(solar mass)' print 'Total volume =',total_volume,'(pc^3)' if (writevtk): fvtk1=open(vtkfilea, mode = "w") print >>fvtk1,'# vtk DataFile Version 3.0' print >>fvtk1,'ENV_DISK' print >>fvtk1,'ASCII' print >>fvtk1,'DATASET STRUCTURED_GRID' print >>fvtk1,'DIMENSIONS %(0)d %(1)d %(2)d'%{'0':nr+1,'1':np+1,'2':nz+1} print >>fvtk1,'POINTS %(0)d float'%{'0':(nr+1)*(nz+1)*(np+1)} for k in range(nz+1): for j in range(np+1): for i in range(nr+1): if(j==0): print >>fvtk1,'%(0)e %(1)d %(2)e'%{'0':Rc_p[i],'1':0,'2':Z_p[k]} elif(j==1): print >>fvtk1,'%(0)e %(1)e %(2)e'%{'0':Rc_p[i],'1':1e-6,'2':Z_p[k]} print >>fvtk1,'CELL_DATA %(0)d'%{'0':naxes[0]*naxes[1]*naxes[2]} print >>fvtk1,'SCALARS density float 1' print >>fvtk1,'LOOKUP_TABLE default' for k in range(naxes[2]): for j in range(naxes[1]): for i in range(naxes[0]): print >>fvtk1,'%(0)e'%{'0':density[i,j,k]}, print >>fvtk1,'SCALARS temperature float 1' print >>fvtk1,'LOOKUP_TABLE default' for k in range(naxes[2]): for j in range(naxes[1]): for i in range(naxes[0]): print >>fvtk1,'%(0)e'%{'0':temperature[i,j,k]}, fvtk1.close() fvtk2=open(vtkfileb, mode = "w") print >>fvtk2,'# vtk DataFile Version 3.0' print >>fvtk2,'ENV_DISK' print >>fvtk2,'ASCII' print >>fvtk2,'DATASET STRUCTURED_GRID' print >>fvtk2,'DIMENSIONS %(0)d %(1)d %(2)d'%{'0':nr,'1':nz,'2':np} print >>fvtk2,'POINTS %(0)d float'%{'0':nr*nz*np} for j in range(nz): for i in range(nr): print >>fvtk2,'%(0)e %(1)d %(2)e'%{'0':0.5*(Rc_p[i]+Rc_p[i+1]),'1':0,'2':Z_p[j]} print >>fvtk2,'POINT_DATA %(0)d'%{'0':naxes[0]*naxes[1]*naxes[2]} print >>fvtk2,'VECTORS velocity float' for k in range(naxes[2]): for j in range(naxes[1]): for i in range(naxes[0]): print >>fvtk2,'%(0)e %(1)e %(2)e'%{'0':-Vx[i,j,k],'1':-Vy[i,j,k],'2':Vz[i,j,k]} fvtk2.close() table.flush() del table.attrs.FIELD_0_FILL del table.attrs.FIELD_1_FILL del table.attrs.FIELD_2_FILL del table.attrs.FIELD_3_FILL del table.attrs.FIELD_4_FILL del table.attrs.FIELD_5_FILL del table.attrs.FIELD_6_FILL del table.attrs.FIELD_7_FILL del table.attrs.FIELD_8_FILL del table.attrs.FIELD_9_FILL del table.attrs.FIELD_10_FILL del table.attrs.FIELD_11_FILL del table.attrs.FIELD_12_FILL del table.attrs.FIELD_13_FILL del table.attrs.FIELD_14_FILL del table.attrs.FIELD_15_FILL del table.attrs.FIELD_16_FILL del table.attrs.FIELD_17_FILL del table.attrs.FIELD_18_FILL del table.attrs.FIELD_19_FILL del table.attrs.FIELD_20_FILL del table.attrs.FIELD_21_FILL del table.attrs.FIELD_22_FILL del table.attrs.FIELD_23_FILL del table.attrs.FIELD_24_FILL del table.attrs.FIELD_25_FILL del table.attrs.NROWS return nc #### GRID GENERATION #### # Coordinate : RADIUS points (streching) r0 = (Rc_out-Rc_in)*(stretch_ratioRc-1.)/(stretch_ratioRc**(nr)-1.) Rc_p = zeros(nr+1) for i in range(nr+1): if (i==0): Rc_p[i] = Rc_in dRc = r0 else: Rc_p[i] = Rc_p[i-1]+dRc dRc = dRc*stretch_ratioRc # Coordinate : PHI points (phi symmetric, np=1) phi_p = zeros(np+1) phi_p[0]=0.0 phi_p[np]=2.0*pi # Coordinate : THETA points (streching) Z0 = Z_max*(stretch_ratioZ-1.)/(stretch_ratioZ**(nz/2)-1.) Z_p = zeros(nz+1) for j in range(nz+1): if (j==0): Z_p[j] = -Z_max dz=Z0*stretch_ratioZ**(nz/2-1) elif (j<nz/2): Z_p[j]=Z_p[j-1]+dz dz=dz/stretch_ratioZ elif (j==nz/2): Z_p[j] = 0.0 dz=Z0 elif (j>nz/2): Z_p[j] = Z_p[j-1]+dz dz=dz*stretch_ratioZ elif (j==nz): Z_p[j] = Z_max ######################## filename = "model_env_disk" h5file = openFile(filename, mode = "w", title = "Test file") h5file.delNodeAttr("/", "TITLE", name=None) h5file.delNodeAttr("/", "CLASS", name=None) h5file.delNodeAttr("/", "VERSION", name=None) h5file.delNodeAttr("/", "PYTABLES_FORMAT_VERSION", name=None) h5file.setNodeAttr("/", "molec", molec, name=None) h5file.setNodeAttr("/", "T_cmb", T_cmb, name=None) h5file.setNodeAttr("/", "gas_to_dust", gas_to_dust, name=None) h5file.setNodeAttr("/", "velfield", "grid ", name=None) writezone(root,-1,0, [Rc_p[nr],phi_p[np],Z_p[nz]], [Rc_p[0],phi_p[0],Z_p[0]], [nr,np,nz]) ncell=writegrid(root,-1, [nr,np,nz], Rc_p, phi_p, Z_p, 0) h5file.close() print 'Total cells=',ncell if (writevtk): print "Wrote out",vtkfilea,vtkfileb
itahsieh/sparx-alpha
preprocessor/script/CYL2D_preprocessor.py
Python
gpl-3.0
12,902
[ "VTK" ]
bd03dcbf498da9c5c0a9f4d055e98563ff3955a60d1ee463b3c6f378249599ac
#!/usr/bin/env python # Kyle Hernandez # Although not required in any sense, share the love and pass on attribution # when using or modifying this code. # # To the extent possible under law, the author(s) have dedicated all copyright # and related and neighboring rights to this software to the public domain # worldwide. This software is distributed without any warranty. # # You should have received a copy of the CC0 Public Domain Dedication along with # this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/> # import sys import time def main(): """ --------------------------------------------------------------------------- AUTHOR: Kyle Hernandez EMAIL: [email protected] Takes the best hits of FH on Foxtail and extracts those locations from the Foxtail genome. Creates a fasta file of these sites for blasting. --------------------------------------------------------------------------- USAGE: ExtractFox.py inbest.tab infasta.fa outfasta.fa ARGUMENTS: inbest.tab - Tab delimited output from Blast Parser infasta.fa - The Foxtail reference outfasta.fa - The output file for the cut Foxtail reference. """ cut_dict = get_cut_sites() process_reference(cut_dict) def get_cut_sites(): """ Reads the blast output and returns a dict of start/stop positions 0-index scaled """ dic = {} with open(inbest, 'rU') as f: for line in f: cols = line.rstrip().split('\t') ch = cols[1] p1 = min([int(cols[8]), int(cols[9])]) p2 = max([int(cols[8]), int(cols[9])]) if p1 - 1 < 0: start = 0 else: start = p1 - 1 val = (start, p2) if ch not in dic: dic[ch] = [] dic[ch].append(val) return dic def process_reference(dic): """ Reads in the Foxtail fasta reference file and cuts at given positions. """ print 'Processing reference...' curr_scaff = '' curr_seq = [] o = open(outfasta, 'wb') with open(infasta, 'rU') as f: for line in f: if line.startswith('>') and not curr_scaff: curr_scaff = line.rstrip().split('>')[1] elif line.startswith('>') and curr_scaff: seq = ''.join(curr_seq) cuts = process_scaff(curr_scaff, dic[curr_scaff], seq) [print_cuts(j, curr_scaff, o) for j in cuts] curr_scaff = line.rstrip().split('>')[1] curr_seq = [] else: curr_seq.append(line.rstrip()) seq = ''.join(curr_seq) cuts = process_scaff(curr_scaff, dic[curr_scaff], seq) [print_cuts(j, curr_scaff, o) for j in cuts] o.close() def process_scaff(scf, pos, seq): """ Returns cut sites. """ for i in pos: if not seq[i[0]:i[1]]: print scf, i, len(seq) return [(i, seq[i[0]:i[1]]) for i in pos if seq[i[0]:i[1]]] def print_cuts(c, s, o): """ Write cut reference to file """ o.write('>' + str(s) + '_' + str(c[0][0]) + '_' + str(c[0][1]) + '\n') o.write(c[1] + '\n') if __name__ == '__main__': start = time.time() if len(sys.argv) != 4: print main.__doc__ sys.exit() inbest = sys.argv[1] infasta = sys.argv[2] outfasta = sys.argv[3] main() print "Finished; Took:", time.time() - start, "seconds."
kmhernan/Publications
Lowry-2013-FxH-Map/python/SyntenyScripts/extract_fox.py
Python
unlicense
3,469
[ "BLAST" ]
ba84fd3a832ff78cb539d22ddefc85f320786fdf25474753e9e72070aa1fc543
import genepy import numpy as np import os from Bio import SeqRecord # NEXT TIME : # Two errors to deal with : # - Err.: one or more missing sequences in block 2 # --- solutions - Guindon ? # --- solutions - read .phy generated by ClustalO, and rewrite it using BioPython # - Duplicate names in PHYLIP files due to truncation. Way around ? # .remove() - remove some sequences from the array # Base sequence list class class seqarray : """GenePy Sequence Array object. For documentation, see http://github.io/QCaudron/genepy """ def __init__(self, source) : """Constructor. Argument : a filename or a list of strings that represent sequences. - mysequences = genepy.seqarray("from_genbank.gb") -- loads the sequences in from_genbank.gb as BioPython Bio.Seq objects. - mysequences = genepy.seqarray(seq_list), where seq_list is a list of strings ( such as ["ACTG", "AGTA", "TTGC"] ) converts these to BioPython Bio.Seq objects using the generic_dna alphabet ( for now ). """ # If we're reading in a sequence set from a file if type(source) is str : if os.path.isfile(source) : self.seq = genepy.readalignment(source) self.filename = source else : print "%s not found, aborting." % source # If we're fed a list elif type(source) is list : self.seq = [SeqRecord.SeqRecord(s) for s in source] self.filename = "genepy.fasta" else : raise TypeError("Expected a filename or a list of strings.") # Generate static members self.update() def __str__(self) : """Long string representation of a genepy.seqarray object.""" out = self.__repr__() out += ("-- C+G content : %.03f\n" % (self.statistics["C"].mean() + self.statistics["G"].mean())) out += ("-- From file : %s" % self.filename.split("/")[-1]) return out def __repr__(self) : """Short string representation of a genepy.seqarray object.""" summary = "GenePy sequence array (genepy.seqarray) :\n" summary += "-- Sequences : %d\n" % self.len summary += "-- Mean length : %.01f (min %d, max %d)\n" % \ (np.array(self.seq_len).mean(), np.min(self.seq_len), np.max(self.seq_len)) return summary def __iter__(self) : """Iterator function.""" self.it = 0 return self def next(self) : """Next object in iteration.""" if self.it == self.len : raise StopIteration else : self.it += 1 return self.seq[self.it - 1] def update(self) : """Updates the member variables of a genepy.seqarray object. This function is called whenever sequences are aligned or trimmed. Any changes made directly to genepy.seqarray variables ( such as to the sequence list, genepy.seqarray.seq ), will not be reflected in other member variables ( such as genepy.seqarray.len ) until this function is called. In general, as long as the user calls genepy.seqarray methods only, and no changes are otherwise made to the object, this method does not need to be used. """ # Number of sequences self.len = len(self.seq) # Sequence lengths self.seq_len = np.array([len(s.seq) for s in self.seq]) # Alignment numerical array l = self.seq_len.max() if type(self.seq_len) == np.ndarray else self.seq_len self.array = genepy.alignmentarray(self.seq, length = l) # Statistics self.statistics = genepy.calcstats(self.seq) # Show sequences def show(self) : """Display the sequences visually as a matplotlib.pyplot.imshow() Colours : -- A : dark green -- C : dark red -- G : orange -- T : light green -- unknown / empty : black Cytosine and guanine are represented by "warm" colours; adenine and thymine are shown in "cold" colours. """ genepy.showalignment(self.array) # Align sequences def align(self, force = True, it = False, full = False, full_iter = False, auto = True, threads = False) : """Align the array of sequences using ClustalO. -- force : True / False; overwrite filename, if it exists -- it : False, integers > 0; iterate the guide tree -- full : True / False; use full distance matrix for guide-tree calculation -- full_iter : True / False; use full distance matrix during iteration only -- auto : True / False; automatically select options for speed and accuracy -- threads : False, integers > 0; limit the number of threads; False uses all """ # System call to ClustalO genepy.align(self.filename, force, threads, full, full_iter, it, auto) # Read aligned sequence array self.seq = genepy.readalignment(os.path.splitext(self.filename)[0] + "_aligned_genepy.phy") # Update static members self.update() def phylotree(self, nucleotide_frequency = "empirical", bootstrap = -4, search_algorithm = "BEST") : """Construct a phylogenetic tree using PhyML. -- nucleotide_frequency : "empirical" or "max_likelihood" -- bootstrap : -4 for SH-like branch supports only; -2 for Chi^2; -1 for approximate likelihood ratio; 0 for no bootstrapping, integers > 0 for the number of bootstraps to perform, will try to use MPI -- search_algorithm : "NNI" for nearest-neighbour interchange; "SPR" for subtree pruning and regrafting; "BEST" for best of both """ if not os.path.isfile(os.path.splitext(self.filename)[0] + "_aligned_genepy.phy") : print "GenePy can't find an aligned sequence file for %s.\nTry calling .align()." % \ self.filename.split("/")[-1] return genepy.phylotree(self.filename, nucleotide_frequency, bootstrap, search_algorithm) def stats(self) : """Display sequence array statistics.""" # Display statistics genepy.stats(self.statistics) def trimalignment(self, array = None, left = None, right = None) : """Trim the sequence array by a given number of nucleotides from left and right. left, right : like performing mysequences.seq = mysequences.seq[left:right] """ self.seq = genepy.trimalignment(self.seq, array, left, right) self.update() def dropempties(self, fraction = 0.5) : """Remove any sequence containing less than a fraction of known nucleotides. fraction : between 0 and 1. Useful after trimming to a given region of the genome.""" self.seq = genepy.dropempties(self.seq, fraction) self.update()
QCaudron/genepy
genepy/seqarray.py
Python
mit
6,327
[ "Biopython" ]
5a08932a7d8506a509633804f9fbe5deb4d85dbb9707960c228a8b4962f92b87
#!/usr/bin/python # -*- coding: utf8 -*- import numpy as np import math import time from scipy.ndimage import correlate1d def convol1d(array,kernel,scale_factor=None): """ The convol1d function convolves an array with a kernel 1D, and returns the result. Convolution is a general process that can be used for various types of smoothing, signal processing, shifting, differentiation, edge detection, etc. """ row = array.shape[0] column = array.shape[1] R = np.zeros([row,column]) m = len(kernel) if scale_factor == None: r=correlate1d(array,kernel) R[:,int(m/2):column-int(math.ceil(m/2.))+1]=r[:,int(m/2):column-int(math.ceil(m/2.))+1] kernel=kernel/float(scale_factor) r=correlate1d(array,kernel) R[:,int(m/2):column-int(math.ceil(m/2.))+1]=r[:,int(m/2):column-int(math.ceil(m/2.))+1] return R def sconvol1d(arreglo,kernel=None,scale_factor=1.,fwhm=None,std=None): """ This program will smooth a 2D array, including the edges, with one-dimensional kernels. Problems of this kind arise when, e.g. an array is to be convolved with a 2D symmetric gaussian, which is separable into two one-dimensional convolutions. """ #~ s=len(arreglo.shape) dims = np.ndim(arreglo) rows = arreglo.shape[0] collumns = arreglo.shape[1] if dims != 2: raise ValueError('Array must be 2-dimensional') if kernel == None: if (fwhm==None) and (std==None): raise ValueError('Convolve with what?') elif fwhm != None: std=fwhm/(2.*math.sqrt(2.*math.log(2.))) #~ elif std != None: #~ std=std elif std != None: width=int(std*9.) if width%2 == 0: width+=1 kernel=np.arange(float(width))-width/2 kernel=np.exp(-(kernel*kernel)/(2.*std*std)) kernel=kernel/(std*math.sqrt(2.*math.pi)) else: width=len(kernel) if width%2 == 0: raise ValueError('Dimension of kernel must be odd') big=np.empty([arreglo.shape[0]+width-1,arreglo.shape[1]+width-1]) edge=int(width/2) big[edge:big.shape[0]-edge,edge:big.shape[1]-edge]=arreglo for i in range(0,edge): big[edge:big.shape[0]-edge,i]=arreglo[:,edge-1-i] big[edge:big.shape[0]-edge,arreglo.shape[1]+edge+i]=arreglo[:,arreglo.shape[1]-1-i] #~ big=convol1d(big,kernel,scale_factor) big = correlate1d(big,(kernel/scale_factor),mode="constant",cval=np.nan) big[np.isnan(big)]=0.0 big=np.rot90(big,-1) for i in range(0,edge): big[:,i] = big[:,2*edge-1-i] big[:,arreglo.shape[0]+edge+i] = big[:,arreglo.shape[0]+edge-1-i] #~ big=convol1d(big,kernel,scale_factor) big = correlate1d(big,(kernel/scale_factor),mode="constant",cval=np.nan) big[np.isnan(big)]=0.0 big=np.rot90(big,-3) big=big[edge:arreglo.shape[0]+edge,edge:arreglo.shape[1]+edge] return big #~ start = time.time() #~ a=np.linspace(0,math.pi,30).reshape([5,6]) #~ kernel = np.array([1,2,3,2,1]) #~ print sconvol1d(a,std=0.10616525) #~ print (time.time() - start), " seconds"
Hypnus1803/FlowMapsGUI
GUI/MainCodes/convol.py
Python
bsd-2-clause
2,872
[ "Gaussian" ]
63f485b738d21954df4a59c3c469d47ac9c7d9c513566ae50d68e7393ed4ef3c
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.cm import snn_utils.plotter as plotter import snn_utils.plotter.backends.mpl as mpl_plotter import snn_utils.plotter.interface as interface import snn_utils.plotter.plots as plots from config import * from snn_utils.comm.serializer import SERIALIZERS from snn_utils.plotter import data_provider def split_list(l, n_chunks): n_elements_per_chunk = len(l) // n_chunks for i in range(0, len(l), n_elements_per_chunk): yield l[i:i + n_elements_per_chunk] def configure_detail_plot(data_source): p = plotter.PlotWindowBuilder(auto_vertical_padding=0.2) c1 = p.add_column(x_spines=True) pattern_colors = list(matplotlib.cm.plasma(np.linspace(0.2, 0.8, n_patterns))) c1.add_plot(plots.PhasePlot(data_source, 'pattern_id', n_patterns, label="cue", y_pos=0, common_line_style={'linewidth': 5}, colors=pattern_colors, zero_is_value=False), height_ratio=0.5 ) c1.add_plot(plots.SpikeTrainPlot(data_source, [('pattern_in', i) for i in range(n_input_neurons)], label='input activity (#neurons = {})'.format(n_input_neurons), colors='black'), height_ratio=1.5) n_out = n_up_neurons + n_down_neurons c1.add_row_group([plots.SpikeTrainPlot(data_source, subset, colors=pattern_colors[i]) for i, subset in enumerate(split_list([('activity_in', i) for i in range(n_out)], n_patterns))], vertical_padding_ratio=0.1, height_ratio=[0.5] * n_patterns, hlines=True, label="Up/Down neuron activity".format(n_out)) c1.add_plot(plots.AnalogSignalPlot(data_source, ['activity_rate_{}'.format(i) for i in range(n_patterns)], label='lever position', colors=pattern_colors, y_ticks=[], y_lim=(-100.0, 100.0 ))) c1.add_plot(plots.AnalogSignalPlot(data_source, ['curr', 'mean'], 'reward', ['current', 'average'], y_lim=(0.0, 1.0), y_ticks=[])) return p if __name__ == '__main__': master = interface.Master() # data sources data_source = data_provider.ProxyDataSource(sender=False) # subscriptions comm = master.communicator() comm.add_subscriber(music_zmq_proxy_config['communication']['host'], music_zmq_proxy_config['communication']['port'], lambda delta: data_source.read_delta(delta), deserialize=SERIALIZERS[music_zmq_proxy_config['communication']['format']].deserialize) mpl_plotter.configure_matplotlib() window = mpl_plotter.MatplotlibWindow(configure_detail_plot(data_source), data_source=data_source, max_time_window=plotter_node_time_window) master.scheduler().add_handle(lambda: window.draw(), 0.3) master.scheduler().add_handle( lambda: data_source.truncate(lower=data_source.get_max_time() - plotter_node_time_window) if data_source.get_max_time() is not None else None, 10000) master.mainloop()
IGITUGraz/spore-nest-module
examples/lever_press_showcase/python/interface.py
Python
gpl-2.0
3,490
[ "NEURON" ]
dde2c975be811329320285e0436050df60b0bf3ac1f57721d15719fbfbceb67c
# #-*- coding:utf-8 -*- """ Gentoo-keys - base.py Command line interface argsparse options module and common functions @copyright: 2012-2015 by Brian Dolbec <[email protected]> @license: GNU GPL2, see COPYING for details. """ from __future__ import print_function import argparse import os import sys import copy from gkeys.fileops import ensure_dirs from gkeys.log import log_levels, set_logger from gkeys.gkey import GKEY if sys.version_info[0] >= 3: from urllib.request import urlopen py_input = input _unicode = str else: from urllib2 import urlopen py_input = raw_input _unicode = unicode if sys.version_info[0] >= 3: unicode = str class Args(object): '''Basic argsparser replacement for using gkeys Actions via an API Holds the full spectrum of possible options supported. Not all options used by all actions.''' def __init__(self): self.action = None self.all = False self.category = None self.cleankey = False self.destination = None self.exact = False self.filename = None self.fingerprint = None self.keyid = None self.keyring = None self.keys = None self.nick = None self.name = None self.keydir = None self.seedfile = None self.signature = None self.status = False self.timestamp = None self.uid = None self.fetchonly = None class CliBase(object): '''Common cli and argsparse options class''' def __init__(self): self.cli_config = { 'Actions': None, 'Available_Actions': [], 'Action_Map': {}, 'Base_Options': [], 'prog': 'gkeys', 'description': 'Gentoo-keys manager program', 'epilog': '''Caution: adding UNTRUSTED keys can be HAZARDOUS to your system!''' } self.config = None self.args = None self.seeds = None self.actions = None self.logger = None self.version = None self.need_Action = True @staticmethod def _option_status(parser=None): parser.add_argument('-A', '--status', action='store_true', default=False, help='The active status of the member') @staticmethod def _option_all(parser=None): parser.add_argument('-a', '--all', dest='all', action='store_true', default=False, help='Match all inputs arguments in searches') @staticmethod def _option_category(parser=None): parser.add_argument('-C', '--category', dest='category', default=None, help='The key or seed directory category to use or update') @staticmethod def _option_cleankey(parser=None): parser.add_argument('--clean-key', dest='cleankey', default=False, help='Clean the key from the keyring due to failures') @staticmethod def _option_cleanseed(parser=None): parser.add_argument('--clean-seed', dest='cleanseed', default=False, help='Clean the seed from the seedfile due to failures. ' 'Used during binary keyring release creation.') @staticmethod def _option_dest(parser=None): parser.add_argument('-d', '--dest', dest='destination', default=None, help='The destination for move, copy, create operations') @staticmethod def _option_exact(parser=None): parser.add_argument('-e', '--exact', dest='exact', action='store_true', default=False, help='Use CASE matching in searches') @staticmethod def _option_fetchonly(parser=None): parser.add_argument('--fetchonly', dest='fetchonly', default=False, help="Only fetch the seed file if there is an update or doesn't exist locally") @staticmethod def _option_file(parser=None): parser.add_argument('-F', '--file', dest='filename', default=None, nargs='+', help='The path/URL to use for the (signed) file') @staticmethod def _option_1file(parser=None): parser.add_argument('-F', '--file', dest='filename', default=None, help='The path/URL to use for the (signed) file') @staticmethod def _option_fingerprint(parser=None): parser.add_argument('-f', '--fingerprint', dest='fingerprint', default=None, nargs='+', help='The fingerprint(s) of the the key or subkey') @staticmethod def _option_gpgsearch(parser=None): parser.add_argument('-g', '--gpgsearch', dest='gpgsearch', action='store_true', default=False, help='Do a gpg search operation, rather than a gkey search') @staticmethod def _option_homedir(parser=None): parser.add_argument('-H', '--homedir', dest='homedir', default=None, help='The destination for the generated key') @staticmethod def _option_keyid(parser=None): parser.add_argument('-i', '--keyid', dest='keyid', default=None, nargs='+', help='The long keyid of the gpg key to search for') @staticmethod def _option_justdoit(parser=None): parser.add_argument('--justdoit', dest='justdoit', action='store_true', default=False, help='Just Do It') @staticmethod def _option_keyring(parser=None): parser.add_argument('-k', '--keyring', dest='keyring', default=None, help='The name of the keyring to use for verification, etc.') @staticmethod def _option_keys(parser=None): parser.add_argument('-K', '--keys', dest='keys', nargs='*', default=None, help='The fingerprint(s) of the primary keys in the keyring.') @staticmethod def _option_mail(parser=None): parser.add_argument('-m', '--mail', dest='mail', default=None, help='The email address to search for or use.') @staticmethod def _option_nick(parser=None): parser.add_argument('-n', '--nick', dest='nick', default=None, help='The nick associated with the the key') @staticmethod def _option_name(parser=None): parser.add_argument('-N', '--name', dest='name', nargs='*', default=None, help='The name of the the key') @staticmethod def _option_1name(parser=None): parser.add_argument('-N', '--name', dest='name', default=None, help='The name of the the key') @staticmethod def _option_keydir(parser=None): parser.add_argument('-r', '--keydir', dest='keydir', default=None, help='The keydir to use, update or search for/in') @staticmethod def _option_seedfile(parser=None): parser.add_argument('-S', '--seedfile', dest='seedfile', default=None, help='The seedfile to use from the gkeys.conf file') @staticmethod def _option_signature(parser=None): parser.add_argument('-s','--signature', dest='signature', default=None, help='The path/URL to use for the signature') @staticmethod def _option_spec(parser=None): parser.add_argument('-S', '--spec', dest='spec', default=None, help='The spec file to use from the gkeys-gen.conf file') @staticmethod def _option_timestamp(parser=None): parser.add_argument('-t', '--timestamp', dest='timestamp', action='store_true', default=False, help='Turn on timestamp use') @staticmethod def _option_uid(parser=None): parser.add_argument('-u', '--uid', dest='uid', nargs='+', default=None, help='The user ID, gpg key uid') @staticmethod def _option_email(parser=None): parser.add_argument('-E', '--email', dest='email', default=None, help='Email parameter for sending email reminders') @staticmethod def _option_user(parser=None): parser.add_argument('-U', '--user', dest='user', default=None, help='User parameter for service login') def parse_args(self, argv): '''Parse a list of aruments @param argv: list @returns argparse.Namespace object ''' #self.logger.debug('CliBase: parse_args; args: %s' % args) parser = argparse.ArgumentParser( prog=self.cli_config['prog'], description=self.cli_config['description'], epilog=self.cli_config['epilog']) # options parser.add_argument('-c', '--config', dest='config', default=None, help='The path to an alternate config file') parser.add_argument('-D', '--debug', default='DEBUG', choices=list(log_levels), help='The logging level to set for the logfile') parser.add_argument('-V', '--version', action = 'version', version = self.version) # Add any additional options to the command base self._add_options(parser, self.cli_config['Base_Options']) if self.cli_config['Available_Actions']: subparsers = parser.add_subparsers( title='Subcommands', description='Valid subcommands', help='Additional help') for name in self.cli_config['Available_Actions']: actiondoc = self.cli_config['Action_Map'][name]['desc'] try: text = actiondoc.splitlines()[0] except AttributeError: text = "" action_parser = subparsers.add_parser( name, help=text, description=actiondoc, formatter_class=argparse.RawDescriptionHelpFormatter) action_parser.set_defaults(action=name) options = self.cli_config['Action_Map'][name]['options'] self._add_options(action_parser, options) parsed_args = parser.parse_args(argv) action = getattr(parsed_args, 'action', None) if self.need_Action and not action: parser.print_usage() sys.exit(1) elif action in ['---general---', '----keys-----', '----seeds----']: parser.print_help() sys.exit(1) return parsed_args def _add_options(self, parser, options): for opt in options: getattr(self, '_option_%s' % opt)(parser) def warning_output(self, info): ''' We don't want this message to be spammed 4 times everytime gkeys is run''' if "Re-fetch cycle timeout of" not in info: print(info) def setup(self, args, configs): '''Set up the args and configs passed in @param args: list or argparse.Namespace object @param configs: list ''' message = None if not args: message = "Main: run; invalid args argument passed in" if isinstance(args, list): args = self.parse_args(args) if args.config: self.config.defaults['config'] = args.config self.config.defaults['configdir'] = os.path.dirname(args.config) if getattr(args, 'email', False): configs = [self.config.defaults['config'], os.path.abspath(os.path.join(self.config.defaults['configdir'], "email.conf"))] self.config.read_config(configs) else: self.config.read_config() else: self.config.read_config(configs) # check for permissions and adjust configs accordngly if not self.config.defaults['homedir']: self.config.defaults['homedir'] = os.path.expanduser('~') if not os.access(self.config['logdir'], os.W_OK): self.config.options['logdir'] = os.path.join(self.config['userconfigdir'], 'logs') ensure_dirs(self.config.options['logdir']) # establish our logger and update it in the imported files self.logger = set_logger(self.cli_config['prog'], self.config['logdir'], args.debug, dirmode=int(self.config.get_key('permissions', 'directories'),0), filemask=int(self.config.get_key('permissions', 'files'),0)) self.config.logger = self.logger if message: self.logger.error(message) # now that we have a logger, record the alternate config setting if args.config: self.logger.debug("Main: run; Found alternate config request: %s" % args.config) self.logger.debug("Main: run; Using config: %s" % self.config['config']) # check if a -C, --category was input # if it was, check if the category is listed in the [seeds] cat = None if 'category' in args: cat = args.category if not self._check_category(cat): return False return True def run(self, args): '''Run the action selected @param args: list of argumanets to parse ''' # establish our actions instance self.actions = self.cli_config['Actions'](self.config, self.output_results, self.logger) # run the action func = getattr(self.actions, '%s' % self.cli_config['Action_Map'][args.action]['func']) self.logger.debug('Main: run; Found action: %s' % args.action) self.logger.debug('Main: run; args: %s' % str(args.__dict__)) success, results = func(args) if not results: print("No results found. Check your configuration and that the", "seed file exists.") return success if self.config.options['print_results'] and 'done' not in list(results): self.output_results(results, '\n Gkey task results:') return success @staticmethod def output_results(results, header=None): # super simple output for the time being if header: print(header) for msg in results: if type(msg) in [str, unicode]: print(' ', msg) else: try: print(unicode("\n").join([x.pretty_print for x in msg])) except AttributeError: for x in msg: print(' ', x) print() def output_failed(self, failed): pass def _check_category(self, category=None): '''Checks that the category (seedfile) is listed in the [seeds] config or defaults['seeds'] section @param args: configparser instance @return boolean ''' available_cats = list(self.config.defaults['seeds']) if category and category not in available_cats: self.logger.error("Invalid category or seedfile entered: %s" % category) self.logger.error("Available categories or seedfiles: %s" % ', '.join(sorted(available_cats))) return False return True
gentoo/gentoo-keys
gkeys/gkeys/base.py
Python
gpl-2.0
14,995
[ "Brian" ]
e8d35516e7a1aa00b6175d0798ef9dfe3ccc2eb1d8a9424b767fbecc326fd395
from collections import namedtuple from django.test import SimpleTestCase, TestCase from corehq.apps.domain.shortcuts import create_domain from corehq.apps.locations.models import LocationType, SQLLocation from corehq.apps.locations.tree_utils import TreeError, assert_no_cycles, expansion_validators from corehq.apps.locations.bulk_management import ( NewLocationImporter, LocationTypeStub, LocationStub, LocationTreeValidator, LocationCollection, ) # These example types and trees mirror the information available in the upload files FLAT_LOCATION_TYPES = [ # name, code, parent_code, do_delete, shares_cases, view_descendants, expand_from, sync_to, index # ('name', 'code', 'parent_code', 'shares_cases', 'view_descendants'), ('State', 'state', '', False, False, False, '', '', 0), ('County', 'county', 'state', False, False, True, '', '', 0), ('City', 'city', 'county', False, True, False, '', '', 0), ] DUPLICATE_TYPE_CODES = [ # ('name', 'code', 'parent_code', 'shares_cases', 'view_descendants'), ('State', 'state', '', False, False, False, '', '', 0), ('County', 'county', 'state', False, False, True, '', '', 0), ('City', 'city', 'county', False, True, False, '', '', 0), ('Other County', 'county', 'state', False, False, True, '', '', 0), ] CYCLIC_LOCATION_TYPES = [ ('State', 'state', '', False, False, False, '', '', 0), ('County', 'county', 'state', False, False, True, '', '', 0), ('City', 'city', 'county', False, True, False, '', '', 0), # These three cycle: ('Region', 'region', 'village', False, False, False, '', '', 0), ('District', 'district', 'region', False, False, True, '', '', 0), ('Village', 'village', 'district', False, True, False, '', '', 0), ] # external_id, latitude, longitude, custom_data, uncategorized_data, index extra_stub_args = ('', '', '', {}, {}, 0) BASIC_LOCATION_TREE = [ # (name, site_code, location_type, parent_code, location_id, # do_delete, external_id, latitude, longitude, index) ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, ('Suffolk', 'suffolk', 'county', 'mass', '2345', False) + extra_stub_args, ('Boston', 'boston', 'city', 'suffolk', '2346', False) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('Florida', 'florida', 'state', '', '5432', False) + extra_stub_args, ('Duval', 'duval', 'county', 'florida', '5433', False) + extra_stub_args, ('Jacksonville', 'jacksonville', 'city', 'duval', '5434', False) + extra_stub_args, ] MOVE_SUFFOLK_TO_FLORIDA = [ ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, # this is the only changed line (parent is changed to florida) ('Suffolk', 'suffolk', 'county', 'florida', '2345', False) + extra_stub_args, ('Boston', 'boston', 'city', 'suffolk', '2346', False) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('Florida', 'florida', 'state', '', '5432', False) + extra_stub_args, ('Duval', 'duval', 'county', 'florida', '5433', False) + extra_stub_args, ('Jacksonville', 'jacksonville', 'city', 'duval', '5434', False) + extra_stub_args, ] DELETE_SUFFOLK = [ ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, # These next two are marked as 'delete' ('Suffolk', 'suffolk', 'county', 'mass', '2345', True) + extra_stub_args, ('Boston', 'boston', 'city', 'suffolk', '2346', True) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('Florida', 'florida', 'state', '', '5432', False) + extra_stub_args, ('Duval', 'duval', 'county', 'florida', '5433', False) + extra_stub_args, ('Jacksonville', 'jacksonville', 'city', 'duval', '5434', False) + extra_stub_args, ] MAKE_SUFFOLK_A_STATE_INVALID = [ ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, # This still lists mass as a parent, which is invalid, # plus, Boston (a city), can't have a state as a parent ('Suffolk', 'suffolk', 'state', 'mass', '2345', False) + extra_stub_args, ('Boston', 'boston', 'city', 'suffolk', '2346', False) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('Florida', 'florida', 'state', '', '5432', False) + extra_stub_args, ('Duval', 'duval', 'county', 'florida', '5433', False) + extra_stub_args, ('Jacksonville', 'jacksonville', 'city', 'duval', '5434', False) + extra_stub_args, ] MAKE_SUFFOLK_A_STATE_VALID = [ ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, ('Suffolk', 'suffolk', 'state', '', '2345', False) + extra_stub_args, ('Boston', 'boston', 'county', 'suffolk', '2346', False) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('Florida', 'florida', 'state', '', '5432', False) + extra_stub_args, ('Duval', 'duval', 'county', 'florida', '5433', False) + extra_stub_args, ('Jacksonville', 'jacksonville', 'city', 'duval', '5434', False) + extra_stub_args, ] DUPLICATE_SITE_CODES = [ ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, ('Suffolk', 'suffolk', 'county', 'mass', '2345', False) + extra_stub_args, ('Boston', 'boston', 'city', 'suffolk', '2346', False) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('East Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ] SAME_NAME_SAME_PARENT = [ ('Massachusetts', 'mass', 'state', '', '1234', False) + extra_stub_args, ('Middlesex', 'middlesex', 'county', 'mass', '3456', False) + extra_stub_args, # These two locations have the same name AND same parent ('Cambridge', 'cambridge', 'city', 'middlesex', '3457', False) + extra_stub_args, ('Cambridge', 'cambridge2', 'city', 'middlesex', '3458', False) + extra_stub_args, ] class TestTreeUtils(SimpleTestCase): def test_no_issues(self): assert_no_cycles([ ("State", 'TOP'), ("County", "State"), ("City", "County"), ("Region", "State"), ("District", "Region"), ]) def test_bad_parent_ref(self): with self.assertRaises(TreeError) as e: assert_no_cycles([ ("County", "State"), # State doesn't exist ("City", "County"), ("Region", "State"), # State doesn't exist ("District", "Region"), ]) self.assertItemsEqual( e.exception.affected_nodes, ["County", "Region"] ) def test_has_cycle(self): with self.assertRaises(TreeError) as e: assert_no_cycles([ ("State", 'TOP'), ("County", "State"), ("City", "County"), # These three cycle: ("Region", "Village"), ("District", "Region"), ("Village", "District"), ]) self.assertItemsEqual( e.exception.affected_nodes, ["Region", "District", "Village"] ) def test_expansion_validators(self): # a, b are TOP. a has c,d as children, b has e as child from_validator, to_validator = expansion_validators( [('a', 'TOP'), ('b', 'TOP'), ('c', 'a'), ('d', 'a'), ('e', 'b')] ) self.assertEqual(set(from_validator('a')), set(['a', 'TOP'])) self.assertEqual(set(from_validator('b')), set(['b', 'TOP'])) self.assertEqual(set(from_validator('c')), set(['c', 'a', 'TOP'])) self.assertEqual(set(from_validator('d')), set(['d', 'a', 'TOP'])) self.assertEqual(set(from_validator('e')), set(['e', 'b', 'TOP'])) self.assertEqual(set(to_validator('a')), set(['a', 'c', 'd'])) self.assertEqual(set(to_validator('b')), set(['b', 'e'])) self.assertEqual(set(to_validator('c')), set(['c'])) self.assertEqual(set(to_validator('d')), set(['d'])) self.assertEqual(set(to_validator('e')), set(['e'])) # a is TOP. a has b as child, b has c as child from_validator, to_validator = expansion_validators( [('a', 'TOP'), ('b', 'a'), ('c', 'b')] ) self.assertEqual(set(from_validator('a')), set(['a', 'TOP'])) self.assertEqual(set(from_validator('b')), set(['a', 'b', 'TOP'])) self.assertEqual(set(from_validator('c')), set(['a', 'b', 'c', 'TOP'])) self.assertEqual(set(to_validator('a')), set(['a', 'b', 'c'])) self.assertEqual(set(to_validator('b')), set(['b', 'c'])) self.assertEqual(set(to_validator('c')), set(['c'])) def get_validator(location_types, locations, old_collection=None): validator = LocationTreeValidator( [LocationTypeStub(*loc_type) for loc_type in location_types], [LocationStub(*loc) for loc in locations], old_collection=old_collection ) return validator MockCollection = namedtuple( 'MockCollection', 'types locations locations_by_id locations_by_site_code domain_name custom_data_validator') def make_collection(types, locations): types = [LocationTypeStub(*loc_type) for loc_type in types] locations = [LocationStub(*loc) for loc in locations] return MockCollection( types=types, locations=locations, locations_by_id={l.location_id: l for l in locations}, locations_by_site_code={l.site_code: l for l in locations}, custom_data_validator=None, domain_name='location-bulk-management', ) class TestTreeValidator(SimpleTestCase): def test_good_location_set(self): validator = get_validator(FLAT_LOCATION_TYPES, BASIC_LOCATION_TREE) self.assertEqual(len(validator.errors), 0) def test_cyclic_location_types(self): validator = get_validator(CYCLIC_LOCATION_TYPES, BASIC_LOCATION_TREE) self.assertEqual(len(validator._validate_types_tree()), 3) def test_bad_type_change(self): validator = get_validator(FLAT_LOCATION_TYPES, MAKE_SUFFOLK_A_STATE_INVALID) all_errors = validator.errors self.assertEqual(len(all_errors), 2) tree_errors = validator._validate_location_tree() self.assertEqual(len(tree_errors), 2) def test_good_type_change(self): validator = get_validator(FLAT_LOCATION_TYPES, MAKE_SUFFOLK_A_STATE_VALID) errors = validator.errors self.assertEqual(len(errors), 0) def test_duplicate_type_codes(self): validator = get_validator(DUPLICATE_TYPE_CODES, BASIC_LOCATION_TREE) errors = validator.errors type_errors = validator._check_unique_type_codes() self.assertEqual(len(errors), 1) self.assertEqual(len(type_errors), 1) self.assertIn("county", errors[0]) def test_valid_expansions(self): validator = get_validator( [ # name, code, parent_code, do_delete, shares_cases, view_descendants, expand_from, sync_to, index # empty from, descendant as to ('A', 'a', '', False, False, False, '', 'd', 0), # itself as from, descendant as to ('B', 'b', '', False, False, False, 'b', 'e', 0), # empty to, parentage as from ('C', 'c', 'a', False, False, False, 'a', '', 0), # itself as to, parentage as from ('D', 'd', 'a', False, False, False, 'a', 'd', 0), # parentage as from, empty to ('E', 'e', 'b', False, False, False, 'b', '', 0), ], [] ) errors = validator.errors self.assertEqual(errors, []) def test_invalid_expansions(self): validator = get_validator( [ # name, code, parent_code, do_delete, shares_cases, view_descendants, expand_from, sync_to, index ('A', 'a', '', False, False, False, '', 'd', 0), # 'a' is not a descendant of 'b' ('B', 'b', '', False, False, False, 'b', 'a', 0), ('C', 'c', 'a', False, False, False, 'a', '', 0), # 'b' doesn't occur in its parentage ('D', 'd', 'a', False, False, False, 'b', 'd', 0), ('E', 'e', 'b', False, False, False, 'b', '', 0), ], [] ) errors = validator.errors self.assertEqual(len(errors), 2) def test_duplicate_location(self): validator = get_validator(FLAT_LOCATION_TYPES, DUPLICATE_SITE_CODES) errors = validator.errors self.assertEqual(len(errors), 2) self.assertEqual(len(validator._check_unique_location_codes()), 1) self.assertEqual(len(validator._check_unique_location_ids()), 1) self.assertIn("cambridge", errors[0]) def test_same_name_same_parent(self): validator = get_validator(FLAT_LOCATION_TYPES, SAME_NAME_SAME_PARENT) errors = validator.errors self.assertEqual(len(errors), 1) self.assertEqual(len(validator._check_location_names()), 1) self.assertIn("middlesex", errors[0]) def test_missing_types(self): # all types in the domain should be listed in given excel old_types = FLAT_LOCATION_TYPES + [('Galaxy', 'galaxy', '', False, False, False, '', '', 0)] old_collection = make_collection(old_types, BASIC_LOCATION_TREE) validator = get_validator(FLAT_LOCATION_TYPES, BASIC_LOCATION_TREE, old_collection) missing_type_errors = validator._check_unlisted_type_codes() self.assertEqual(len(missing_type_errors), 1) self.assertEqual(len(validator.errors), 1) self.assertIn('galaxy', missing_type_errors[0]) def test_missing_location_ids(self): # all locations in the domain should be listed in given excel old_locations = ( BASIC_LOCATION_TREE + [('extra_state', 'ex_code', 'state', '', 'ex_id', False) + extra_stub_args] ) old_collection = make_collection(FLAT_LOCATION_TYPES, old_locations) validator = get_validator(FLAT_LOCATION_TYPES, BASIC_LOCATION_TREE, old_collection) missing_locations = validator._check_unlisted_location_ids() self.assertEqual(len(missing_locations), 1) self.assertEqual(len(validator.errors), 1) self.assertIn('extra_state', missing_locations[0]) def test_unknown_location_ids(self): # all locations in the domain should be listed in given excel old_collection = make_collection(FLAT_LOCATION_TYPES, BASIC_LOCATION_TREE) new_locations = ( BASIC_LOCATION_TREE + [('extra_state', 'ex_code', 'state', '', 'ex_id', False) + extra_stub_args] ) validator = get_validator(FLAT_LOCATION_TYPES, new_locations, old_collection) unknown_locations = validator._check_unknown_location_ids() self.assertEqual(len(unknown_locations), 1) self.assertEqual(len(validator.errors), 1) self.assertIn('ex_id', unknown_locations[0]) class TestBulkManagement(TestCase): basic_tree = [ # (name, site_code, location_type, parent_code, location_id, # do_delete, external_id, latitude, longitude, index) ('S1', 's1', 'state', '', '', False) + extra_stub_args, ('S2', 's2', 'state', '', '', False) + extra_stub_args, ('County11', 'county11', 'county', 's1', '', False) + extra_stub_args, ('County21', 'county21', 'county', 's2', '', False) + extra_stub_args, ('City111', 'city111', 'city', 'county11', '', False) + extra_stub_args, ('City112', 'city112', 'city', 'county11', '', False) + extra_stub_args, ('City211', 'city211', 'city', 'county21', '', False) + extra_stub_args, ] @classmethod def as_pairs(cls, tree): pairs = [] for l in tree: code = l[1] parent_code = l[3] or None do_delete = l[5] if not do_delete: pairs.append((code, parent_code)) return set(pairs) def setUp(self): super(TestBulkManagement, self).setUp() self.domain = create_domain('location-bulk-management') def tearDown(self): super(TestBulkManagement, self).tearDown() # domain delete cascades to everything else self.domain.delete() def create_location_types(self, location_types): def _make_loc_type(name, code, parent_code, _delete, shares_cases, view_descendants, expand_from, sync_to, _i, parent_type=None): return LocationType.objects.create( domain=self.domain.name, name=name, code=code, parent_type=parent_type, shares_cases=shares_cases, view_descendants=view_descendants ) lt_by_code = {} for lt in location_types: code = lt[1] parent_code = lt[2] parent_type = lt_by_code.get(parent_code) location_type = _make_loc_type(*lt, parent_type=parent_type) lt_by_code[code] = location_type return lt_by_code def create_locations(self, locations, lt_by_code): def _make_loc(name, site_code, location_type, parent_code, location_id, do_delete, external_id, latitude, longitude, custom_data, uncategorized_data, index, parent=None): _type = lt_by_code.get(location_type) loc = SQLLocation( site_code=site_code, name=name, domain=self.domain.name, location_type=_type, parent=parent, ) loc.save() return loc locations_by_code = {} for l in locations: code = l[1] parent_code = l[3] parent = locations_by_code.get(parent_code) location = _make_loc(*l, parent=parent) locations_by_code[code] = location return locations_by_code def bulk_update_locations(self, types, locations): importer = NewLocationImporter( self.domain.name, [LocationTypeStub(*loc_type) for loc_type in types], [LocationStub(*loc) for loc in locations], ) result = importer.run() return result def assertLocationTypesMatch(self, expected_types): # Makes sure that the set of all location types in the domain matches # the passed-in location types actual_types = self.domain.location_types # covert it to the format of passed-in tuples actual = [ (lt.name, lt.code, lt.parent_type.code if lt.parent_type else '', False, lt.shares_cases or False, lt.view_descendants, lt.expand_from.code if lt.expand_from else '', lt.expand_to.code if lt.expand_to else '') for lt in actual_types ] expected = [] for lt in expected_types: do_delete = lt[3] if not do_delete: # drop index expected.append(tuple(lt[0:-1])) self.assertEqual(set(actual), set(expected)) def assertLocationsMatch(self, expected_locations, check_attr='site_code'): collection = LocationCollection(self.domain) actual = [] for l in collection.locations: attr = getattr(l, check_attr) if l.parent: parent = l.parent.site_code else: parent = None actual.append((attr, parent)) self.assertEqual(set(actual), expected_locations) self.assertMpttDescendants(expected_locations) def assertMpttDescendants(self, pairs): # Given list of (child, parent), check that for each location # SQLLocation.get_descendants is same as calculated descendants from collections import defaultdict # index by parent, to calculate descendants by_parent = defaultdict(list) for (child, parent) in pairs: by_parent[parent].append(child) descendants = defaultdict(list) def get_descendants(l): if descendants[l]: return descendants[l] to_ret = [] children = by_parent[l] for child in children: to_ret = to_ret + get_descendants(child) return children + to_ret # calculate descendants for each location for (child, pair) in pairs: descendants[child] = get_descendants(child) # for each location assert that calculated and expected get_descendants are equal for (l, desc) in descendants.iteritems(): q = SQLLocation.objects.filter(site_code=l) loc = q[0] if q else None actual = [i.site_code for i in loc.get_descendants()] if loc else [] self.assertEqual(set(actual), set(desc)) def assertCouchSync(self): def assertLocationsEqual(loc1, loc2): fields = ["domain", "name", "location_id", "location_type_name", "site_code", "external_id", "metadata", "is_archived"] for field in fields: msg = "The locations have different values for '{}'".format(field) self.assertEqual(getattr(loc1, field), getattr(loc2, field), msg) def get_parent(loc): return loc.parent.location_id if loc.parent else None self.assertEqual(get_parent(loc1), get_parent(loc2)) collection = LocationCollection(self.domain) for loc in collection.locations: assertLocationsEqual(loc, loc.couch_location) def test_location_creation(self): result = self.bulk_update_locations( FLAT_LOCATION_TYPES, self.basic_tree ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertCouchSync() def test_data_format(self): data = [ ('S1', '1', 'state', '', '', False, '12', 'not-lat', '2345', {}, {}, 0), ('S2', '2', 'state', '', '', False, '12', '3434', '2345', {}, {}, 0), ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, data ) self.assertEqual(len(result.errors), 1) self.assertTrue('lat' in result.errors[0]) def test_move_county21_to_state1(self): lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) locations_by_code = self.create_locations(self.basic_tree, lt_by_code) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) _loc_id = lambda x: locations_by_code[x].location_id move_county21_to_state1 = [ # (name, site_code, location_type, parent_code, location_id, # do_delete, external_id, latitude, longitude, index) ('S1', 's1', 'state', '', _loc_id('s1'), False) + extra_stub_args, ('S2', 's2', 'state', '', _loc_id('s2'), False) + extra_stub_args, ('County11', 'county11', 'county', 's1', _loc_id('county11'), False) + extra_stub_args, # change parent_code from s2 -> s1 ('County21', 'county21', 'county', 's1', _loc_id('county21'), False) + extra_stub_args, ('City111', 'city111', 'city', 'county11', _loc_id('city111'), False) + extra_stub_args, ('City112', 'city112', 'city', 'county11', _loc_id('city112'), False) + extra_stub_args, ('City211', 'city211', 'city', 'county21', _loc_id('city211'), False) + extra_stub_args, # create new city ('City311', 'city311', 'city', 'county11', '', False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, move_county21_to_state1, ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(move_county21_to_state1)) self.assertCouchSync() def test_delete_county11(self): lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) locations_by_code = self.create_locations(self.basic_tree, lt_by_code) _loc_id = lambda x: locations_by_code[x].location_id delete_county11 = [ ('S1', 's1', 'state', '', _loc_id('s1'), False) + extra_stub_args, ('S2', 's2', 'state', '', _loc_id('s2'), False) + extra_stub_args, ('County11', 'county11', 'county', 's1', _loc_id('county11'), True) + extra_stub_args, ('County21', 'county21', 'county', 's2', _loc_id('county21'), False) + extra_stub_args, ('City111', 'city111', 'city', 'county11', _loc_id('city111'), True) + extra_stub_args, ('City112', 'city112', 'city', 'county11', _loc_id('city112'), True) + extra_stub_args, ('City211', 'city211', 'city', 'county21', _loc_id('city211'), False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, delete_county11, ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(delete_county11)) self.assertCouchSync() def test_invalid_tree(self): # Invalid location upload should not pass or affect existing location structure lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) locations_by_code = self.create_locations(self.basic_tree, lt_by_code) _loc_id = lambda x: locations_by_code[x].location_id delete_s2 = [ ('S1', 's1', 'state', '', _loc_id('s1'), False) + extra_stub_args, # delete s2, but don't delete its descendatns. This is invalid ('S2', 's2', 'state', '', _loc_id('s2'), True) + extra_stub_args, ('County11', 'county11', 'county', 's1', _loc_id('county11'), False) + extra_stub_args, ('County21', 'county21', 'county', 's2', _loc_id('county21'), False) + extra_stub_args, ('City111', 'city111', 'city', 'county11', _loc_id('city111'), False) + extra_stub_args, ('City112', 'city112', 'city', 'county11', _loc_id('city112'), False) + extra_stub_args, ('City211', 'city211', 'city', 'county21', _loc_id('city211'), False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, delete_s2, ) self.assertNotEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) # Since there were errors, the location tree should be as it was self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertCouchSync() def test_edit_by_location_id(self): # Locations can be referred by location_id and empty site_code lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) locations_by_code = self.create_locations(self.basic_tree, lt_by_code) _loc_id = lambda x: locations_by_code[x].location_id move_county21_to_state1 = [ ('S1', '', 'state', '', _loc_id('s1'), False) + extra_stub_args, ('S2', '', 'state', '', _loc_id('s2'), False) + extra_stub_args, ('County11', '', 'county', 's1', _loc_id('county11'), False) + extra_stub_args, ('County21', '', 'county', 's1', _loc_id('county21'), False) + extra_stub_args, ('City111', '', 'city', 'county11', _loc_id('city111'), False) + extra_stub_args, ('City112', '', 'city', 'county11', _loc_id('city112'), False) + extra_stub_args, ('City211', '', 'city', 'county21', _loc_id('city211'), False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, # No change to types move_county21_to_state1, # This is the desired end result ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(set([ ('s1', None), ('s2', None), ('county11', 's1'), ('county21', 's1'), ('city111', 'county11'), ('city112', 'county11'), ('city211', 'county21') ])) self.assertCouchSync() def test_edit_by_sitecode(self): # Locations can be referred by site_code and empty location_id lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) move_county21_to_state1 = [ ('S1', 's1', 'state', '', '', False) + extra_stub_args, ('S2', 's2', 'state', '', '', False) + extra_stub_args, ('County11', 'county11', 'county', 's1', '', False) + extra_stub_args, # change parent_code from s2 -> s1 ('County21', 'county21', 'county', 's1', '', False) + extra_stub_args, ('City111', 'city111', 'city', 'county11', '', False) + extra_stub_args, ('City112', 'city112', 'city', 'county11', '', False) + extra_stub_args, ('City211', 'city211', 'city', 'county21', '', False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, # No change to types move_county21_to_state1, # This is the desired end result ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(move_county21_to_state1)) self.assertCouchSync() def test_delete_city_type_valid(self): # delete a location type and locations of that type lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) delete_city_types = [ ('State', 'state', '', False, False, False, '', '', 0), ('County', 'county', 'state', False, False, True, '', '', 0), ('City', 'city', 'county', True, True, False, '', '', 0), ] delete_cities_locations = [ ('S1', 's1', 'state', '', '', False) + extra_stub_args, ('S2', 's2', 'state', '', '', False) + extra_stub_args, ('County11', 'county11', 'county', 's1', '', False) + extra_stub_args, ('County21', 'county21', 'county', 's2', '', False) + extra_stub_args, # delete locations of type 'city' ('City111', 'city111', 'city', 'county11', '', True) + extra_stub_args, ('City112', 'city112', 'city', 'county11', '', True) + extra_stub_args, ('City211', 'city211', 'city', 'county21', '', True) + extra_stub_args, ] result = self.bulk_update_locations( delete_city_types, # No change to types delete_cities_locations, # This is the desired end result ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(delete_city_types) self.assertLocationsMatch(self.as_pairs(delete_cities_locations)) self.assertCouchSync() def test_delete_everything(self): # delete everything lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) delete_city_types = [ ('State', 'state', '', True, False, False, '', '', 0), ('County', 'county', 'state', True, False, True, '', '', 0), ('City', 'city', 'county', True, True, False, '', '', 0), ] delete_cities_locations = [ ('S1', 's1', 'state', '', '', True) + extra_stub_args, ('S2', 's2', 'state', '', '', True) + extra_stub_args, ('County11', 'county11', 'county', 's1', '', True) + extra_stub_args, ('County21', 'county21', 'county', 's2', '', True) + extra_stub_args, ('City111', 'city111', 'city', 'county11', '', True) + extra_stub_args, ('City112', 'city112', 'city', 'county11', '', True) + extra_stub_args, ('City211', 'city211', 'city', 'county21', '', True) + extra_stub_args, ] result = self.bulk_update_locations( delete_city_types, # No change to types delete_cities_locations, # This is the desired end result ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(delete_city_types) self.assertLocationsMatch(self.as_pairs(delete_cities_locations)) self.assertCouchSync() def test_delete_city_type_invalid(self): # delete a location type but don't delete locations of that type. # this is invalid upload and should not go through lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) delete_city_types = [ ('State', 'state', '', False, False, False, '', '', 0), ('County', 'county', 'state', False, False, True, '', '', 0), ('City', 'city', 'county', True, True, False, '', '', 0), ] result = self.bulk_update_locations( delete_city_types, # delete city type self.basic_tree, # but don't delete locations of city type ) self.assertNotEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertCouchSync() def test_edit_names(self): # metadata attributes like 'name' can be updated lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) locations_by_code = self.create_locations(self.basic_tree, lt_by_code) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertCouchSync() _loc_id = lambda x: locations_by_code[x].location_id change_names = [ # (name, site_code, location_type, parent_code, location_id, # do_delete, external_id, latitude, longitude, index) # changing names ('State 1', '', 'state', '', _loc_id('s1'), False) + extra_stub_args, ('State 2', '', 'state', '', _loc_id('s2'), False) + extra_stub_args, ('County 11', '', 'county', 's1', _loc_id('county11'), False) + extra_stub_args, ('County 21', '', 'county', 's2', _loc_id('county21'), False) + extra_stub_args, ('City 111', '', 'city', 'county11', _loc_id('city111'), False) + extra_stub_args, ('City 112', '', 'city', 'county11', _loc_id('city112'), False) + extra_stub_args, ('City 211', '', 'city', 'county21', _loc_id('city211'), False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, change_names, ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertLocationsMatch(set([ ('State 1', None), ('State 2', None), ('County 11', 's1'), ('County 21', 's2'), ('City 111', 'county11'), ('City 112', 'county11'), ('City 211', 'county21') ]), check_attr='name') self.assertCouchSync() def test_partial_type_edit(self): # edit a subset of types lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) edit_types = [ ('State', 'state', '', False, False, False, '', '', 0), # change name of this type ('District', 'county', 'state', False, False, False, '', '', 0), ('City', 'city', 'county', False, False, False, '', '', 0), ] result = self.bulk_update_locations( edit_types, self.basic_tree, ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(edit_types) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertCouchSync() def test_edit_expansions(self): # 'expand_from', 'expand_to' can be updated lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) edit_expansions = [ ('State', 'state', '', False, False, False, '', 'city', 0), ('County', 'county', 'state', False, False, False, '', '', 0), ('City', 'city', 'county', False, False, False, 'county', '', 0), ] result = self.bulk_update_locations( edit_expansions, self.basic_tree, ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(edit_expansions) self.assertLocationsMatch(self.as_pairs(self.basic_tree)) self.assertCouchSync() def test_rearrange_locations(self): # a total rearrangement like reversing the tree can be done lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) self.create_locations(self.basic_tree, lt_by_code) reverse_order = [ ('State', 'state', 'county', False, False, False, '', '', 0), ('County', 'county', 'city', False, False, False, '', '', 0), ('City', 'city', '', False, False, False, '', '', 0), ] edit_types_of_locations = [ # change parent from TOP to county ('S1', 's1', 'state', 'county11', '', False) + extra_stub_args, ('S2', 's2', 'state', 'county11', '', False) + extra_stub_args, # change parent from state to city ('County11', 'county11', 'county', 'city111', '', False) + extra_stub_args, ('County21', 'county21', 'county', 'city111', '', False) + extra_stub_args, # make these two TOP locations ('City111', 'city111', 'city', '', '', False) + extra_stub_args, ('City112', 'city112', 'city', '', '', False) + extra_stub_args, # delete this ('City211', 'city211', 'city', 'county21', '', True) + extra_stub_args, ] result = self.bulk_update_locations( reverse_order, # No change to types edit_types_of_locations, # This is the desired end result ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(reverse_order) self.assertLocationsMatch(self.as_pairs(edit_types_of_locations)) self.assertCouchSync() def test_swap_parents(self): lt_by_code = self.create_location_types(FLAT_LOCATION_TYPES) original = [ ('State 1', 's1', 'state', '', '', False) + extra_stub_args, ('State 2', 's2', 'state', '', '', False) + extra_stub_args, ('County 11', 'c1', 'county', 's1', '', False) + extra_stub_args, ('County 21', 'c2', 'county', 's2', '', False) + extra_stub_args, ] self.create_locations(original, lt_by_code) swap_parents = [ ('State 1', 's1', 'state', '', '', False) + extra_stub_args, ('State 2', 's2', 'state', '', '', False) + extra_stub_args, ('County 11', 'c1', 'county', 's2', '', False) + extra_stub_args, ('County 21', 'c2', 'county', 's1', '', False) + extra_stub_args, ] result = self.bulk_update_locations( FLAT_LOCATION_TYPES, swap_parents, ) self.assertEqual(result.errors, []) self.assertLocationTypesMatch(FLAT_LOCATION_TYPES) self.assertLocationsMatch(self.as_pairs(swap_parents)) self.assertCouchSync()
qedsoftware/commcare-hq
corehq/apps/locations/tests/test_bulk_management.py
Python
bsd-3-clause
40,566
[ "Galaxy" ]
1ec47bba318b91aa1f73a9376f3a4c6fb7ae807de15f089c2f09afb17fb862f6
import numpy as np import os import os.path as op from os.path import join as pjoin import re import shutil import subprocess from nose.tools import assert_equal from numpy.testing import assert_raises, assert_array_equal from tempfile import mkdtemp, mktemp import nibabel as nib from surfer import Brain, io, utils from surfer.utils import requires_ffmpeg, requires_fsaverage from mayavi import mlab subj_dir = utils._get_subjects_dir() subject_id = 'fsaverage' std_args = [subject_id, 'lh', 'inflated'] data_dir = pjoin(op.dirname(__file__), '..', '..', 'examples', 'example_data') overlay_fname = pjoin(data_dir, 'lh.sig.nii.gz') def has_freesurfer(): if 'FREESURFER_HOME' not in os.environ: return False else: return True requires_fs = np.testing.dec.skipif(not has_freesurfer(), 'Requires FreeSurfer command line tools') @requires_fsaverage def test_offscreen(): """Test offscreen rendering """ mlab.options.backend = 'auto' brain = Brain(*std_args, offscreen=True) shot = brain.screenshot() assert_array_equal(shot.shape, (800, 800, 3)) brain.close() @requires_fsaverage def test_image(): """Test image saving """ tmp_name = mktemp() + '.png' mlab.options.backend = 'auto' subject_id, _, surf = std_args brain = Brain(subject_id, 'both', surf=surf, size=100) brain.add_overlay(overlay_fname, hemi='lh', min=5, max=20, sign="pos") brain.save_imageset(tmp_name, ['med', 'lat'], 'jpg') brain = Brain(*std_args, size=100) brain.save_image(tmp_name) brain.save_montage(tmp_name, ['l', 'v', 'm'], orientation='v') brain.save_montage(tmp_name, ['l', 'v', 'm'], orientation='h') brain.save_montage(tmp_name, [['l', 'v'], ['m', 'f']]) brain.screenshot() brain.close() @requires_fsaverage def test_brains(): """Test plotting of Brain with different arguments """ # testing backend breaks when passing in a figure, so we use 'auto' here # (shouldn't affect usability, but it makes testing more annoying) mlab.options.backend = 'auto' surfs = ['inflated', 'white'] hemis = ['lh', 'rh'] curvs = [True, False] titles = [None, 'Hello'] cortices = ["low_contrast", ("Reds", 0, 1, False)] sizes = [500, (400, 300)] backgrounds = ["white", "blue"] foregrounds = ["black", "white"] figs = [None, mlab.figure()] subj_dirs = [None, subj_dir] for surf, hemi, curv, title, cort, s, bg, fg, fig, sd \ in zip(surfs, hemis, curvs, titles, cortices, sizes, backgrounds, foregrounds, figs, subj_dirs): brain = Brain(subject_id, hemi, surf, curv, title, cort, s, bg, fg, fig, sd) brain.close() assert_raises(ValueError, Brain, subject_id, 'lh', 'inflated', subjects_dir='') @requires_fsaverage def test_annot(): """Test plotting of annot """ mlab.options.backend = 'test' annots = ['aparc', 'aparc.a2005s'] borders = [True, False, 2] alphas = [1, 0.5] brain = Brain(*std_args) for a, b, p in zip(annots, borders, alphas): brain.add_annotation(a, b, p) assert_raises(ValueError, brain.add_annotation, 'aparc', borders=-1) brain.close() @requires_fsaverage def test_contour(): """Test plotting of contour overlay """ mlab.options.backend = 'test' brain = Brain(*std_args) overlay_file = pjoin(data_dir, "lh.sig.nii.gz") brain.add_contour_overlay(overlay_file) brain.add_contour_overlay(overlay_file, max=20, n_contours=9, line_width=2) brain.contour['surface'].actor.property.line_width = 1 brain.contour['surface'].contour.number_of_contours = 10 brain.close() @requires_fsaverage @requires_fs def test_data(): """Test plotting of data """ mlab.options.backend = 'test' brain = Brain(*std_args) mri_file = pjoin(data_dir, 'resting_corr.nii.gz') reg_file = pjoin(data_dir, 'register.dat') surf_data = io.project_volume_data(mri_file, "lh", reg_file) brain.add_data(surf_data, -.7, .7, colormap="jet", alpha=.7) brain.close() @requires_fsaverage def test_foci(): """Test plotting of foci """ mlab.options.backend = 'test' brain = Brain(*std_args) coords = [[-36, 18, -3], [-43, 25, 24], [-48, 26, -2]] brain.add_foci(coords, map_surface="white", color="gold") annot_path = pjoin(subj_dir, subject_id, 'label', 'lh.aparc.a2009s.annot') ids, ctab, names = nib.freesurfer.read_annot(annot_path) verts = np.arange(0, len(ids)) coords = np.random.permutation(verts[ids == 74])[:10] scale_factor = 0.7 brain.add_foci(coords, coords_as_verts=True, scale_factor=scale_factor, color="#A52A2A") brain.close() @requires_fsaverage def test_label(): """Test plotting of label """ mlab.options.backend = 'test' subject_id = "fsaverage" hemi = "lh" surf = "inflated" brain = Brain(subject_id, hemi, surf) brain.add_label("BA1") brain.add_label("BA1", color="blue", scalar_thresh=.5) label_file = pjoin(subj_dir, subject_id, "label", "%s.MT.label" % hemi) brain.add_label(label_file) brain.add_label("BA44", borders=True) brain.add_label("BA6", alpha=.7) brain.show_view("medial") brain.add_label("V1", color="steelblue", alpha=.6) brain.add_label("V2", color="#FF6347", alpha=.6) brain.add_label("entorhinal", color=(.2, 1, .5), alpha=.6) brain.close() @requires_fsaverage def test_meg_inverse(): """Test plotting of MEG inverse solution """ mlab.options.backend = 'test' brain = Brain(*std_args) stc_fname = os.path.join(data_dir, 'meg_source_estimate-lh.stc') stc = io.read_stc(stc_fname) data = stc['data'] vertices = stc['vertices'] time = 1e3 * np.linspace(stc['tmin'], stc['tmin'] + data.shape[1] * stc['tstep'], data.shape[1]) colormap = 'hot' time_label = 'time=%0.2f ms' brain.add_data(data, colormap=colormap, vertices=vertices, smoothing_steps=10, time=time, time_label=time_label) brain.set_data_time_index(2) brain.scale_data_colormap(fmin=13, fmid=18, fmax=22, transparent=True) # viewer = TimeViewer(brain) brain.close() @requires_fsaverage def test_morphometry(): """Test plotting of morphometry """ mlab.options.backend = 'test' brain = Brain(*std_args) brain.add_morphometry("curv") brain.add_morphometry("sulc", grayscale=True) brain.add_morphometry("thickness") brain.close() @requires_ffmpeg @requires_fsaverage def test_movie(): """Test saving a movie of an MEG inverse solution """ # create and setup the Brain instance mlab.options.backend = 'auto' brain = Brain(*std_args) stc_fname = os.path.join(data_dir, 'meg_source_estimate-lh.stc') stc = io.read_stc(stc_fname) data = stc['data'] time = np.arange(data.shape[1]) * stc['tstep'] + stc['tmin'] brain.add_data(data, colormap='hot', vertices=stc['vertices'], smoothing_steps=10, time=time, time_label='time=%0.2f ms') brain.scale_data_colormap(fmin=13, fmid=18, fmax=22, transparent=True) # save movies with different options tempdir = mkdtemp() try: dst = os.path.join(tempdir, 'test.mov') brain.save_movie(dst) brain.save_movie(dst, tmin=0.081, tmax=0.102) # test the number of frames in the movie sp = subprocess.Popen(('ffmpeg', '-i', 'test.mov', '-vcodec', 'copy', '-f', 'null', '/dev/null'), cwd=tempdir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = sp.communicate() m = re.search('frame=\s*(\d+)\s', stderr) if not m: raise RuntimeError(stderr) n_frames = int(m.group(1)) assert_equal(n_frames, 3) finally: # clean up shutil.rmtree(tempdir) brain.close() @requires_fsaverage def test_overlay(): """Test plotting of overlay """ mlab.options.backend = 'test' # basic overlay support overlay_file = pjoin(data_dir, "lh.sig.nii.gz") brain = Brain(*std_args) brain.add_overlay(overlay_file) brain.overlays["sig"].remove() brain.add_overlay(overlay_file, min=5, max=20, sign="pos") sig1 = io.read_scalar_data(pjoin(data_dir, "lh.sig.nii.gz")) sig2 = io.read_scalar_data(pjoin(data_dir, "lh.alt_sig.nii.gz")) thresh = 4 sig1[sig1 < thresh] = 0 sig2[sig2 < thresh] = 0 conjunct = np.min(np.vstack((sig1, sig2)), axis=0) brain.add_overlay(sig1, 4, 30, name="sig1") brain.overlays["sig1"].pos_bar.lut_mode = "Reds" brain.overlays["sig1"].pos_bar.visible = False brain.add_overlay(sig2, 4, 30, name="sig2") brain.overlays["sig2"].pos_bar.lut_mode = "Blues" brain.overlays["sig2"].pos_bar.visible = False brain.add_overlay(conjunct, 4, 30, name="conjunct") brain.overlays["conjunct"].pos_bar.lut_mode = "Purples" brain.overlays["conjunct"].pos_bar.visible = False brain.close() @requires_fsaverage def test_probabilistic_labels(): """Test plotting of probabilistic labels """ mlab.options.backend = 'test' brain = Brain("fsaverage", "lh", "inflated", cortex="low_contrast") brain.add_label("BA1", color="darkblue") brain.add_label("BA1", color="dodgerblue", scalar_thresh=.5) brain.add_label("BA45", color="firebrick", borders=True) brain.add_label("BA45", color="salmon", borders=True, scalar_thresh=.5) label_file = pjoin(subj_dir, "fsaverage", "label", "lh.BA6.label") prob_field = np.zeros_like(brain._geo.x) ids, probs = nib.freesurfer.read_label(label_file, read_scalars=True) prob_field[ids] = probs brain.add_data(prob_field, thresh=1e-5) brain.data["colorbar"].number_of_colors = 10 brain.data["colorbar"].number_of_labels = 11 brain.close() @requires_fsaverage def test_text(): """Test plotting of text """ mlab.options.backend = 'test' brain = Brain(*std_args) brain.add_text(0.1, 0.1, 'Hello', 'blah') brain.close() @requires_fsaverage def test_animate(): """Test animation """ mlab.options.backend = 'auto' brain = Brain(*std_args, size=100) brain.add_morphometry('curv') tmp_name = mktemp() + '.avi' brain.animate(["m"] * 3, n_steps=2) brain.animate(['l', 'l'], n_steps=2, fname=tmp_name) # can't rotate in axial plane assert_raises(ValueError, brain.animate, ['l', 'd']) brain.close() @requires_fsaverage def test_views(): """Test showing different views """ mlab.options.backend = 'test' brain = Brain(*std_args) brain.show_view('lateral') brain.show_view('m') brain.show_view('rostral') brain.show_view('caudal') brain.show_view('ve') brain.show_view('frontal') brain.show_view('par') brain.show_view('dor') brain.show_view({'distance': 432}) brain.show_view({'azimuth': 135, 'elevation': 79}, roll=107) brain.close()
diego0020/PySurfer
surfer/tests/test_viz.py
Python
bsd-3-clause
11,223
[ "Mayavi" ]
c084a82534e50edd04043c60f3780458c89579cb4a87454b753c43a391bfdc62
from mcpi.minecraft import Minecraft from mcmodels import Rocket, LaunchPad from time import sleep import math def findPointOnCircle(cx, cy, radius, angle): x = cx + math.sin(math.radians(angle)) * radius y = cy + math.cos(math.radians(angle)) * radius return((int(x + 0.5),int(y + 0.5))) if __name__ == "__main__": mc = Minecraft.create() mc.postToChat("SpaceCRAFT - Minecraft Rocket Launch") mc.postToChat("Hit the launch pad") #create the rocket next to the player at ground level rocketPos = mc.player.getTilePos() rocketPos.x += 5 rocketPos.y = mc.getHeight(rocketPos.x, rocketPos.z) - 1 launchpad = LaunchPad(mc, rocketPos) rocket = Rocket(mc, rocketPos) try: #wait till the launch tnt is hit launch = False while not launch: for hit in mc.events.pollBlockHits(): shapeblockhit = launchpad.getShapeBlock( hit.pos.x, hit.pos.y, hit.pos.z) if shapeblockhit != None: if shapeblockhit.tag == "launch": launch = True #count down to blast off for count in range(3, 0, -1): mc.postToChat(str(count)) sleep(1) mc.postToChat("Blast Off") #launch the rocket for up in range(0, 15): rocket.moveBy(0, 1, 0) #pitch the rocket over pitch = 0 for up in range(0, 75): #find out where the rocket should be pointing for its pitch z, y = findPointOnCircle(0, 0, 1, pitch) #rotate the rocket rocket.rotate(0, pitch, 0) #move the rocket rocket.moveBy(0, y, z) #increase the angle of pitch until it gets to 60 degrees if pitch < 60: pitch += 3 finally: rocket.clear() launchpad.clear()
astro-pi/SpaceCRAFT
spacecraft/mcrocketlaunch.py
Python
bsd-3-clause
1,969
[ "BLAST" ]
2ac74a51f5afe864e513dbe0b07e7a960578e0421b301aaa0653bb060341b704
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views urlpatterns = [ url(r'^$', TemplateView.as_view(template_name='pages/home.html'), name='home'), url(r'^about/$', TemplateView.as_view(template_name='pages/about.html'), name='about'), # Django Admin, use {% url 'admin:index' %} url(settings.ADMIN_URL, admin.site.urls), # User management url(r'^users/', include('olc_webportalv2.users.urls', namespace='users')), url(r'^accounts/', include('allauth.urls')), # Your stuff: custom urls includes go here url(r'^newmultiprojects/', include('olc_webportalv2.new_multisample.urls', namespace='new_multisample')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ url(r'^400/$', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}), url(r'^403/$', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}), url(r'^404/$', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}), url(r'^500/$', default_views.server_error), ] if 'debug_toolbar' in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [ url(r'^__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
forestdussault/olc_webportalv2
config/urls.py
Python
mit
1,664
[ "VisIt" ]
ae51a17b621804e7f3d5e8c6fda5b67355baa3fabe3b44b1fb5cd9e1e41be548
# Steps specific to the day-view from behave import step from pages.day_view import DayViewPage @step('we visit the view for day {day:Int}') def step_impl(context, day): page = DayViewPage(context) page.visit(day)
abingham/accu-2017-elm-app
tests/features/steps/day_view.py
Python
mit
225
[ "VisIt" ]
1b6824ff4ea5cddab994b6ca7223ac07c78d4220b5d01183d047630c77dbe54e
# -*- coding:utf-8 -*- # ---------------------------------------------------------------------- # Copyright 2016 Juergen Probst # # This file is part of pyMPB. # # pyMPB is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # pyMPB is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with pyMPB. If not, see <http://www.gnu.org/licenses/>. # ---------------------------------------------------------------------- from simulation import Simulation from geometry import Geometry from kspace import KSpaceTriangular, KSpace from objects import Dielectric, Rod, Block import defaults import log from utility import do_runmode, get_triangular_phc_waveguide_air_rods from os import path, makedirs import numpy as np def TriHoles2D( material, radius, numbands=8, k_interpolation=11, resolution=32, mesh_size=7, runmode='sim', num_processors=2, save_field_patterns=True, convert_field_patterns=True, containing_folder='./', job_name_suffix='', bands_title_appendix='', custom_k_space=None, modes=('te', 'tm')): """Create a 2D MPB Simulation of a triangular lattice of holes. :param material: can be a string (e.g. SiN, 4H-SiC-anisotropic_c_in_z; defined in data.py) or just the epsilon value (float) :param radius: the radius of holes in units of the lattice constant :param numbands: number of bands to calculate :param k_interpolation: number of the k-vectors between every two of the used high symmetry points Gamma, M, K and Gamma again, so the total number of simulated k-vectors will be 3*k_interpolation + 4. Only used if no custom_custom_k_space is provided. :param resolution: described in MPB documentation :param mesh_size: described in MPB documentation :param runmode: can be one of the following: * empty string : just create and return the simulation object * 'ctl' : create the sim object and save the ctl file * 'sim' (default): run the simulation and do all postprocessing * 'postpc' : do all postprocessing; simulation should have run before! * 'display': display all pngs done during postprocessing. This is the only mode that is interactive. :param num_processors: number of processors used during simulation :param save_field_patterns: indicates whether field pattern h5 files are generated during the simulation (at points of high symmetry) :param convert_field_patterns: indicates whether field pattern h5 files should be converted to png (only when postprocessing) :param containing_folder: the path to the folder which will contain the simulation subfolder. :param job_name_suffix: Optionally specify a job_name_suffix (appendix to the folder name etc.) which will be appended to the jobname created automatically from the most important parameters. :param bands_title_appendix: will be added to the title of the bands diagram. :param custom_k_space: By default, KSpaceTriangular with k_interpolation interpolation steps are used. Provide any KSpace object here to customize this. k_interpolation will then be ignored. :param modes: a list of modes to run. Possible are 'te' and 'tm'. Default: both :return: the Simulation object """ mat = Dielectric(material) geom = Geometry( width=1, height=1, triangular=True, objects=[ Rod( x=0, y=0, material='air', radius=radius)]) if isinstance(custom_k_space, KSpace): kspace = custom_k_space else: kspace = KSpaceTriangular( k_interpolation=k_interpolation, use_uniform_interpolation=defaults.newmpb) # points of interest: (output mode patterns at these points) if save_field_patterns: poi = kspace.points()[0:-1] else: poi = [] runcode = '' for mode in modes: if mode == 'te': outputfunc = ' '.join(defaults.output_funcs_te) else: outputfunc = ' '.join(defaults.output_funcs_tm) runcode += ( '(run-%s %s)\n' % ( mode, defaults.default_band_func(poi, outputfunc) ) + '(print-dos 0 1.2 121)\n\n') jobname = 'TriHoles2D_{0}_r{1:03.0f}'.format( mat.name, radius * 1000) sim = Simulation( jobname=jobname + job_name_suffix, geometry=geom, kspace=kspace, numbands=numbands, resolution=resolution, mesh_size=mesh_size, initcode=defaults.default_initcode + '(set! default-material {0})'.format(str(mat)), postcode='', runcode=runcode, work_in_subfolder=path.join( containing_folder, jobname + job_name_suffix), clear_subfolder=runmode.startswith('s') or runmode.startswith('c')) draw_bands_title = ('2D hex. PhC; {0}, radius={1:0.3f}'.format( mat.name, geom.objects[0].radius) + bands_title_appendix) return do_runmode( sim, runmode, num_processors, draw_bands_title, plot_crop_y=True, # automatic cropping convert_field_patterns=convert_field_patterns, field_pattern_plot_filetype=defaults.field_dist_filetype, # don't add gamma point a second time (index 3): field_pattern_plot_k_selection=None, x_axis_hint=[defaults.default_x_axis_hint, kspace][kspace.has_labels()] ) def TriHolesSlab3D( material, radius, thickness, numbands=8, k_interpolation=11, resolution=32, mesh_size=7, supercell_z=6, runmode='sim', num_processors=2, save_field_patterns=True, convert_field_patterns=True, containing_folder='./', job_name_suffix='', bands_title_appendix='', custom_k_space=None, modes=('zeven', 'zodd'), substrate_material=None): """Create a 3D MPB Simulation of a slab with a triangular lattice of holes. :param material: can be a string (e.g. SiN, 4H-SiC-anisotropic_c_in_z; defined in data.py) or just the epsilon value (float) :param radius: the radius of holes in units of the lattice constant :param thickness: slab thickness in units of the lattice constant :param numbands: number of bands to calculate :param k_interpolation: number of the k-vectors between every two of the used high symmetry points Gamma, M, K and Gamma again, so the total number of simulated k-vectors will be 3*k_interpolation + 4 :param resolution: described in MPB documentation :param mesh_size: described in MPB documentation :param supercell_z: the height of the supercell in units of the lattice constant :param runmode: can be one of the following: * empty string : just create and return the simulation object * 'ctl' : create the sim object and save the ctl file * 'sim' (default): run the simulation and do all postprocessing * 'postpc' : do all postprocessing; simulation should have run before! * 'display': display all pngs done during postprocessing. This is the only mode that is interactive. :param num_processors: number of processors used during simulation :param save_field_patterns: indicates whether field pattern h5 files are generated during the simulation (at points of high symmetry) :param convert_field_patterns: indicates whether field pattern h5 files should be converted to png (only when postprocessing) :param containing_folder: the path to the folder which will contain the simulation subfolder. :param job_name_suffix: Optionally specify a job_name_suffix (appendix to the folder name etc.) which will be appended to the jobname created automatically from the most important parameters. :param bands_title_appendix: will be added to the title of the bands diagram. :param custom_k_space: By default, KSpaceTriangular with k_interpolation interpolation steps are used. Provide any KSpace object here to customize this. k_interpolation will then be ignored. :param modes: a list of modes to run. Possible are 'zeven', 'zodd' or '' (latter meaning no distinction). Default: ['zeven', 'zodd'] :param substrate_material: the material of an optional substrate, see param material. Holes will not be extended into the substrate. Default: None, i.e. the substrate is air. :return: the Simulation object """ mat = Dielectric(material) geom = Geometry( width=1, height=1, depth=supercell_z, triangular=True, objects=[ Block( x=0, y=0, z=0, material=mat, #make it bigger than computational cell, just in case: size=(2, 2, thickness)), Rod( x=0, y=0, material='air', radius=radius)]) if substrate_material: geom.add_substrate( Dielectric(substrate_material), start_at=-0.5 * thickness) if isinstance(custom_k_space, KSpace): kspace = custom_k_space else: kspace = KSpaceTriangular( k_interpolation=k_interpolation, use_uniform_interpolation=defaults.newmpb) # points of interest: (output mode patterns at these points) if save_field_patterns: poi = kspace.points()[0:-1] else: poi = [] runcode = '' for mode in modes: if mode == '': runcode += ( '(run %s)\n' % ( defaults.default_band_func( poi, ' '.join(defaults.output_funcs_other)) ) + '(print-dos 0 1.2 121)\n\n') else: if mode == 'zeven': outputfunc = ' '.join(defaults.output_funcs_te) else: outputfunc = ' '.join(defaults.output_funcs_tm) runcode += ( '(run-%s %s)\n' % ( mode, defaults.default_band_func(poi, outputfunc) ) + '(print-dos 0 1.2 121)\n\n') jobname = 'TriHolesSlab_{0}_r{1:03.0f}_t{2:03.0f}'.format( mat.name, radius * 1000, thickness * 1000) sim = Simulation( jobname=jobname + job_name_suffix, geometry=geom, kspace=kspace, numbands=numbands, resolution=resolution, mesh_size=mesh_size, initcode=defaults.default_initcode, postcode='', runcode=runcode, work_in_subfolder=path.join( containing_folder, jobname + job_name_suffix), clear_subfolder=runmode.startswith('s') or runmode.startswith('c')) draw_bands_title = ('Hex. PhC slab; ' '{0}, thickness={1:0.3f}, radius={2:0.3f}'.format( mat.name, geom.objects[0].size[2], geom.objects[1].radius) + bands_title_appendix) return do_runmode( sim, runmode, num_processors, draw_bands_title, plot_crop_y=0.8 / geom.substrate_index, convert_field_patterns=convert_field_patterns, field_pattern_plot_filetype=defaults.field_dist_filetype, field_pattern_plot_k_selection=None, x_axis_hint=[defaults.default_x_axis_hint, kspace][kspace.has_labels()] ) def TriHoles2D_Waveguide( material, radius, mode='te', numbands=8, k_steps=17, supercell_size=5, resolution=32, mesh_size=7, ydirection=False, first_row_longitudinal_shift=0, first_row_transversal_shift=0, first_row_radius=None, second_row_longitudinal_shift=0, second_row_transversal_shift=0, second_row_radius=None, runmode='sim', num_processors=2, projected_bands_folder='../projected_bands_repo', plot_complete_band_gap=False, save_field_patterns_kvecs=list(), save_field_patterns_bandnums=list(), convert_field_patterns=False, job_name_suffix='', bands_title_appendix='', plot_crop_y=False, field_pattern_plot_k_selection=()): """Create a 2D MPB Simulation of a triangular lattice of holes, with a waveguide along the nearest neighbor direction, i.e. Gamma->K direction. The simulation is done with a rectangular super cell. Before the waveguide simulation, additional simulations of the unperturbed structure will be run for projected bands data, if these simulations where not run before. :param material: can be a string (e.g. SiN, 4H-SiC-anisotropic_c_in_z; defined in data.py) or just the epsilon value (float) :param radius: the radius of holes in units of the lattice constant :param mode: the mode to run. Possible are 'te' and 'tm'. :param numbands: number of bands to calculate :param k_steps: number of k steps along the waveguide direction between 0 and 0.5 to simulate. This can also be a list of the explicit k values (just scalar values for component along the waveguide axis) to be simulated. :param supercell_size: the length of the supercell perpendicular to the waveguide, in units of sqrt(3) times the lattice constant. If it is not a odd number, one will be added. :param resolution: described in MPB documentation :param mesh_size: described in MPB documentation :param ydirection: set this if the waveguide should point along y, otherwise (default) it will point along x. Use the default if you want to use yparity data. :param first_row_longitudinal_shift: shifts the holes next to the waveguide by this amount, parallel to the waveguide direction. :param first_row_transversal_shift: shifts the holes next to the waveguide by this amount, perpendicular to the waveguide direction. :param first_row_radius: The radius of the holes next to the waveguide. If None (default), use radius. :param second_row_longitudinal_shift: shifts the holes in the second row next to the waveguide by this amount, parallel to the waveguide direction :param second_row_transversal_shift: shifts the holes in the second row next to the waveguide by this amount, perpendicular to the waveguide direction :param second_row_radius: The radius of the holes in the second row next to the waveguide. If None (default), use radius. :param runmode: can be one of the following: * empty string : just create and return the simulation object * 'ctl' : create the sim object and save the ctl file * 'sim' (default): run the simulation and do all postprocessing * 'postpc' : do all postprocessing; simulation should have run before! * 'display': display all pngs done during postprocessing. This is the only mode that is interactive. :param num_processors: number of processors used during simulation :param projected_bands_folder: the path to the folder which will contain the simulations of the unperturbed PhC, which is needed for the projections perpendicular to the waveguide direction. If the folder contains simulations run before, their data will be reused. :param plot_complete_band_gap: If this is False, the band gap will be a function of the k component along the waveguide. For each k, a simulation with unperturbed photonic crystal will be run to get the data. If this is True, only one unperturbed simulation will be run to find the full direction independent bandgap. :param save_field_patterns_kvecs: a list of k-vectors (3-tuples), which indicates where field pattern h5 files are generated during the simulation (only at bands in save_field_patterns_bandnums) :param save_field_patterns_bandnums: a list of band numbers (int, starting at 1), which indicates where field pattern h5 files are generated during the simulation (only at k-vectors in save_field_patterns_kvecs) :param convert_field_patterns: indicates whether field pattern h5 files should be converted to png (only when postprocessing) :param job_name_suffix: Optionally specify a job_name_suffix (appendix to the folder name etc.) which will be appended to the jobname created automatically from the most important parameters. :param bands_title_appendix: will be added to the title of the bands diagram. :param plot_crop_y: the band diagrams are automatically cropped before the last band if plot_crop_y is True, alternatively use plot_crop_y to specify the max. y-value where the plot will be cropped. :return: the Simulation object """ mat = Dielectric(material) # first, make sure all data for projected bands exist, otherwise # start their simulations. unperturbed_jobname = 'TriHoles2D_{0}_r{1:03.0f}'.format( mat.name, radius * 1000) # look here for old simulations, and place new ones there: repo = path.abspath( path.join( path.curdir, projected_bands_folder, unperturbed_jobname ) ) # create path if not there yet: if not path.exists(path.abspath(repo)): makedirs(path.abspath(repo)) # these k points will be simulated (along waveguide): if isinstance(k_steps, (int, float)): k_steps = int(k_steps) k_points = np.linspace(0, 0.5, num=k_steps, endpoint=True) else: k_points = np.array(k_steps) # This list will be forwarded later to this defect simulation's # post-process. It contains the folder paths of unperturbed # simulations for each k-vec of this simulation (or only one simulation, # if the plotted band gap does not change from k-vec to k-vec): project_bands_list = [] if plot_complete_band_gap: if mode == 'te': # We only need a simulation of the first two bands at the M # and the K point to get the band gap. # first, see if we need to simulate: jobname_suffix = '_for_gap' jobname = unperturbed_jobname + jobname_suffix project_bands_list.append(path.join(repo, jobname)) range_file_name = path.join( repo, jobname, jobname + '_' + mode + '_ranges.csv') if not path.isfile(range_file_name): # does not exist, so start simulation: log.info('unperturbed structure not yet simulated for ' 'band gap. Running now...') kspace = KSpace( points_list=[(0, 0.5, 0), ('(/ -3)', '(/ 3)', 0)], k_interpolation=0, point_labels=['M', 'K']) sim = TriHoles2D( material=material, radius=radius, custom_k_space=kspace, numbands=3, # 3 so the band plot looks better ;) resolution=resolution, mesh_size=mesh_size, runmode='sim' if runmode.startswith('s') else '', num_processors=num_processors, containing_folder=repo, save_field_patterns=False, convert_field_patterns=False, job_name_suffix=jobname_suffix, bands_title_appendix=', for band gap', modes=[mode] ) if not sim: log.error( 'an error occurred during simulation of unperturbed ' 'structure. See the .out file in {0}'.format( path.join( repo, jobname )) ) return # Now, the _ranges.csv file is wrong, because we did not # simulate the full K-Space, especially Gamma is # missing. Correct the ranges so the first band starts # at 0 and the second band is the last band and goes to # a very high value. This way, there is only the band # gap left between the first and second continuum bands. # Load the _ranges.csv file to get the band gap: ranges = np.loadtxt(range_file_name, delimiter=',', ndmin=2) # tinker: ranges[0, 1] = 0 ranges[1, 2] = ranges[1, 2] * 100 # save file again, drop higher bands: np.savetxt( range_file_name, ranges[:2, :], header='bandnum, min, max', fmt=['%.0f', '%.6f', '%.6f'], delimiter=', ') else: # For high refractive indices and big radius, there are some small # gaps for TM modes. But we need to simulate more bands and # more k-points than for the TE modes. # I don't need it, so it is not implemented yet: log.warning('plot_complete_band_gap not implemented for {0}' ' modes yet.'.format(mode)) else: # Note: in the following, I use a triangular lattice, which is # orientated such that the Gamma->K direction points towards y # in cartesian coordinates. If ydirection is False, it does not # matter, because the projected bands stay the same. # In the triangular lattice, in the basis of its reciprocal # basis vectors, this is the K' point, i.e. die boundary of the # first brillouin zone in the rectangular lattice, onto which we # need to project (see also : Steven G. Johnson et al., "Linear # waveguides in photonic-crystal slabs", Phys. Rev. B, Vol. 62, # Nr.12, 8212-8222 (2000); page 8216 & Fig. 8): rectBZ_K = np.array((0.25, -0.25)) # the M point in the triangular lattice reciprocal basis, which # points along +X (perpendicular to a waveguide in k_y # direction): (note: if k_y is greater than 1/3, we leave the # 1st BZ in +x direction. But this is OK and we calculate it # anyway, because it does not change the projection. If we want # to optimize calculation time some time, we could limit this.) triBZ_M = np.array((0.5, 0.5)) # now, see if we need to simulate: for ky in k_points: jobname_suffix = '_projk{0:06.0f}'.format(ky*1e6) jobname = unperturbed_jobname + jobname_suffix project_bands_list.append(path.join(repo, jobname)) range_file_name = path.join( repo, jobname, jobname + '_' + mode + '_ranges.csv') if not path.isfile(range_file_name): # does not exist, so start simulation: log.info('unperturbed structure not yet simulated at ' 'k_wg={0}. Running now...'.format(ky)) kspace = KSpace( points_list=[ rectBZ_K * ky * 2, rectBZ_K * ky * 2 + triBZ_M ], k_interpolation=15,) sim = TriHoles2D( material=material, radius=radius, custom_k_space=kspace, numbands=defaults.num_projected_bands, resolution=resolution, mesh_size=mesh_size, runmode='sim' if runmode.startswith('s') else '', num_processors=num_processors, containing_folder=repo, save_field_patterns=False, convert_field_patterns=False, job_name_suffix=jobname_suffix, bands_title_appendix=', at k_wg={0:0.3f}'.format(ky), modes=[mode] ) if not sim: log.error( 'an error occurred during simulation of unperturbed ' 'structure. See the .out file in {0}'.format( path.join( repo, jobname )) ) return # If a shift is used, inversion symmetry is broken: if ((first_row_longitudinal_shift or second_row_longitudinal_shift) and 'mpbi' in defaults.mpb_call): log.info('default MPB to use includes inversion symmetry: ' '{0}. '.format(defaults.mpb_call) + 'Shift of holes specified, which breaks inv. symmetry. ' 'Will fall back to MPB without inv. symm.: {0}'.format( defaults.mpb_call.replace('mpbi', 'mpb') )) defaults.mpb_call = defaults.mpb_call.replace('mpbi', 'mpb') # make it odd: if supercell_size % 2 == 0: supercell_size += 1 # Create geometry and add objects. objects = get_triangular_phc_waveguide_air_rods( radius=radius, supercell_size=supercell_size, ydirection=ydirection, first_row_longitudinal_shift=first_row_longitudinal_shift, first_row_transversal_shift=first_row_transversal_shift, first_row_radius=first_row_radius, second_row_longitudinal_shift=second_row_longitudinal_shift, second_row_transversal_shift=second_row_transversal_shift, second_row_radius=second_row_radius) if ydirection: geom = Geometry( width='(* (sqrt 3) %i)' % supercell_size, height=1, triangular=False, objects=objects ) kspaceW1 = KSpace( points_list=[(0, ky, 0) for ky in k_points], k_interpolation=0, ) else: geom = Geometry( width=1, height='(* (sqrt 3) %i)' % supercell_size, triangular=False, objects=objects ) kspaceW1 = KSpace( points_list=[(kx, 0, 0) for kx in k_points], k_interpolation=0, ) jobname = 'TriHoles2D_W1_{0}_r{1:03.0f}'.format( mat.name, radius * 1000) if mode == 'te': outputfuncs = defaults.output_funcs_te else: outputfuncs = defaults.output_funcs_tm runcode = '' if defaults.newmpb: runcode = '(optimize-grid-size!)\n\n' if save_field_patterns_bandnums and save_field_patterns_kvecs: runcode += ( ';function to determine whether an item x is member of list:\n' '(define (member? x list)\n' ' (cond (\n' ' ;false if the list is empty:\n' ' (null? list) #f )\n' ' ;true if first item (car) equals x:\n' ' ( (eqv? x (car list)) #t )\n' ' ;else, drop first item (cdr) and make recursive call:\n' ' ( else (member? x (cdr list)) )\n' ' ))\n\n' + '(define output-bands-list (list {0}))\n\n'.format(' '.join( map(str, save_field_patterns_bandnums))) + '(define (output-func bnum)\n' ' (if (member? bnum output-bands-list)\n' ' (begin\n' + ''.join(12 * ' ' + '({0} bnum)\n'.format(func) for func in outputfuncs) + ' )\n' ' ))\n\n' '(run-{0} {1})\n'.format( mode, defaults.default_band_func( save_field_patterns_kvecs, 'output-func')) + '(print-dos 0 1.2 121)\n\n' ) else: runcode += ('(run-{0} {1})\n'.format( mode, defaults.default_band_func([], None) ) + '(print-dos 0 1.2 121)\n\n') sim = Simulation( jobname=jobname + job_name_suffix, geometry=geom, kspace=kspaceW1, numbands=numbands, resolution=resolution, mesh_size=mesh_size, initcode=defaults.default_initcode + '(set! default-material {0})'.format(str(mat)), postcode='', runcode=runcode, clear_subfolder=runmode.startswith('s') or runmode.startswith('c')) draw_bands_title = ( '2D hex. PhC W1; {0}, radius={1:0.3f}'.format( mat.name, radius) + bands_title_appendix) return do_runmode( sim, runmode, num_processors, draw_bands_title, plot_crop_y=plot_crop_y, convert_field_patterns=convert_field_patterns, field_pattern_plot_k_selection=field_pattern_plot_k_selection, field_pattern_plot_filetype=defaults.field_dist_filetype, x_axis_hint=[5, "{1}" if ydirection else "{0}"], project_bands_list=project_bands_list, color_by_parity='y' ) def TriHolesSlab3D_Waveguide( material, radius, thickness, mode='zeven', numbands=8, k_steps=17, supercell_size=5, supercell_z=6, resolution=32, mesh_size=7, ydirection=False, first_row_longitudinal_shift=0, first_row_transversal_shift=0, first_row_radius=None, second_row_longitudinal_shift=0, second_row_transversal_shift=0, second_row_radius=None, runmode='sim', num_processors=2, projected_bands_folder='../projected_bands_repo', plot_complete_band_gap=False, save_field_patterns_kvecs=list(), save_field_patterns_bandnums=list(), convert_field_patterns=False, job_name_suffix='', bands_title_appendix='', plot_crop_y=False, field_pattern_plot_k_selection=()): """Create a 3D MPB Simulation of a slab with a triangular lattice of holes, with a waveguide along the nearest neighbor direction, i.e. Gamma->K direction. The simulation is done with a cubic super cell. Before the waveguide simulation, additional simulations of the unperturbed structure will be run for projected bands data, if these simulations where not run before. :param material: can be a string (e.g. SiN, 4H-SiC-anisotropic_c_in_z; defined in data.py) or just the epsilon value (float) :param radius: the radius of holes in units of the lattice constant :param thickness: slab thickness in units of the lattice constant :param mode: the mode to run. Possible are 'zeven' and 'zodd'. :param numbands: number of bands to calculate :param k_steps: number of k steps along the waveguide direction between 0 and 0.5 to simulate. This can also be a list of the explicit k values (just scalar values for component along the waveguide axis) to be simulated. :param supercell_size: the length of the supercell perpendicular to the waveguide, in units of sqrt(3) times the lattice constant. If it is not a odd number, one will be added. :param supercell_z: the height of the supercell in units of the lattice constant :param resolution: described in MPB documentation :param mesh_size: described in MPB documentation :param ydirection: set this if the waveguide should point along y, otherwise (default) it will point along x. Use the default if you want to use yparity data. :param first_row_longitudinal_shift: shifts the holes next to the waveguide by this amount, parallel to the waveguide direction. :param first_row_transversal_shift: shifts the holes next to the waveguide by this amount, perpendicular to the waveguide direction. :param first_row_radius: The radius of the holes next to the waveguide. If None (default), use radius. :param second_row_longitudinal_shift: shifts the holes in the second row next to the waveguide by this amount, parallel to the waveguide direction :param second_row_transversal_shift: shifts the holes in the second row next to the waveguide by this amount, perpendicular to the waveguide direction :param second_row_radius: The radius of the holes in the second row next to the waveguide. If None (default), use radius. :param runmode: can be one of the following: * empty string : just create and return the simulation object * 'ctl' : create the sim object and save the ctl file * 'sim' (default): run the simulation and do all postprocessing * 'postpc' : do all postprocessing; simulation should have run before! * 'display': display all pngs done during postprocessing. This is the only mode that is interactive. :param num_processors: number of processors used during simulation :param projected_bands_folder: the path to the folder which will contain the simulations of the unperturbed PhC, which is needed for the projections perpendicular to the waveguide direction. If the folder contains simulations run before, their data will be reused. :param plot_complete_band_gap: If this is False, the band gap will be a function of the k component along the waveguide. For each k, a simulation with unperturbed photonic crystal will be run to get the data. If this is True, only one unperturbed simulation will be run to find the full direction independent bandgap. :param save_field_patterns_kvecs: a list of k-vectors (3-tuples), which indicates where field pattern h5 files are generated during the simulation (only at bands in save_field_patterns_bandnums) :param save_field_patterns_bandnums: a list of band numbers (int, starting at 1), which indicates where field pattern h5 files are generated during the simulation (only at k-vectors in save_field_patterns_kvecs) :param convert_field_patterns: indicates whether field pattern h5 files should be converted to png (only when postprocessing) :param job_name_suffix: Optionally specify a job_name_suffix (appendix to the folder name etc.) which will be appended to the jobname created automatically from the most important parameters. :param bands_title_appendix: will be added to the title of the bands diagram. :param plot_crop_y: the band diagrams are automatically cropped before the last band if plot_crop_y is True, alternatively use plot_crop_y to specify the max. y-value where the plot will be cropped. :return: the Simulation object """ mat = Dielectric(material) # first, make sure all data for projected bands exist, otherwise # start their simulations. unperturbed_jobname = 'TriHolesSlab_{0}_r{1:03.0f}_t{2:03.0f}'.format( mat.name, radius * 1000, thickness * 1000) # look here for old simulations, and place new ones there: repo = path.abspath( path.join( path.curdir, projected_bands_folder, unperturbed_jobname ) ) # create path if not there yet: if not path.exists(path.abspath(repo)): makedirs(path.abspath(repo)) # these k points will be simulated (along waveguide): if isinstance(k_steps, (int, float)): k_steps = int(k_steps) k_points = np.linspace(0, 0.5, num=k_steps, endpoint=True) else: k_points = np.array(k_steps) # This list will be forwarded later to this defect simulation's # post-process. It contains the folder paths of unperturbed # simulations for each k-vec of this simulation (or only one simulation, # if the plotted band gap does not change from k-vec to k-vec): project_bands_list = [] if plot_complete_band_gap: if mode == 'zeven': # We only need a simulation of the first two bands at the M # and the K point to get the band gap. # first, see if we need to simulate: jobname_suffix = '_for_gap' jobname = unperturbed_jobname + jobname_suffix project_bands_list.append(path.join(repo, jobname)) range_file_name = path.join( repo, jobname, jobname + '_' + mode + '_ranges.csv') if not path.isfile(range_file_name): # does not exist, so start simulation: log.info('unperturbed structure not yet simulated for ' 'band gap. Running now...') kspace = KSpace( points_list=[(0, 0.5, 0), ('(/ -3)', '(/ 3)', 0)], k_interpolation=0, point_labels=['M', 'K']) sim = TriHolesSlab3D( material=material, radius=radius, thickness=thickness, custom_k_space=kspace, numbands=3, # 3 so the band plot looks better ;) resolution=resolution, mesh_size=mesh_size, supercell_z=supercell_z, runmode='sim' if runmode.startswith('s') else '', num_processors=num_processors, containing_folder=repo, save_field_patterns=False, convert_field_patterns=False, job_name_suffix=jobname_suffix, bands_title_appendix=', for band gap', modes=[mode] ) if not sim: log.error( 'an error occurred during simulation of unperturbed ' 'structure. See the .out file in {0}'.format( path.join( repo, jobname )) ) return # Now, the _ranges.csv file is wrong, because we did not # simulate the full K-Space, especially Gamma is # missing. Correct the ranges so the first band starts # at 0 and the second band is the last band and goes to # a very high value. This way, there is only the band # gap left between the first and second continuum bands. # Load the _ranges.csv file to get the band gap: ranges = np.loadtxt(range_file_name, delimiter=',', ndmin=2) # tinker: ranges[0, 1] = 0 ranges[1, 2] = ranges[1, 2] * 100 # save file again, drop higher bands: np.savetxt( range_file_name, ranges[:2, :], header='bandnum, min, max', fmt=['%.0f', '%.6f', '%.6f'], delimiter=', ') else: # For high refractive indices and big radius, there are some # small gaps for TM modes. But we need to simulate more # bands and more k-points than for the TE modes. This is # especially difficult (or even impossible?), since # quasi-guided PhC bands (which narrow the band gap) are # hidden by continuum modes above the light line in 3D. # I don't need it, so it is not implemented yet: log.warning('plot_complete_band_gap not implemented for {0}' ' modes yet.'.format(mode)) else: # Note: in the following, I use a triangular lattice, which is # orientated such that the Gamma->K direction points towards y # in cartesian coordinates. If ydirection is False, it does not # matter, because the projected bands stay the same. # In the triangular lattice, in the basis of its reciprocal # basis vectors, this is the K' point, i.e. die boundary of the # first brillouin zone in the rectangular lattice, onto which we # need to project (see also : Steven G. Johnson et al., "Linear # waveguides in photonic-crystal slabs", Phys. Rev. B, Vol. 62, # Nr.12, 8212-8222 (2000); page 8216 & Fig. 8): rectBZ_K = np.array((0.25, -0.25)) # the M point in the triangular lattice reciprocal basis, which # points along +X (perpendicular to a waveguide in k_y # direction): (note: if k_y is greater than 1/3, we leave the # 1st BZ in +x direction. But this is OK and we calculate it # anyway, because it does not change the projection. If we want # to optimize calculation time some time, we could limit this.) triBZ_M = np.array((0.5, 0.5)) # now, see if we need to simulate: for ky in k_points: jobname_suffix = '_projk{0:06.0f}'.format(ky*1e6) jobname = unperturbed_jobname + jobname_suffix project_bands_list.append(path.join(repo, jobname)) range_file_name = path.join( repo, jobname, jobname + '_' + mode + '_ranges.csv') if not path.isfile(range_file_name): # does not exist, so start simulation: log.info('unperturbed structure not yet simulated at ' 'k_wg={0}. Running now...'.format(ky)) kspace = KSpace( points_list=[ rectBZ_K * ky * 2, rectBZ_K * ky * 2 + triBZ_M ], k_interpolation=15,) sim = TriHolesSlab3D( material=material, radius=radius, thickness=thickness, custom_k_space=kspace, numbands=defaults.num_projected_bands, resolution=resolution, supercell_z=supercell_z, mesh_size=mesh_size, runmode='sim' if runmode.startswith('s') else '', num_processors=num_processors, containing_folder=repo, save_field_patterns=False, convert_field_patterns=False, job_name_suffix=jobname_suffix, bands_title_appendix=', at k_wg={0:0.3f}'.format(ky), modes=[mode] ) if not sim: log.error( 'an error occurred during simulation of unperturbed ' 'structure. See the .out file in {0}'.format( path.join( repo, jobname )) ) return # If a shift is used, inversion symmetry is broken: if ((first_row_longitudinal_shift or second_row_longitudinal_shift) and 'mpbi' in defaults.mpb_call): log.info('default MPB to use includes inversion symmetry: ' '{0}. '.format(defaults.mpb_call) + 'Shift of holes specified, which breaks inv. symmetry. ' 'Will fall back to MPB without inv. symm.: {0}'.format( defaults.mpb_call.replace('mpbi', 'mpb') )) defaults.mpb_call = defaults.mpb_call.replace('mpbi', 'mpb') # make it odd: if supercell_size % 2 == 0: supercell_size += 1 # Create geometry and add objects. objects = get_triangular_phc_waveguide_air_rods( radius=radius, supercell_size=supercell_size, ydirection=ydirection, first_row_longitudinal_shift=first_row_longitudinal_shift, first_row_transversal_shift=first_row_transversal_shift, first_row_radius=first_row_radius, second_row_longitudinal_shift=second_row_longitudinal_shift, second_row_transversal_shift=second_row_transversal_shift, second_row_radius=second_row_radius) if ydirection: geom = Geometry( width='(* (sqrt 3) %i)' % supercell_size, height=1, depth=supercell_z, triangular=False, objects=( [Block( x=0, y=0, z=0, material=mat, # make it bigger than computational cell, just in case: size=( '(* (sqrt 3) %i)' % (supercell_size + 1), 2, thickness)) ] + objects ) ) kspaceW1 = KSpace( points_list=[(0, ky, 0) for ky in k_points], k_interpolation=0, ) else: geom = Geometry( width=1, height='(* (sqrt 3) %i)' % supercell_size, depth=supercell_z, triangular=False, objects=( [Block( x=0, y=0, z=0, material=mat, # make it bigger than computational cell, just in case: size=( 2, '(* (sqrt 3) %i)' % (supercell_size + 1), thickness)) ] + objects ) ) kspaceW1 = KSpace( points_list=[(kx, 0, 0) for kx in k_points], k_interpolation=0, ) jobname = 'TriHolesSlab_W1_{0}_r{1:03.0f}_t{2:03.0f}'.format( mat.name, radius * 1000, thickness * 1000) if mode == 'zeven': outputfuncs = defaults.output_funcs_te else: outputfuncs = defaults.output_funcs_tm runcode = '' if defaults.newmpb: runcode = '(optimize-grid-size!)\n\n' if save_field_patterns_bandnums and save_field_patterns_kvecs: runcode += ( ';function to determine whether an item x is member of list:\n' '(define (member? x list)\n' ' (cond (\n' ' ;false if the list is empty:\n' ' (null? list) #f )\n' ' ;true if first item (car) equals x:\n' ' ( (eqv? x (car list)) #t )\n' ' ;else, drop first item (cdr) and make recursive call:\n' ' ( else (member? x (cdr list)) )\n' ' ))\n\n' + '(define output-bands-list (list {0}))\n\n'.format(' '.join( map(str, save_field_patterns_bandnums))) + '(define (output-func bnum)\n' ' (if (member? bnum output-bands-list)\n' ' (begin\n' + ''.join(12 * ' ' + '({0} bnum)\n'.format(func) for func in outputfuncs) + ' )\n' ' ))\n\n' '(run-{0} {1})\n'.format( mode, defaults.default_band_func( save_field_patterns_kvecs, 'output-func')) + '(print-dos 0 1.2 121)\n\n' ) else: runcode += ('(run-{0} {1})\n'.format( mode, defaults.default_band_func([], None) ) + '(print-dos 0 1.2 121)\n\n') sim = Simulation( jobname=jobname + job_name_suffix, geometry=geom, kspace=kspaceW1, numbands=numbands, resolution=resolution, mesh_size=mesh_size, initcode=defaults.default_initcode, postcode='', runcode=runcode, clear_subfolder=runmode.startswith('s') or runmode.startswith('c')) draw_bands_title = ( 'Hex. PhC slab W1; {0}, thickness={1:0.3f}, radius={2:0.3f}'.format( mat.name, geom.objects[0].size[2], radius) + bands_title_appendix) return do_runmode( sim, runmode, num_processors, draw_bands_title, plot_crop_y=plot_crop_y, convert_field_patterns=convert_field_patterns, field_pattern_plot_k_selection=field_pattern_plot_k_selection, field_pattern_plot_filetype=defaults.field_dist_filetype, x_axis_hint=[5, "{1}" if ydirection else "{0}"], project_bands_list=project_bands_list, color_by_parity='y' ) def TriHoles2D_Waveguide_effective_epsilon_frequency_dependent( epsilon_cubspline_knots, epsilon_cubspline_coeffs, band_number, init_frequency, radius, mode='te', k_steps=17, supercell_size=5, resolution=32, mesh_size=7, ydirection=False, ensure_y_parity='no', first_row_longitudinal_shift=0, first_row_transversal_shift=0, first_row_radius=None, second_row_longitudinal_shift=0, second_row_transversal_shift=0, second_row_radius=None, runmode='sim', num_processors=2, save_field_patterns_kvecs=list(), convert_field_patterns=False, containing_folder='./', job_name_suffix='', bands_title_appendix='', plot_crop_y=False, extra_bands=0, gap=None, field_pattern_plot_k_selection=None): """Create a 2D MPB Simulation of a triangular lattice of holes, with a waveguide along the nearest neighbor direction, i.e. Gamma->K direction. The background material epsilon will be dependent on frequency. For this to work with MPB, for each k-vec a number of simulations must be run until the frequency of a single band of interest (band_number) and the frequency used for the material converge to a common value. The simulation is done with a rectangular super cell. :param epsilon_cubspline_knots: An array of frequencies, separating a frequency interval into segments. In each segment, the material epsilon is defined by a cubic polynomial. Outside the interval spanned by these frequencies, epsilon will be extrapolated by the polynomials in the outermost segments. If the epsilon function was fitted with a ``scipy.interpolate.CubicSpline``, this is its ``CubicSpline.x`` attribute. :param epsilon_cubspline_coeffs: A matrix of floats with shape (4, n-1), with `n` the length of epsilon_cubspline_knots; ``epsilon_cubspline_coeffs[k, i]`` is the coefficient for the polynomial ``(x-x[i])**(3-k)`` on the segment between ``epsilon_cubspline_knots[i]`` and ``epsilon_cubspline_knots[i+1]``. If the epsilon function was fitted with a ``scipy.interpolate.CubicSpline``, this is its ``CubicSpline.c`` attribute. :param band_number: The simulation can only be run for a single band. Choose it here. The band with the lowest frequency is ``band_number=1``. :param init_frequency: A crude initial guess for the frequency :param radius: the radius of holes in units of the lattice constant :param mode: the mode to run. Possible are 'te' and 'tm'. :param k_steps: number of k steps along the waveguide direction between 0 and 0.5 to simulate. This can also be a list of the explicit k values (just scalar values for component along the waveguide axis) to be simulated. :param supercell_size: the length of the supercell perpendicular to the waveguide, in units of sqrt(3) times the lattice constant. If it is not a odd number, one will be added. :param resolution: described in MPB documentation :param mesh_size: described in MPB documentation :param ydirection: set this if the waveguide should point along y, otherwise (default) it will point along x. Use the default if you want to use yparity data. :param ensure_y_parity: (default: 'no') This can be either 'even' or 'odd', in which case the parity of *band_number* is checked in an additional quick simulation run at *init_frequency* before the real simulation starts. If the parity does not match the desired parity, *band_number* is increased until it matches. This is done separately for each k-vector, and starts each time at the originally given *band_number* again. If this feature is used, *extra_bands* is automatically increased by 2. :param first_row_longitudinal_shift: shifts the holes next to the waveguide by this amount, parallel to the waveguide direction. :param first_row_transversal_shift: shifts the holes next to the waveguide by this amount, perpendicular to the waveguide direction. :param first_row_radius: The radius of the holes next to the waveguide. If None (default), use radius. :param second_row_longitudinal_shift: shifts the holes in the second row next to the waveguide by this amount, parallel to the waveguide direction :param second_row_transversal_shift: shifts the holes in the second row next to the waveguide by this amount, perpendicular to the waveguide direction :param second_row_radius: The radius of the holes in the second row next to the waveguide. If None (default), use radius. :param runmode: can be one of the following: * empty string : just create and return the simulation object * 'ctl' : create the sim object and save the ctl file * 'sim' (default): run the simulation and do all postprocessing * 'postpc' : do all postprocessing; simulation should have run before! * 'display': display all pngs done during postprocessing. This is the only mode that is interactive. :param num_processors: number of processors used during simulation :param save_field_patterns_kvecs: a list of k-vectors (3-tuples), which indicates where field pattern h5 files are generated during the simulation :param convert_field_patterns: indicates whether field pattern h5 files should be converted to png (only when postprocessing) :param containing_folder: the path to the folder which will contain the simulation subfolder. :param job_name_suffix: Optionally specify a job_name_suffix (appendix to the folder name etc.) which will be appended to the jobname created automatically from the most important parameters. :param bands_title_appendix: will be added to the title of the bands diagram. :param plot_crop_y: Optionally define a min. and max. frequency value (in a 2-tuple) where the band diagram will be cropped. :param extra_bands: number of extra bands to calculate above band_number. Their frequencies will be faulty since they were calculated with the wrong effective epsilon, but perhaps you need them for reference. :param gap: Optional tuple of the lower and upper band gap frequencies, if you want to add the gap to the band diagram (default: None). :return: the Simulation object """ # these k points will be simulated (along waveguide): if isinstance(k_steps, (int, float)): k_steps = int(k_steps) k_points = np.linspace(0, 0.5, num=k_steps, endpoint=True) else: k_points = np.array(k_steps) # If a longitudinal shift is used, inversion symmetry is broken: if ((first_row_longitudinal_shift or second_row_longitudinal_shift) and 'mpbi' in defaults.mpb_call): log.info('default MPB to use includes inversion symmetry: ' '{0}. '.format(defaults.mpb_call) + 'Shift of holes specified, which breaks inv. symmetry. ' 'Will fall back to MPB without inv. symm.: {0}'.format( defaults.mpb_call.replace('mpbi', 'mpb') )) defaults.mpb_call = defaults.mpb_call.replace('mpbi', 'mpb') # make it odd: if supercell_size % 2 == 0: supercell_size += 1 # Create geometry and add objects. objects = get_triangular_phc_waveguide_air_rods( radius=radius, supercell_size=supercell_size, ydirection=ydirection, first_row_longitudinal_shift=first_row_longitudinal_shift, first_row_transversal_shift=first_row_transversal_shift, first_row_radius=first_row_radius, second_row_longitudinal_shift=second_row_longitudinal_shift, second_row_transversal_shift=second_row_transversal_shift, second_row_radius=second_row_radius) if ydirection: geom = Geometry( width='(* (sqrt 3) %i)' % supercell_size, height=1, triangular=False, objects=objects ) kspaceW1 = KSpace( points_list=[(0, ky, 0) for ky in k_points], k_interpolation=0, ) else: geom = Geometry( width=1, height='(* (sqrt 3) %i)' % supercell_size, triangular=False, objects=objects ) kspaceW1 = KSpace( points_list=[(kx, 0, 0) for kx in k_points], k_interpolation=0, ) jobname = ( 'TriHoles2D_W1_effeps_band{0:02.0f}{1}_r{2:03.0f}_res{3:03.0f}'.format( band_number, ensure_y_parity if ensure_y_parity in ['even', 'odd'] else '', radius * 1000, resolution)) initcode = '\n'.join([ defaults.default_initcode, '; initial guess for frequency:', '(define init-freq {0:.3f})\n'.format(init_frequency), '; the proper epsilon will be applied to the frequency of this band:', '(define bandnum {0:.0f})'.format(band_number)]) runcode = '' if defaults.newmpb: runcode = '(optimize-grid-size!)\n\n' epsknots = ''.join( '\n ' + ' '.join( str(x) for x in epsilon_cubspline_knots[i:i + 4] ) for i in range(0, len(epsilon_cubspline_knots), 4) ) epscoeffs = ''.join( '\n (' + ''.join( '\n ' + ' '.join( str(x) for x in epsilon_cubspline_coeffs[j, i:i + 4] ) for i in range(0, len(epsilon_cubspline_coeffs[j]), 4) ) + '\n )' for j in range(len(epsilon_cubspline_coeffs)) ) if mode == 'te': outputfuncs = defaults.output_funcs_te else: outputfuncs = defaults.output_funcs_tm bandfuncs = ("\n" + 20 * " ").join( map(str.strip, defaults.default_band_func( save_field_patterns_kvecs, ' '.join(outputfuncs) ).strip().split('\n'))) rundict = { 'epsknots': epsknots, 'epscoeffs': epscoeffs, 'mode_lower': mode.lower(), 'mode_upper': mode.upper(), 'bandfuncs': bandfuncs} runcode += defaults.template_epsilon_function % rundict if ensure_y_parity in ['even', 'odd']: extra_bands += 2 runcode += ( '\n' '(define bandnum-bak bandnum)\n' '(define (get-y-%s-bandnum initial-b eps kvec)\n' ' (let ( (res resolution)\n' ' (pars \'()) )\n' ' ; run at lower resolution\n' ' (set! resolution (/ resolution 2))\n' ' (print "sim-info: running sim to check y-parity")\n' ' (simulate-at-eps eps kvec bandnum %s true)\n' ' (set! resolution res)\n' ' (set! pars (compute-yparities))\n' ' (do ( (bi (- initial-b 1) (+ bi 1)) )\n' ' ( (%s (list-ref pars bi)) (+ bi 1)))\n' '))\n\n'% ( ensure_y_parity, mode.upper(), ['> -0.5', '< 0.5'][['odd', 'even'].index(ensure_y_parity)]) ) preparation = ( '(set! bandnum ' '(get-y-%s-bandnum ' 'bandnum-bak (epsfunc init-freq) kvec))' % ensure_y_parity) else: preparation = '' rundict['preparation'] = preparation runcode += defaults.template_runcode_freq_dependent_epsilon % rundict if "result" not in defaults.grep_datanames: defaults.grep_datanames.append("result") sim = Simulation( jobname=jobname + job_name_suffix, geometry=geom, kspace=kspaceW1, numbands=band_number + extra_bands, resolution=resolution, mesh_size=mesh_size, initcode=initcode, postcode='', runcode=runcode, work_in_subfolder=path.join( containing_folder, jobname + job_name_suffix), clear_subfolder=runmode.startswith('s') or runmode.startswith('c')) draw_bands_title = ( 'Hex. PhC W1; band {0:02.0f}, radius={1:0.3f}'.format( band_number, radius) + bands_title_appendix) return do_runmode( sim, runmode, num_processors, draw_bands_title, plot_crop_y=plot_crop_y, convert_field_patterns=convert_field_patterns, field_pattern_plot_k_selection=field_pattern_plot_k_selection, field_pattern_plot_filetype=defaults.field_dist_filetype, x_axis_hint=[5, "{1}" if ydirection else "{0}"], project_bands_list=gap, color_by_parity='y' ) def TriHoles2D_Waveguide_effective_epsilon_k_dependent( epsilon_cubspline_knots, epsilon_cubspline_coeffs, band_number, radius, mode='te', k_steps=17, supercell_size=5, resolution=32, mesh_size=7, ydirection=False, ensure_y_parity='no', first_row_longitudinal_shift=0, first_row_transversal_shift=0, first_row_radius=None, second_row_longitudinal_shift=0, second_row_transversal_shift=0, second_row_radius=None, runmode='sim', num_processors=2, save_field_patterns_kvecs=list(), convert_field_patterns=False, containing_folder='./', job_name_suffix='', bands_title_appendix='', plot_crop_y=False, extra_bands=0, gap=None, field_pattern_plot_k_selection=None): """Create a 2D MPB Simulation of a triangular lattice of holes, with a waveguide along the nearest neighbor direction, i.e. Gamma->K direction. The background material epsilon will be dependent on k in waveguide direction. The simulation is done with a rectangular super cell. :param epsilon_cubspline_knots: An array of scalar k-values, separating a range of k values into segments. In each segment, the material epsilon is defined by a cubic polynomial. Outside the interval spanned by these k values, epsilon will be extrapolated by the polynomials in the outermost segments. If the epsilon function was fitted with a ``scipy.interpolate.CubicSpline``, this is its ``CubicSpline.x`` attribute. :param epsilon_cubspline_coeffs: A matrix of floats with shape (4, n-1), with `n` the length of epsilon_cubspline_knots; ``epsilon_cubspline_coeffs[k, i]`` is the coefficient for the polynomial ``(x-x[i])**(3-k)`` on the segment between ``epsilon_cubspline_knots[i]`` and ``epsilon_cubspline_knots[i+1]``. If the epsilon function was fitted with a ``scipy.interpolate.CubicSpline``, this is its ``CubicSpline.c`` attribute. :param band_number: The effective epsilon function is usually only valid for a single band. Choose it here. The band with the lowest frequency is ``band_number=1``. :param radius: the radius of holes in units of the lattice constant :param mode: the mode to run. Possible are 'te' and 'tm'. :param k_steps: number of k steps along the waveguide direction between 0 and 0.5 to simulate. This can also be a list of the explicit k values (just scalar values for component along the waveguide axis) to be simulated. :param supercell_size: the length of the supercell perpendicular to the waveguide, in units of sqrt(3) times the lattice constant. If it is not a odd number, one will be added. :param resolution: described in MPB documentation :param mesh_size: described in MPB documentation :param ydirection: set this if the waveguide should point along y, otherwise (default) it will point along x. Use the default if you want to use yparity data. :param ensure_y_parity: (default: 'no') This can be either 'even' or 'odd', in which case the parities of the simulated bands are checked to find the right band to return in the results If field patterns are exported, they will only be exported at these bands. For 'even', the first y-even band starting from *band_number* is selected, for 'odd' a little more sophisticated algorithm utilizing parities and group velocities is used to find the characteristic y-odd waveguide band. If this feature is used, *extra_bands* is automatically increased by 2, but this is not enough if 'odd' is used, where *extra_bands* should be manually set to more than 10 or so. :param first_row_longitudinal_shift: shifts the holes next to the waveguide by this amount, parallel to the waveguide direction. :param first_row_transversal_shift: shifts the holes next to the waveguide by this amount, perpendicular to the waveguide direction. :param first_row_radius: The radius of the holes next to the waveguide. If None (default), use radius. :param second_row_longitudinal_shift: shifts the holes in the second row next to the waveguide by this amount, parallel to the waveguide direction :param second_row_transversal_shift: shifts the holes in the second row next to the waveguide by this amount, perpendicular to the waveguide direction :param second_row_radius: The radius of the holes in the second row next to the waveguide. If None (default), use radius. :param runmode: can be one of the following: * empty string : just create and return the simulation object * 'ctl' : create the sim object and save the ctl file * 'sim' (default): run the simulation and do all postprocessing * 'postpc' : do all postprocessing; simulation should have run before! * 'display': display all pngs done during postprocessing. This is the only mode that is interactive. :param num_processors: number of processors used during simulation :param save_field_patterns_kvecs: a list of k-vectors (3-tuples), which indicates where field pattern h5 files are generated during the simulation :param convert_field_patterns: indicates whether field pattern h5 files should be converted to png (only when postprocessing) :param containing_folder: the path to the folder which will contain the simulation subfolder. :param job_name_suffix: Optionally specify a job_name_suffix (appendix to the folder name etc.) which will be appended to the jobname created automatically from the most important parameters. :param bands_title_appendix: will be added to the title of the bands diagram. :param plot_crop_y: Optionally define a min. and max. frequency value (in a 2-tuple) where the band diagram will be cropped. :param extra_bands: number of extra bands to calculate above band_number. Their frequencies will be faulty since they were calculated with the wrong effective epsilon, but perhaps you need them for reference. :param gap: Optional tuple of the lower and upper band gap frequencies, if you want to add the gap to the band diagram (default: None). :return: the Simulation object """ # these k points will be simulated (along waveguide): if isinstance(k_steps, (int, float)): k_steps = int(k_steps) k_points = np.linspace(0, 0.5, num=k_steps, endpoint=True) else: k_points = np.array(k_steps) # If a longitudinal shift is used, inversion symmetry is broken: if ((first_row_longitudinal_shift or second_row_longitudinal_shift) and 'mpbi' in defaults.mpb_call): log.info('default MPB to use includes inversion symmetry: ' '{0}. '.format(defaults.mpb_call) + 'Shift of holes specified, which breaks inv. symmetry. ' 'Will fall back to MPB without inv. symm.: {0}'.format( defaults.mpb_call.replace('mpbi', 'mpb') )) defaults.mpb_call = defaults.mpb_call.replace('mpbi', 'mpb') # make it odd: if supercell_size % 2 == 0: supercell_size += 1 # Create geometry and add objects. objects = get_triangular_phc_waveguide_air_rods( radius=radius, supercell_size=supercell_size, ydirection=ydirection, first_row_longitudinal_shift=first_row_longitudinal_shift, first_row_transversal_shift=first_row_transversal_shift, first_row_radius=first_row_radius, second_row_longitudinal_shift=second_row_longitudinal_shift, second_row_transversal_shift=second_row_transversal_shift, second_row_radius=second_row_radius) if ydirection: geom = Geometry( width='(* (sqrt 3) %i)' % supercell_size, height=1, triangular=False, objects=objects ) kspaceW1 = KSpace( points_list=[(0, ky, 0) for ky in k_points], k_interpolation=0, ) else: geom = Geometry( width=1, height='(* (sqrt 3) %i)' % supercell_size, triangular=False, objects=objects ) kspaceW1 = KSpace( points_list=[(kx, 0, 0) for kx in k_points], k_interpolation=0, ) jobname = ( 'TriHoles2D_W1_effeps_kdep_band' '{0:02.0f}{1}_r{2:03.0f}_res{3:03.0f}'.format( band_number, ensure_y_parity if ensure_y_parity in ['even', 'odd'] else '', radius * 1000, resolution)) initcode = '\n'.join([ defaults.default_initcode, '; the given epsilon is intended to be applied to this band:', '(define bandnum {0:.0f})'.format(band_number)]) runcode = '' if defaults.newmpb: runcode = '(optimize-grid-size!)\n\n' epsknots = ''.join( '\n ' + ' '.join( str(x) for x in epsilon_cubspline_knots[i:i + 4] ) for i in range(0, len(epsilon_cubspline_knots), 4) ) epscoeffs = ''.join( '\n (' + ''.join( '\n ' + ' '.join( str(x) for x in epsilon_cubspline_coeffs[j, i:i + 4] ) for i in range(0, len(epsilon_cubspline_coeffs[j]), 4) ) + '\n )' for j in range(len(epsilon_cubspline_coeffs)) ) if mode == 'te': outputfuncs = defaults.output_funcs_te else: outputfuncs = defaults.output_funcs_tm bandfuncs = ("\n" + 20 * " ").join( map(str.strip, defaults.default_band_func( save_field_patterns_kvecs, ' '.join(outputfuncs) ).strip().split('\n'))) rundict = { 'epsknots': epsknots, 'epscoeffs': epscoeffs, 'mode_lower': mode.lower(), 'mode_upper': mode.upper(), 'bandfuncs': bandfuncs} runcode += defaults.template_epsilon_function % rundict if ensure_y_parity == 'even': extra_bands += 2 runcode += ( '\n' '(define (get-bandnum-for-y-%s-parity init-bandnum)\n' ' (let ( (pars (compute-yparities))\n' ' )\n' ' (do ( (bi (- init-bandnum 1) (+ bi 1)) )\n' ' ( (< 0.5 (list-ref pars bi)) (+ bi 1)))\n' '))\n\n' % ensure_y_parity ) preparation = '' bandnumfunc = 'get-bandnum-for-y-%s-parity' % ensure_y_parity elif ensure_y_parity == 'odd': extra_bands += 2 # Special handling of the y-odd wg mode in holey hexagonal photonic # crystal. Beginning at small k upto k more than 1/2 pi/a, the mode # has a nearly constant (negative) group velocity in waveguide # direction. At small k, it extends above the band gap, crossing # (actually also anti-crossing) other y-odd modes which extend into # the bulk photonic crystal. If we just take the first y-odd mode # we find above init-bandnum (like we are doing with y-even modes), # we'll get one of those bulk modes at low k. # We can utilize the proper waveguide mode's high (negative) group # velocity, which makes it unique among the other modes (with # positive velocities), to find it. Unfortunately, since it anti- # crosses with the bulk y-odd modes, its frequencies are not exact # (and it even depends on the supercell size which influences the # number of bulk modes), but it is the best we can do: runcode += defaults.template_y_odd_bandnum preparation = '' bandnumfunc = 'get-bandnum-for-y-%s-parity' % ensure_y_parity else: runcode += ( '\n' '(define (get-bandnum-ignoring-parity init-bandnum)\n' ' init-bandnum)\n\n' ) preparation = '' bandnumfunc = 'get-bandnum-ignoring-parity' rundict['preparation'] = preparation rundict['bandnumfunc'] = bandnumfunc runcode += defaults.template_runcode_k_dependent_epsilon % rundict if "result" not in defaults.grep_datanames: defaults.grep_datanames.append("result") sim = Simulation( jobname=jobname + job_name_suffix, geometry=geom, kspace=kspaceW1, numbands=band_number + extra_bands, resolution=resolution, mesh_size=mesh_size, initcode=initcode, postcode='', runcode=runcode, work_in_subfolder=path.join( containing_folder, jobname + job_name_suffix), clear_subfolder=runmode.startswith('s') or runmode.startswith('c')) draw_bands_title = ( 'Hex. PhC W1; band {0:02.0f}, radius={1:0.3f}'.format( band_number, radius) + bands_title_appendix) return do_runmode( sim, runmode, num_processors, draw_bands_title, plot_crop_y=plot_crop_y, convert_field_patterns=convert_field_patterns, field_pattern_plot_k_selection=field_pattern_plot_k_selection, field_pattern_plot_filetype=defaults.field_dist_filetype, x_axis_hint=[5, "{1}" if ydirection else "{0}"], project_bands_list=gap, color_by_parity='y' )
probstj/pyMPB
pympb/phc_simulations.py
Python
gpl-3.0
75,418
[ "CRYSTAL", "TINKER" ]
5a427bd594ef0a022edf239c9760f0fa67ed2bd3baef7d7b9ffa3c5617a2e545
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function import mxnet as mx import mxnet.ndarray as nd import numpy import os import pickle from collections import OrderedDict import logging from utils import * logger = logging.getLogger(__name__) class Base(object): """Basic wrapper for the symbols Parameters ---------- data_shapes : dict The shapes of tensor variables sym_gen : mx.sym.Symbol Symbol of the network params : None or dict, optional params_grad : None or dict, optional aux_states: initializer: ctx: name: """ def __init__(self, data_shapes, sym_gen, params=None, aux_states=None, default_bucket_kwargs=None, learn_init_keys=None, initializer=mx.init.Xavier(factor_type="in", rnd_type="gaussian", magnitude=2), ctx=mx.gpu(), name='Net'): self.sym_gen = sym_gen bucket_kwargs = default_bucket_kwargs.copy() if \ default_bucket_kwargs is not None else dict() self.curr_bucket_key = None self.ctx = ctx self.name = name self.initializer = initializer if params is None: self.params = None self.params_grad = None else: self.params = OrderedDict([(k, v.copyto(ctx)) for k, v in params.items()]) self.params_grad = OrderedDict([(n, nd.empty(v.shape, ctx=ctx)) for n, v in self.params.items()]) if aux_states is not None: self.aux_states = OrderedDict([(k, v.copyto(ctx)) for k, v in aux_states.items()]) else: self.aux_states = None self._buckets = dict() self.learn_init_keys = learn_init_keys if learn_init_keys is not None else [] self.learn_init_key_shapes = {k: data_shapes[k] for k in self.learn_init_keys} self.switch_bucket(bucket_kwargs=bucket_kwargs, data_shapes=data_shapes) self.acc_grad = None @property def exe(self): """Get the current executor Returns ------- exe : mxnet.executor.Executor """ return self._buckets[self.curr_bucket_key]['exe'][tuple(self.data_shapes.items())] @property def data_shapes(self): return self._buckets[self.curr_bucket_key]['data_shapes'] @property def sym(self): return self._buckets[self.curr_bucket_key]['sym'] def switch_bucket(self, bucket_kwargs=None, data_shapes=None): if bucket_kwargs is not None: self.curr_bucket_key = get_bucket_key(bucket_kwargs=bucket_kwargs) # 1. Check if bucket key exists if self.curr_bucket_key in self._buckets: if data_shapes is not None: if tuple(data_shapes.items()) not in self._buckets[self.curr_bucket_key]['exe']: #TODO Optimize the reshaping functionality! self._buckets[self.curr_bucket_key]['exe'][tuple(data_shapes.items())] = \ self.exe.reshape(partial_shaping=True, allow_up_sizing=True, **data_shapes) self._buckets[self.curr_bucket_key]['data_shapes'] = data_shapes else: self._buckets[self.curr_bucket_key]['data_shapes'] = data_shapes return # 2. If the bucket key does not exist, create new symbol + executor assert data_shapes is not None, "Must set data_shapes for new bucket!" if isinstance(self.sym_gen, mx.symbol.Symbol): sym = self.sym_gen else: sym = self.sym_gen(**dict(self.curr_bucket_key)) arg_names = sym.list_arguments() aux_names = sym.list_auxiliary_states() param_names = [n for n in arg_names if n in self.learn_init_keys or (n not in data_shapes.keys())] for k, v in data_shapes.items(): assert isinstance(v, tuple), "Data_shapes must be tuple! Find k=%s, v=%s, " \ "data_shapes=%s" % (k, str(v), str(data_shapes)) arg_shapes, _, aux_shapes = sym.infer_shape(**data_shapes) arg_name_shape = OrderedDict([(k, s) for k, s in zip(arg_names, arg_shapes)]) if self.params is None: self.params = OrderedDict([(n, nd.empty(arg_name_shape[n], ctx=self.ctx)) for n in param_names]) self.params_grad = OrderedDict([(n, nd.empty(arg_name_shape[n], ctx=self.ctx)) for n in param_names]) if len(self.params) > 0: assert self.initializer is not None, \ 'We must set the initializer if we donnot initialize' \ 'manually the free parameters of the network!!' for k, v in self.params.items(): self.initializer(k, v) else: assert set(arg_name_shape.items()) == \ set(data_shapes.items() + [(k, v.shape) for k, v in self.params.items()]) if self.aux_states is None: self.aux_states = OrderedDict([(k, nd.empty(s, ctx=self.ctx)) for k, s in zip(aux_names, aux_shapes)]) data_inputs = {k: mx.nd.empty(data_shapes[k], ctx=self.ctx) for k in set(data_shapes.keys()) - set(self.learn_init_keys)} if len(self._buckets) > 0: shared_exe = list(list(self._buckets.values())[0]['exe'].values())[0] else: shared_exe = None self._buckets[self.curr_bucket_key] = { 'exe': {tuple(data_shapes.items()): sym.bind(ctx=self.ctx, args=dict(self.params, **data_inputs), args_grad=dict(self.params_grad.items()), aux_states=self.aux_states, shared_exec=shared_exe) }, 'data_shapes': data_shapes, 'sym': sym } def save_params(self, dir_path="", epoch=None): param_saving_path = save_params(dir_path=dir_path, name=self.name, epoch=epoch, params=self.params, aux_states=self.aux_states) misc_saving_path = save_misc(dir_path=dir_path, epoch=epoch, name=self.name, content={'data_shapes': {k: map(int, v) for k, v in self.data_shapes.items()}}) logging.info('Saving %s, params: \"%s\", misc: \"%s\"', self.name, param_saving_path, misc_saving_path) def load_params(self, name="", dir_path="", epoch=None): params, aux_states, param_loading_path = load_params(dir_path=dir_path, epoch=epoch, name=name) logging.info('Loading params from \"%s\" to %s' % (param_loading_path, self.name)) for k, v in params.items(): if k in self.params: logging.debug(' Loading %s %s' %(k, str(v.shape))) self.params[k][:] = v else: logging.warn("Found unused param in the saved model file: %s" % k) for k, v in aux_states.items(): self.aux_states[k][:] = v @property def internal_sym_names(self): return self.sym.get_internals().list_outputs() @property def output_keys(self): return self.sym.list_outputs() def compute_internal(self, sym_name, bucket_kwargs=None, **arg_dict): """ View the internal symbols using the forward function. :param sym_name: :param bucket_kwargs: :param input_dict: :return: """ data_shapes = {k: v.shape for k, v in arg_dict.items()} self.switch_bucket(bucket_kwargs=bucket_kwargs, data_shapes=data_shapes) internal_sym = self.sym.get_internals()[sym_name] data_inputs = {k: mx.nd.empty(v, ctx=self.ctx) for k, v in self.data_shapes.items() if k in internal_sym.list_arguments()} params = {k: v for k, v in self.params.items() if k in internal_sym.list_arguments()} aux_states = {k: v for k, v in self.aux_states.items() if k in internal_sym.list_auxiliary_states()} exe = internal_sym.bind(ctx=self.ctx, args=dict(params, **data_inputs), args_grad=None, grad_req='null', aux_states=aux_states, shared_exec=self.exe) for k, v in arg_dict.items(): exe.arg_dict[k][:] = v exe.forward(is_train=False) assert 1 == len(exe.outputs) for output in exe.outputs: output.wait_to_read() return exe.outputs[0] def forward(self, is_train=False, bucket_kwargs=None, **arg_dict): #import time #start = time.time() data_shapes = {k: v.shape for k, v in arg_dict.items()} for name in self.learn_init_keys: data_shapes[name] = self.learn_init_key_shapes[name] self.switch_bucket(bucket_kwargs=bucket_kwargs, data_shapes=data_shapes) #end = time.time() #print 'Swith Bucket:', end - start #start = time.time() for k, v in arg_dict.items(): assert self.exe.arg_dict[k].shape == v.shape,\ "Shape not match: key %s, need %s, received %s" \ %(k, str(self.exe.arg_dict[k].shape), str(v.shape)) self.exe.arg_dict[k][:] = v self.exe.forward(is_train=is_train) for output in self.exe.outputs: output.wait_to_read() #end = time.time() #print 'Forward:', end - start return self.exe.outputs def backward(self, out_grads=None, **arg_dict): for k, v in arg_dict.items(): assert self.exe.arg_dict[k].shape == v.shape, \ "Shape not match: key %s, need %s, received %s" \ % (k, str(self.exe.arg_dict[k].shape), str(v.shape)) self.exe.arg_dict[k][:] = v self.exe.backward(out_grads=out_grads) def forward_backward(self, bucket_kwargs=None, out_grads=None, **arg_dict): data_shapes = {k: v.shape for k, v in arg_dict.items()} for name in self.learn_init_keys: data_shapes[name] = self.learn_init_key_shapes[name] self.switch_bucket(bucket_kwargs=bucket_kwargs, data_shapes=data_shapes) for k, v in arg_dict.items(): self.exe.arg_dict[k][:] = v self.exe.forward(is_train=True) self.exe.backward(out_grads=out_grads) for output in self.exe.outputs: output.wait_to_read() return self.exe.outputs def update(self, updater, params_grad=None): if params_grad is None: params_grad = self.params_grad assert type(params_grad) is OrderedDict for ind, k in enumerate(self.params.keys()): updater(index=ind, grad=params_grad[k], weight=self.params[k]) def update_acc_grad(self): if self.acc_grad is None: self.acc_grad = OrderedDict([(n, nd.zeros(v.shape, ctx=self.ctx)) for n, v in self.params_grad.items()]) for k, v in self.acc_grad.items(): v[:] = v + self.params_grad[k] def reset_acc_grad(self): for v in self.acc_grad.values(): v[:] = 0 def copy(self, name=None, ctx=None): if ctx is None: ctx = self.ctx if name is None: name = self.name + '-copy-' + str(ctx) return Base(data_shapes=self.data_shapes, sym_gen=self.sym_gen, default_bucket_kwargs=dict(self.curr_bucket_key), params=self.params, aux_states=self.aux_states, ctx=ctx, name=name) def copy_params_to(self, dst): for k, v in self.params.items(): dst.params[k][:] = v # TODO `wait_to_read()` here seems unnecessary, remove it in the future! dst.params[k].wait_to_read() @property def total_param_num(self): return sum(v.size for v in self.params.values()) def print_stat(self): logging.info("Name: %s" % self.name) assert self.params is not None, "Fatal Error!" logging.info("Params: ") for k, v in self.params.items(): logging.info(" %s: %s" % (k, v.shape)) if self.aux_states is None or 0 == len(self.aux_states): logging.info("Aux States: None") else: logging.info("Aux States: " + ' '.join( ["%s:%s" % (str(k), str(v.shape)) for k, v in self.aux_states.items()])) logging.info("Total Parameter Num: " + str(self.total_param_num))
Mega-DatA-Lab/mxnet
example/reinforcement-learning/dqn/base.py
Python
apache-2.0
13,774
[ "Gaussian" ]
482b0902ac17850ab9b9fabc86056bbea65e650539fb2f878b1aa995945a55dc
from math import ceil, log2 def one_bits(n): """ Returns the number of 1s in the binary representation of a non-negative integer. Brian Kernighan’s algorithm. Note that x - 1 toggles all bits starting from the last 1-bit (inclusive). This has the same effect as n -= n & -n, which is used in Fenwick tree. Time complexity is O(\log n). Space complexity is O(1). :param n: int, non-negative :return: int """ assert n >= 0 c = 0 while n > 0: n &= n - 1 # zeros the last 1-bit c += 1 return c def one_bits2(n): assert n >= 0 for i, x in [(1, 0b01010101010101010101010101010101), (2, 0b00110011001100110011001100110011), (4, 0b00001111000011110000111100001111), (8, 0b00000000111111110000000011111111), (16, 0b00000000000000001111111111111111)]: n = (n & x) + ((n >> i) & x) return n def is_bleak(x): """ A positive integer x is bleak if there does not exist y <= n, s.t. x == y + one_bits(y) :param x: int, positive :return: bool """ assert x > 0 for y in range(x - ceil(log2(x)), x): # the greatest # of 1-bits in any y <= x is ceil(log_2(x)) if y + one_bits(y) == x: return False return True if __name__ == '__main__': for n in range(1000): assert one_bits(n) == one_bits2(n) == bin(n)[2:].count('1') for i in range(1, 100): print(i, is_bleak(i))
liboyin/algo-prac
mathematics/bleak_number.py
Python
gpl-3.0
1,490
[ "Brian" ]
70c8a050a83726b57a6a6bdee77a73e1989dbe6e8bc94b13e92f80fb77a935dc
""" Numerical python functions written for compatability with MATLAB commands with the same names. MATLAB compatible functions ------------------------------- :func:`cohere` Coherence (normalized cross spectral density) :func:`csd` Cross spectral density uing Welch's average periodogram :func:`detrend` Remove the mean or best fit line from an array :func:`find` Return the indices where some condition is true; numpy.nonzero is similar but more general. :func:`griddata` Interpolate irregularly distributed data to a regular grid. :func:`prctile` Find the percentiles of a sequence :func:`prepca` Principal Component Analysis :func:`psd` Power spectral density uing Welch's average periodogram :func:`rk4` A 4th order runge kutta integrator for 1D or ND systems :func:`specgram` Spectrogram (spectrum over segments of time) Miscellaneous functions ------------------------- Functions that don't exist in MATLAB, but are useful anyway: :func:`cohere_pairs` Coherence over all pairs. This is not a MATLAB function, but we compute coherence a lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by caching the direct FFTs. :func:`rk4` A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and the far superior scipy.integrate tools) :func:`contiguous_regions` Return the indices of the regions spanned by some logical mask :func:`cross_from_below` Return the indices where a 1D array crosses a threshold from below :func:`cross_from_above` Return the indices where a 1D array crosses a threshold from above :func:`complex_spectrum` Return the complex-valued frequency spectrum of a signal :func:`magnitude_spectrum` Return the magnitude of the frequency spectrum of a signal :func:`angle_spectrum` Return the angle (wrapped phase) of the frequency spectrum of a signal :func:`phase_spectrum` Return the phase (unwrapped angle) of the frequency spectrum of a signal :func:`detrend_mean` Remove the mean from a line. :func:`demean` Remove the mean from a line. This function is the same as as :func:`detrend_mean` except for the default *axis*. :func:`detrend_linear` Remove the best fit line from a line. :func:`detrend_none` Return the original line. :func:`stride_windows` Get all windows in an array in a memory-efficient manner :func:`stride_repeat` Repeat an array in a memory-efficient manner :func:`apply_window` Apply a window along a given axis record array helper functions ------------------------------- A collection of helper methods for numpyrecord arrays .. _htmlonly: See :ref:`misc-examples-index` :func:`rec2txt` Pretty print a record array :func:`rec2csv` Store record array in CSV file :func:`csv2rec` Import record array from CSV file with type inspection :func:`rec_append_fields` Adds field(s)/array(s) to record array :func:`rec_drop_fields` Drop fields from record array :func:`rec_join` Join two record arrays on sequence of fields :func:`recs_join` A simple join of multiple recarrays using a single column as a key :func:`rec_groupby` Summarize data by groups (similar to SQL GROUP BY) :func:`rec_summarize` Helper code to filter rec array fields into new fields For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions that will do things like color negative values red, set percent formatting and scaling, etc. Example usage:: r = csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = FormatFloat(2), change = FormatPercent(2), cost = FormatThousands(2), ) rec2excel(r, 'test.xls', formatd=formatd) rec2csv(r, 'test.csv', formatd=formatd) scroll = rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() Deprecated functions --------------------- The following are deprecated; please import directly from numpy (with care--function signatures may differ): :func:`load` Load ASCII file - use numpy.loadtxt :func:`save` Save ASCII file - use numpy.savetxt """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import map, xrange, zip if six.PY3: long = int import copy import csv import operator import os import warnings import numpy as np ma = np.ma from matplotlib import verbose import matplotlib.cbook as cbook from matplotlib import docstring from matplotlib.path import Path def logspace(xmin, xmax, N): ''' Return N values logarithmically spaced between xmin and xmax. Call signature:: logspace(xmin, xmax, N) ''' return np.exp(np.linspace(np.log(xmin), np.log(xmax), N)) def _norm(x): ''' Return sqrt(x dot x). Call signature:: _norm(x) ''' return np.sqrt(np.dot(x, x)) def window_hanning(x): ''' Return x times the hanning window of len(x). Call signature:: window_hanning(x) .. seealso:: :func:`window_none` :func:`window_none` is another window algorithm. ''' return np.hanning(len(x))*x def window_none(x): ''' No window function; simply return x. Call signature:: window_none(x) .. seealso:: :func:`window_hanning` :func:`window_hanning` is another window algorithm. ''' return x def apply_window(x, window, axis=0, return_window=None): ''' Apply the given window to the given 1D or 2D array along the given axis. Call signature:: apply_window(x, window, axis=0, return_window=False) *x*: 1D or 2D array or sequence Array or sequence containing the data. *winodw*: function or array. Either a function to generate a window or an array with length *x*.shape[*axis*] *axis*: integer The axis over which to do the repetition. Must be 0 or 1. The default is 0 *return_window*: bool If true, also return the 1D values of the window that was applied ''' x = np.asarray(x) if x.ndim < 1 or x.ndim > 2: raise ValueError('only 1D or 2D arrays can be used') if axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) xshape = list(x.shape) xshapetarg = xshape.pop(axis) if cbook.iterable(window): if len(window) != xshapetarg: raise ValueError('The len(window) must be the same as the shape ' 'of x for the chosen axis') windowVals = window else: windowVals = window(np.ones(xshapetarg, dtype=x.dtype)) if x.ndim == 1: if return_window: return windowVals * x, windowVals else: return windowVals * x xshapeother = xshape.pop() otheraxis = (axis+1) % 2 windowValsRep = stride_repeat(windowVals, xshapeother, axis=otheraxis) if return_window: return windowValsRep * x, windowVals else: return windowValsRep * x def detrend(x, key=None, axis=None): ''' Return x with its trend removed. Call signature:: detrend(x, key='mean') *x*: array or sequence Array or sequence containing the data. *key*: [ 'default' | 'constant' | 'mean' | 'linear' | 'none'] or function Specifies the detrend algorithm to use. 'default' is 'mean', which is the same as :func:`detrend_mean`. 'constant' is the same. 'linear' is the same as :func:`detrend_linear`. 'none' is the same as :func:`detrend_none`. The default is 'mean'. See the corresponding functions for more details regarding the algorithms. Can also be a function that carries out the detrend operation. *axis*: integer The axis along which to do the detrending. .. seealso:: :func:`detrend_mean` :func:`detrend_mean` implements the 'mean' algorithm. :func:`detrend_linear` :func:`detrend_linear` implements the 'linear' algorithm. :func:`detrend_none` :func:`detrend_none` implements the 'none' algorithm. ''' if key is None or key in ['constant', 'mean', 'default']: return detrend(x, key=detrend_mean, axis=axis) elif key == 'linear': return detrend(x, key=detrend_linear, axis=axis) elif key == 'none': return detrend(x, key=detrend_none, axis=axis) elif cbook.is_string_like(key): raise ValueError("Unknown value for key %s, must be one of: " "'default', 'constant', 'mean', " "'linear', or a function" % key) if not callable(key): raise ValueError("Unknown value for key %s, must be one of: " "'default', 'constant', 'mean', " "'linear', or a function" % key) x = np.asarray(x) if axis is not None and axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1): return key(x) # try to use the 'axis' argument if the function supports it, # otherwise use apply_along_axis to do it try: return key(x, axis=axis) except TypeError: return np.apply_along_axis(key, axis=axis, arr=x) def demean(x, axis=0): ''' Return x minus its mean along the specified axis. Call signature:: demean(x, axis=0) *x*: array or sequence Array or sequence containing the data Can have any dimensionality *axis*: integer The axis along which to take the mean. See numpy.mean for a description of this argument. .. seealso:: :func:`delinear` :func:`denone` :func:`delinear` and :func:`denone` are other detrend algorithms. :func:`detrend_mean` This function is the same as as :func:`detrend_mean` except for the default *axis*. ''' return detrend_mean(x, axis=axis) def detrend_mean(x, axis=None): ''' Return x minus the mean(x). Call signature:: detrend_mean(x, axis=None) *x*: array or sequence Array or sequence containing the data Can have any dimensionality *axis*: integer The axis along which to take the mean. See numpy.mean for a description of this argument. .. seealso:: :func:`demean` This function is the same as as :func:`demean` except for the default *axis*. :func:`detrend_linear` :func:`detrend_none` :func:`detrend_linear` and :func:`detrend_none` are other detrend algorithms. :func:`detrend` :func:`detrend` is a wrapper around all the detrend algorithms. ''' x = np.asarray(x) if axis is not None and axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) # short-circuit 0-D array. if not x.ndim: return np.array(0., dtype=x.dtype) # short-circuit simple operations if axis == 0 or axis is None or x.ndim <= 1: return x - x.mean(axis) ind = [slice(None)] * x.ndim ind[axis] = np.newaxis return x - x.mean(axis)[ind] def detrend_none(x, axis=None): ''' Return x: no detrending. Call signature:: detrend_none(x, axis=None) *x*: any object An object containing the data *axis*: integer This parameter is ignored. It is included for compatibility with detrend_mean .. seealso:: :func:`denone` This function is the same as as :func:`denone` except for the default *axis*, which has no effect. :func:`detrend_mean` :func:`detrend_linear` :func:`detrend_mean` and :func:`detrend_linear` are other detrend algorithms. :func:`detrend` :func:`detrend` is a wrapper around all the detrend algorithms. ''' return x def detrend_linear(y): ''' Return x minus best fit line; 'linear' detrending. Call signature:: detrend_linear(y) *y*: 0-D or 1-D array or sequence Array or sequence containing the data *axis*: integer The axis along which to take the mean. See numpy.mean for a description of this argument. .. seealso:: :func:`delinear` This function is the same as as :func:`delinear` except for the default *axis*. :func:`detrend_mean` :func:`detrend_none` :func:`detrend_mean` and :func:`detrend_none` are other detrend algorithms. :func:`detrend` :func:`detrend` is a wrapper around all the detrend algorithms. ''' # This is faster than an algorithm based on linalg.lstsq. y = np.asarray(y) if y.ndim > 1: raise ValueError('y cannot have ndim > 1') # short-circuit 0-D array. if not y.ndim: return np.array(0., dtype=y.dtype) x = np.arange(y.size, dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0, 1]/C[0, 0] a = y.mean() - b*x.mean() return y - (b*x + a) def stride_windows(x, n, noverlap=None, axis=0): ''' Get all windows of x with length n as a single array, using strides to avoid data duplication. .. warning:: It is not safe to write to the output array. Multiple elements may point to the same piece of memory, so modifying one value may change others. Call signature:: stride_windows(x, n, noverlap=0) *x*: 1D array or sequence Array or sequence containing the data. *n*: integer The number of data points in each window. *noverlap*: integer The overlap between adjacent windows. Default is 0 (no overlap) *axis*: integer The axis along which the windows will run. Refs: `stackoverflaw: Rolling window for 1D arrays in Numpy? <http://stackoverflow.com/a/6811241>`_ `stackoverflaw: Using strides for an efficient moving average filter <http://stackoverflow.com/a/4947453>`_ ''' if noverlap is None: noverlap = 0 if noverlap >= n: raise ValueError('noverlap must be less than n') if n < 1: raise ValueError('n cannot be less than 1') x = np.asarray(x) if x.ndim != 1: raise ValueError('only 1-dimensional arrays can be used') if n == 1 and noverlap == 0: if axis == 0: return x[np.newaxis] else: return x[np.newaxis].transpose() if n > x.size: raise ValueError('n cannot be greater than the length of x') # np.lib.stride_tricks.as_strided easily leads to memory corruption for # non integer shape and strides, i.e. noverlap or n. See #3845. noverlap = int(noverlap) n = int(n) step = n - noverlap if axis == 0: shape = (n, (x.shape[-1]-noverlap)//step) strides = (x.strides[0], step*x.strides[0]) else: shape = ((x.shape[-1]-noverlap)//step, n) strides = (step*x.strides[0], x.strides[0]) return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) def stride_repeat(x, n, axis=0): ''' Repeat the values in an array in a memory-efficient manner. Array x is stacked vertically n times. .. warning:: It is not safe to write to the output array. Multiple elements may point to the same piece of memory, so modifying one value may change others. Call signature:: stride_repeat(x, n, axis=0) *x*: 1D array or sequence Array or sequence containing the data. *n*: integer The number of time to repeat the array. *axis*: integer The axis along which the data will run. Refs: `stackoverflaw: Repeat NumPy array without replicating data? <http://stackoverflow.com/a/5568169>`_ ''' if axis not in [0, 1]: raise ValueError('axis must be 0 or 1') x = np.asarray(x) if x.ndim != 1: raise ValueError('only 1-dimensional arrays can be used') if n == 1: if axis == 0: return np.atleast_2d(x) else: return np.atleast_2d(x).T if n < 1: raise ValueError('n cannot be less than 1') # np.lib.stride_tricks.as_strided easily leads to memory corruption for # non integer shape and strides, i.e. n. See #3845. n = int(n) if axis == 0: shape = (n, x.size) strides = (0, x.strides[0]) else: shape = (x.size, n) strides = (x.strides[0], 0) return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): ''' This is a helper function that implements the commonality between the psd, csd, spectrogram and complex, magnitude, angle, and phase spectrums. It is *NOT* meant to be used outside of mlab and may change at any time. ''' if y is None: # if y is None use x for y same_data = True else: #The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x if Fs is None: Fs = 2 if noverlap is None: noverlap = 0 if detrend_func is None: detrend_func = detrend_none if window is None: window = window_hanning # if NFFT is set to None use the whole signal if NFFT is None: NFFT = 256 if mode is None or mode == 'default': mode = 'psd' elif mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']: raise ValueError("Unknown value for mode %s, must be one of: " "'default', 'psd', 'complex', " "'magnitude', 'angle', 'phase'" % mode) if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is not 'psd'") #Make sure we're dealing with a numpy array. If y and x were the same #object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) if sides is None or sides == 'default': if np.iscomplexobj(x): sides = 'twosided' else: sides = 'onesided' elif sides not in ['onesided', 'twosided']: raise ValueError("Unknown value for sides %s, must be one of: " "'default', 'onesided', or 'twosided'" % sides) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x) < NFFT: n = len(x) x = np.resize(x, (NFFT,)) x[n:] = 0 if not same_data and len(y) < NFFT: n = len(y) y = np.resize(y, (NFFT,)) y[n:] = 0 if pad_to is None: pad_to = NFFT if mode != 'psd': scale_by_freq = False elif scale_by_freq is None: scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if sides == 'twosided': numFreqs = pad_to if pad_to % 2: freqcenter = (pad_to - 1)//2 + 1 else: freqcenter = pad_to//2 scaling_factor = 1. elif sides == 'onesided': if pad_to % 2: numFreqs = (pad_to + 1)//2 else: numFreqs = pad_to//2 + 1 scaling_factor = 2. result = stride_windows(x, NFFT, noverlap, axis=0) result = detrend(result, detrend_func, axis=0) result, windowVals = apply_window(result, window, axis=0, return_window=True) result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :] freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs] if not same_data: # if same_data is False, mode must be 'psd' resultY = stride_windows(y, NFFT, noverlap) resultY = apply_window(resultY, window, axis=0) resultY = detrend(resultY, detrend_func, axis=0) resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :] result = np.conjugate(result) * resultY elif mode == 'psd': result = np.conjugate(result) * result elif mode == 'magnitude': result = np.absolute(result) elif mode == 'angle' or mode == 'phase': # we unwrap the phase later to handle the onesided vs. twosided case result = np.angle(result) elif mode == 'complex': pass if mode == 'psd': # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. result /= (np.abs(windowVals)**2).sum() # Also include scaling factors for one-sided densities and dividing by # the sampling frequency, if desired. Scale everything, except the DC # component and the NFFT/2 component: result[1:-1] *= scaling_factor # MATLAB divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: result /= Fs t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs if sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[freqcenter:], freqs[:freqcenter])) result = np.concatenate((result[freqcenter:, :], result[:freqcenter, :]), 0) elif not pad_to % 2: # get the last value correctly, it is negative otherwise freqs[-1] *= -1 # we unwrap the phase here to handle the onesided vs. twosided case if mode == 'phase': result = np.unwrap(result, axis=0) return result, freqs, t def _single_spectrum_helper(x, mode, Fs=None, window=None, pad_to=None, sides=None): ''' This is a helper function that implements the commonality between the complex, magnitude, angle, and phase spectrums. It is *NOT* meant to be used outside of mlab and may change at any time. ''' if mode is None or mode == 'psd' or mode == 'default': raise ValueError('_single_spectrum_helper does not work with %s mode' % mode) if pad_to is None: pad_to = len(x) spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs, detrend_func=detrend_none, window=window, noverlap=0, pad_to=pad_to, sides=sides, scale_by_freq=False, mode=mode) if mode != 'complex': spec = spec.real if len(spec.shape) == 2 and spec.shape[1] == 1: spec = spec[:, 0] return spec, freqs #Split out these keyword docs so that they can be used elsewhere docstring.interpd.update(Spectral=cbook.dedent(""" Keyword arguments: *Fs*: scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. The default value is 2. *window*: callable or ndarray A function or a vector of length *NFFT*. To create window vectors see :func:`window_hanning`, :func:`window_none`, :func:`numpy.blackman`, :func:`numpy.hamming`, :func:`numpy.bartlett`, :func:`scipy.signal`, :func:`scipy.signal.get_window`, etc. The default is :func:`window_hanning`. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. *sides*: [ 'default' | 'onesided' | 'twosided' ] Specifies which sides of the spectrum to return. Default gives the default behavior, which returns one-sided for real data and both for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided. """)) docstring.interpd.update(Single_Spectrum=cbook.dedent(""" *pad_to*: integer The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to the length of the input signal (i.e. no padding). """)) docstring.interpd.update(PSD=cbook.dedent(""" *pad_to*: integer The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* *NFFT*: integer The number of data points used in each block for the FFT. A power 2 is most efficient. The default value is 256. This should *NOT* be used to get zero padding, or the scaling of the result will be incorrect. Use *pad_to* for this instead. *detrend*: [ 'default' | 'constant' | 'mean' | 'linear' | 'none'] or callable The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter is a vector, in matplotlib is it a function. The :mod:`~matplotlib.pylab` module defines :func:`~matplotlib.pylab.detrend_none`, :func:`~matplotlib.pylab.detrend_mean`, and :func:`~matplotlib.pylab.detrend_linear`, but you can use a custom function as well. You can also use a string to choose one of the functions. 'default', 'constant', and 'mean' call :func:`~matplotlib.pylab.detrend_mean`. 'linear' calls :func:`~matplotlib.pylab.detrend_linear`. 'none' calls :func:`~matplotlib.pylab.detrend_none`. *scale_by_freq*: boolean Specifies whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility. """)) @docstring.dedent_interpd def psd(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): """ Compute the power spectral density. Call signature:: psd(x, NFFT=256, Fs=2, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None) The power spectral density :math:`P_{xx}` by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute :math:`P_{xx}`. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. *x*: 1-D array or sequence Array or sequence containing the data %(Spectral)s %(PSD)s *noverlap*: integer The number of points of overlap between segments. The default value is 0 (no overlap). Returns the tuple (*Pxx*, *freqs*). *Pxx*: 1-D array The values for the power spectrum `P_{xx}` (real valued) *freqs*: 1-D array The frequencies corresponding to the elements in *Pxx* Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) .. seealso:: :func:`specgram` :func:`specgram` differs in the default overlap; in not returning the mean of the segment periodograms; and in returning the times of the segments. :func:`magnitude_spectrum` :func:`magnitude_spectrum` returns the magnitude spectrum. :func:`csd` :func:`csd` returns the spectral density between two signals. """ Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) return Pxx.real, freqs @docstring.dedent_interpd def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): """ Compute the cross-spectral density. Call signature:: csd(x, y, NFFT=256, Fs=2, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None) The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. *x*, *y*: 1-D arrays or sequences Arrays or sequences containing the data %(Spectral)s %(PSD)s *noverlap*: integer The number of points of overlap between segments. The default value is 0 (no overlap). Returns the tuple (*Pxy*, *freqs*): *Pxy*: 1-D array The values for the cross spectrum `P_{xy}` before scaling (real valued) *freqs*: 1-D array The frequencies corresponding to the elements in *Pxy* Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) .. seealso:: :func:`psd` :func:`psd` is the equivalent to setting y=x. """ if NFFT is None: NFFT = 256 Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode='psd') if len(Pxy.shape) == 2: if Pxy.shape[1] > 1: Pxy = Pxy.mean(axis=1) else: Pxy = Pxy[:, 0] return Pxy, freqs @docstring.dedent_interpd def complex_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the complex-valued frequency spectrum of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. *x*: 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns the tuple (*spectrum*, *freqs*): *spectrum*: 1-D array The values for the complex spectrum (complex valued) *freqs*: 1-D array The frequencies corresponding to the elements in *spectrum* .. seealso:: :func:`magnitude_spectrum` :func:`magnitude_spectrum` returns the absolute value of this function. :func:`angle_spectrum` :func:`angle_spectrum` returns the angle of this function. :func:`phase_spectrum` :func:`phase_spectrum` returns the phase (unwrapped angle) of this function. :func:`specgram` :func:`specgram` can return the complex spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='complex') @docstring.dedent_interpd def magnitude_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the magnitude (absolute value) of the frequency spectrum of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. *x*: 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns the tuple (*spectrum*, *freqs*): *spectrum*: 1-D array The values for the magnitude spectrum (real valued) *freqs*: 1-D array The frequencies corresponding to the elements in *spectrum* .. seealso:: :func:`psd` :func:`psd` returns the power spectral density. :func:`complex_spectrum` This function returns the absolute value of :func:`complex_spectrum`. :func:`angle_spectrum` :func:`angle_spectrum` returns the angles of the corresponding frequencies. :func:`phase_spectrum` :func:`phase_spectrum` returns the phase (unwrapped angle) of the corresponding frequencies. :func:`specgram` :func:`specgram` can return the magnitude spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='magnitude') @docstring.dedent_interpd def angle_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the angle of the frequency spectrum (wrapped phase spectrum) of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. *x*: 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns the tuple (*spectrum*, *freqs*): *spectrum*: 1-D array The values for the angle spectrum in radians (real valued) *freqs*: 1-D array The frequencies corresponding to the elements in *spectrum* .. seealso:: :func:`complex_spectrum` This function returns the angle value of :func:`complex_spectrum`. :func:`magnitude_spectrum` :func:`angle_spectrum` returns the magnitudes of the corresponding frequencies. :func:`phase_spectrum` :func:`phase_spectrum` returns the unwrapped version of this function. :func:`specgram` :func:`specgram` can return the angle spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='angle') @docstring.dedent_interpd def phase_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the phase of the frequency spectrum (unwrapped angle spectrum) of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. *x*: 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns the tuple (*spectrum*, *freqs*): *spectrum*: 1-D array The values for the phase spectrum in radians (real valued) *freqs*: 1-D array The frequencies corresponding to the elements in *spectrum* .. seealso:: :func:`complex_spectrum` This function returns the angle value of :func:`complex_spectrum`. :func:`magnitude_spectrum` :func:`magnitude_spectrum` returns the magnitudes of the corresponding frequencies. :func:`angle_spectrum` :func:`angle_spectrum` returns the wrapped version of this function. :func:`specgram` :func:`specgram` can return the phase spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='phase') @docstring.dedent_interpd def specgram(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): """ Compute a spectrogram. Call signature:: specgram(x, NFFT=256, Fs=2,detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, mode='default') Compute and plot a spectrogram of data in *x*. Data are split into *NFFT* length segments and the spectrum of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. *x*: 1-D array or sequence Array or sequence containing the data %(Spectral)s %(PSD)s *mode*: [ 'default' | 'psd' | 'complex' | 'magnitude' 'angle' | 'phase' ] What sort of spectrum to use. Default is 'psd'. which takes the power spectral density. 'complex' returns the complex-valued frequency spectrum. 'magnitude' returns the magnitude spectrum. 'angle' returns the phase spectrum without unwrapping. 'phase' returns the phase spectrum with unwrapping. *noverlap*: integer The number of points of overlap between blocks. The default value is 128. Returns the tuple (*spectrum*, *freqs*, *t*): *spectrum*: 2-D array columns are the periodograms of successive segments *freqs*: 1-D array The frequencies corresponding to the rows in *spectrum* *t*: 1-D array The times corresponding to midpoints of segments (i.e the columns in *spectrum*). .. note:: *detrend* and *scale_by_freq* only apply when *mode* is set to 'psd' .. seealso:: :func:`psd` :func:`psd` differs in the default overlap; in returning the mean of the segment periodograms; and in not returning times. :func:`complex_spectrum` A single spectrum, similar to having a single segment when *mode* is 'complex'. :func:`magnitude_spectrum` A single spectrum, similar to having a single segment when *mode* is 'magnitude'. :func:`angle_spectrum` A single spectrum, similar to having a single segment when *mode* is 'angle'. :func:`phase_spectrum` A single spectrum, similar to having a single segment when *mode* is 'phase'. """ if noverlap is None: noverlap = 128 spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode) if mode != 'complex': spec = spec.real # Needed since helper implements generically return spec, freqs, t _coh_error = """Coherence is calculated by averaging over *NFFT* length segments. Your signal is too short for your choice of *NFFT*. """ @docstring.dedent_interpd def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} *x*, *y* Array or sequence containing the data %(Spectral)s %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. .. seealso:: :func:`psd` and :func:`csd` For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x) < 2 * NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy) Cxy.shape = (len(f),) return Cxy, f def donothing_callback(*args): pass def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): """ Call signature:: Cxy, Phase, freqs = cohere_pairs( X, ij, ...) Compute the coherence and phase for all pairs *ij*, in *X*. *X* is a *numSamples* * *numCols* array *ij* is a list of tuples. Each tuple is a pair of indexes into the columns of X for which you want to compute coherence. For example, if *X* has 64 columns, and you want to compute all nonredundant pairs, define *ij* as:: ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i,j) ) *preferSpeedOverMemory* is an optional bool. Defaults to true. If False, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when *preferSpeedOverMemory* is False, :func:`cohere_pairs` will still give significant performace gains over calling :func:`cohere` for each pair, and will use subtantially less memory than if *preferSpeedOverMemory* is True. In my tests with a 43000,64 array over all nonredundant pairs, *preferSpeedOverMemory* = True delivered a 33% performance boost on a 1.7GHZ Athlon with 512MB RAM compared with *preferSpeedOverMemory* = False. But both solutions were more than 10x faster than naively crunching all possible pairs through :func:`cohere`. Returns:: (Cxy, Phase, freqs) where: - *Cxy*: dictionary of (*i*, *j*) tuples -> coherence vector for that pair. i.e., ``Cxy[(i,j) = cohere(X[:,i], X[:,j])``. Number of dictionary keys is ``len(ij)``. - *Phase*: dictionary of phases of the cross spectral density at each frequency for each pair. Keys are (*i*, *j*). - *freqs*: vector of frequencies, equal in length to either the coherence or phase vectors for any (*i*, *j*) key. e.g., to make a coherence Bode plot:: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, :func:`cohere_pairs` can be much more efficient than just calling :func:`cohere` for each pair, because it caches most of the intensive computations. If :math:`N` is the number of pairs, this function is :math:`O(N)` for most of the heavy lifting, whereas calling cohere for each pair is :math:`O(N^2)`. However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as *X*. See :file:`test/cohere_pairs_test.py` in the src tree for an example script that shows that this :func:`cohere_pairs` and :func:`cohere` give the same results for a given pair. .. seealso:: :func:`psd` For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = np.zeros( (NFFT, numCols), X.dtype) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples allColumns = set() for i,j in ij: allColumns.add(i); allColumns.add(j) Ncols = len(allColumns) # for real X, ignore the negative frequencies if np.iscomplexobj(X): numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones(NFFT, X.dtype)) ind = list(xrange(0, numRows-NFFT+1, NFFT-noverlap)) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = np.linalg.norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = np.fft.fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = np.conjugate(Slices) Pxx[iCol] = np.divide(np.mean(abs(Slices)**2, axis=0), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j]) if numSlices>1: Pxy = np.mean(Pxy, axis=0) #Pxy = np.divide(Pxy, normVal) Pxy /= normVal #Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j]) Cxy[i,j] = abs(Pxy)**2 / (Pxx[i]*Pxx[j]) Phase[i,j] = np.arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*np.arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs def entropy(y, bins): r""" Return the entropy of the data in *y* in units of nat. .. math:: -\sum p_i \ln(p_i) where :math:`p_i` is the probability of observing *y* in the :math:`i^{th}` bin of *bins*. *bins* can be a number of bins or a range of bins; see :func:`numpy.histogram`. Compare *S* with analytic calculation for a Gaussian:: x = mu + sigma * randn(200000) Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) ) """ n, bins = np.histogram(y, bins) n = n.astype(np.float_) n = np.take(n, np.nonzero(n)[0]) # get the positive p = np.divide(n, len(y)) delta = bins[1] - bins[0] S = -1.0 * np.sum(p * np.log(p)) + np.log(delta) return S def normpdf(x, *args): "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*" mu, sigma = args return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2) def find(condition): "Return the indices where ravel(condition) is true" res, = np.nonzero(np.ravel(condition)) return res def longest_contiguous_ones(x): """ Return the indices of the longest stretch of contiguous ones in *x*, assuming *x* is a vector of zeros and ones. If there are two equally long stretches, pick the first. """ x = np.ravel(x) if len(x)==0: return np.array([]) ind = (x==0).nonzero()[0] if len(ind)==0: return np.arange(len(x)) if len(ind)==len(x): return np.array([]) y = np.zeros( (len(x)+2,), x.dtype) y[1:-1] = x dif = np.diff(y) up = (dif == 1).nonzero()[0]; dn = (dif == -1).nonzero()[0]; i = (dn-up == max(dn - up)).nonzero()[0][0] ind = np.arange(up[i], dn[i]) return ind def longest_ones(x): '''alias for longest_contiguous_ones''' return longest_contiguous_ones(x) def prepca(P, frac=0): """ .. warning:: This function is deprecated -- please see class PCA instead Compute the principal components of *P*. *P* is a (*numVars*, *numObs*) array. *frac* is the minimum fraction of variance that a component must contain to be included. Return value is a tuple of the form (*Pcomponents*, *Trans*, *fracVar*) where: - *Pcomponents* : a (numVars, numObs) array - *Trans* : the weights matrix, i.e., *Pcomponents* = *Trans* * *P* - *fracVar* : the fraction of the variance accounted for by each component returned A similar function of the same name was in the MATLAB R13 Neural Network Toolbox but is not found in later versions; its successor seems to be called "processpcs". """ warnings.warn('This function is deprecated -- see class PCA instead') U,s,v = np.linalg.svd(P) varEach = s**2/P.shape[1] totVar = varEach.sum() fracVar = varEach/totVar ind = slice((fracVar>=frac).sum()) # select the components that are greater Trans = U[:,ind].transpose() # The transformed data Pcomponents = np.dot(Trans,P) return Pcomponents, Trans, fracVar[ind] class PCA: def __init__(self, a, standardize=True): """ compute the SVD of a and store data for PCA. Use project to project the data onto a reduced set of dimensions Inputs: *a*: a numobservations x numdims array *standardize*: True if input data are to be standardized. If False, only centering will be carried out. Attrs: *a* a centered unit sigma version of input a *numrows*, *numcols*: the dimensions of a *mu* : a numdims array of means of a. This is the vector that points to the origin of PCA space. *sigma* : a numdims array of standard deviation of a *fracs* : the proportion of variance of each of the principal components *s* : the actual eigenvalues of the decomposition *Wt* : the weight vector for projecting a numdims point or array into PCA space *Y* : a projected into PCA space The factor loadings are in the Wt factor, i.e., the factor loadings for the 1st principal component are given by Wt[0]. This row is also the 1st eigenvector. """ n, m = a.shape if n<m: raise RuntimeError('we assume data in a is organized with numrows>numcols') self.numrows, self.numcols = n, m self.mu = a.mean(axis=0) self.sigma = a.std(axis=0) self.standardize = standardize a = self.center(a) self.a = a U, s, Vh = np.linalg.svd(a, full_matrices=False) # Note: .H indicates the conjugate transposed / Hermitian. # The SVD is commonly written as a = U s V.H. # If U is a unitary matrix, it means that it satisfies U.H = inv(U). # The rows of Vh are the eigenvectors of a.H a. # The columns of U are the eigenvectors of a a.H. # For row i in Vh and column i in U, the corresponding eigenvalue is s[i]**2. self.Wt = Vh # save the transposed coordinates Y = np.dot(Vh, a.T).T self.Y = Y # save the eigenvalues self.s = s**2 # and now the contribution of the individual components vars = self.s/float(len(s)) self.fracs = vars/vars.sum() def project(self, x, minfrac=0.): 'project x onto the principle axes, dropping any axes where fraction of variance<minfrac' x = np.asarray(x) ndims = len(x.shape) if (x.shape[-1]!=self.numcols): raise ValueError('Expected an array with dims[-1]==%d'%self.numcols) Y = np.dot(self.Wt, self.center(x).T).T mask = self.fracs>=minfrac if ndims==2: Yreduced = Y[:,mask] else: Yreduced = Y[mask] return Yreduced def center(self, x): 'center and optionally standardize the data using the mean and sigma from training set a' if self.standardize: return (x - self.mu)/self.sigma else: return (x - self.mu) @staticmethod def _get_colinear(): c0 = np.array([ 0.19294738, 0.6202667 , 0.45962655, 0.07608613, 0.135818 , 0.83580842, 0.07218851, 0.48318321, 0.84472463, 0.18348462, 0.81585306, 0.96923926, 0.12835919, 0.35075355, 0.15807861, 0.837437 , 0.10824303, 0.1723387 , 0.43926494, 0.83705486]) c1 = np.array([ -1.17705601, -0.513883 , -0.26614584, 0.88067144, 1.00474954, -1.1616545 , 0.0266109 , 0.38227157, 1.80489433, 0.21472396, -1.41920399, -2.08158544, -0.10559009, 1.68999268, 0.34847107, -0.4685737 , 1.23980423, -0.14638744, -0.35907697, 0.22442616]) c2 = c0 + 2*c1 c3 = -3*c0 + 4*c1 a = np.array([c3, c0, c1, c2]).T return a def prctile(x, p = (0.0, 25.0, 50.0, 75.0, 100.0)): """ Return the percentiles of *x*. *p* can either be a sequence of percentile values or a scalar. If *p* is a sequence, the ith element of the return sequence is the *p*(i)-th percentile of *x*. If *p* is a scalar, the largest value of *x* less than or equal to the *p* percentage point in the sequence is returned. """ # This implementation derived from scipy.stats.scoreatpercentile def _interpolate(a, b, fraction): """Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a)*fraction scalar = True if cbook.iterable(p): scalar = False per = np.array(p) values = np.array(x).ravel() # copy values.sort() idxs = per /100. * (values.shape[0] - 1) ai = idxs.astype(np.int) bi = ai + 1 frac = idxs % 1 # handle cases where attempting to interpolate past last index cond = bi >= len(values) if scalar: if cond: ai -= 1 bi -= 1 frac += 1 else: ai[cond] -= 1 bi[cond] -= 1 frac[cond] += 1 return _interpolate(values[ai],values[bi],frac) def prctile_rank(x, p): """ Return the rank for each element in *x*, return the rank 0..len(*p*). e.g., if *p* = (25, 50, 75), the return value will be a len(*x*) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is above the 75th percentile cutoff. *p* is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data you want ranked. """ if not cbook.iterable(p): p = np.arange(100.0/p, 100.0, 100.0/p) else: p = np.asarray(p) if p.max()<=1 or p.min()<0 or p.max()>100: raise ValueError('percentiles should be in range 0..100, not 0..1') ptiles = prctile(x, p) return np.searchsorted(ptiles, x) def center_matrix(M, dim=0): """ Return the matrix *M* with each row having zero mean and unit std. If *dim* = 1 operate on columns instead of rows. (*dim* is opposite to the numpy axis kwarg.) """ M = np.asarray(M, np.float_) if dim: M = (M - M.mean(axis=0)) / M.std(axis=0) else: M = (M - M.mean(axis=1)[:,np.newaxis]) M = M / M.std(axis=1)[:,np.newaxis] return M def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. *y0* initial state vector *t* sample times *derivs* returns the derivative of the system and has the signature ``dy = derivs(yi, ti)`` Example 1 :: ## 2D system def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2:: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. """ try: Ny = len(y0) except TypeError: yout = np.zeros( (len(t),), np.float_) else: yout = np.zeros( (len(t), Ny), np.float_) yout[0] = y0 i = 0 for i in np.arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = np.asarray(derivs(y0, thist)) k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = np.asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0): """ Bivariate Gaussian distribution for equal shape *X*, *Y*. See `bivariate normal <http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_ at mathworld. """ Xmu = X-mux Ymu = Y-muy rho = sigmaxy/(sigmax*sigmay) z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay) denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2) return np.exp( -z/(2*(1-rho**2))) / denom def get_xyz_where(Z, Cond): """ *Z* and *Cond* are *M* x *N* matrices. *Z* are data and *Cond* is a boolean matrix where some condition is satisfied. Return value is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and *z* are the values of *Z* at those indices. *x*, *y*, and *z* are 1D arrays. """ X,Y = np.indices(Z.shape) return X[Cond], Y[Cond], Z[Cond] def get_sparse_matrix(M,N,frac=0.1): """ Return a *M* x *N* sparse matrix with *frac* elements randomly filled. """ data = np.zeros((M,N))*0. for i in range(int(M*N*frac)): x = np.random.randint(0,M-1) y = np.random.randint(0,N-1) data[x,y] = np.random.rand() return data def dist(x,y): """ Return the distance between two points. """ d = x-y return np.sqrt(np.dot(d,d)) def dist_point_to_segment(p, s0, s1): """ Get the distance of a point to a segment. *p*, *s0*, *s1* are *xy* sequences This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment """ p = np.asarray(p, np.float_) s0 = np.asarray(s0, np.float_) s1 = np.asarray(s1, np.float_) v = s1 - s0 w = p - s0 c1 = np.dot(w,v); if ( c1 <= 0 ): return dist(p, s0); c2 = np.dot(v,v) if ( c2 <= c1 ): return dist(p, s1); b = c1 / c2 pb = s0 + b * v; return dist(p, pb) def segments_intersect(s1, s2): """ Return *True* if *s1* and *s2* intersect. *s1* and *s2* are defined as:: s1: (x1, y1), (x2, y2) s2: (x3, y3), (x4, y4) """ (x1, y1), (x2, y2) = s1 (x3, y3), (x4, y4) = s2 den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1)) n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3)) n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3)) if den == 0: # lines parallel return False u1 = n1/den u2 = n2/den return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0 def fftsurr(x, detrend=detrend_none, window=window_none): """ Compute an FFT phase randomized surrogate of *x*. """ if cbook.iterable(window): x=window*detrend(x) else: x = window(detrend(x)) z = np.fft.fft(x) a = 2.*np.pi*1j phase = a * np.random.rand(len(x)) z = z*np.exp(phase) return np.fft.ifft(z).real class FIFOBuffer: """ A FIFO queue to hold incoming *x*, *y* data in a rotating buffer using numpy arrays under the hood. It is assumed that you will call asarrays much less frequently than you add data to the queue -- otherwise another data structure will be faster. This can be used to support plots where data is added from a real time feed and the plot object wants to grab data from the buffer and plot it to screen less freqeuently than the incoming. If you set the *dataLim* attr to :class:`~matplotlib.transforms.BBox` (e.g., :attr:`matplotlib.Axes.dataLim`), the *dataLim* will be updated as new data come in. TODO: add a grow method that will extend nmax .. note:: mlab seems like the wrong place for this class. """ @cbook.deprecated('1.3', name='FIFOBuffer', obj_type='class') def __init__(self, nmax): """ Buffer up to *nmax* points. """ self._xa = np.zeros((nmax,), np.float_) self._ya = np.zeros((nmax,), np.float_) self._xs = np.zeros((nmax,), np.float_) self._ys = np.zeros((nmax,), np.float_) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {} def register(self, func, N): """ Call *func* every time *N* events are passed; *func* signature is ``func(fifo)``. """ self.callbackd.setdefault(N, []).append(func) def add(self, x, y): """ Add scalar *x* and *y* to the queue. """ if self.dataLim is not None: xy = np.asarray([(x,y),]) self.dataLim.update_from_data_xy(xy, None) ind = self._ind % self._nmax #print 'adding to fifo:', ind, x, y self._xs[ind] = x self._ys[ind] = y for N,funcs in six.iteritems(self.callbackd): if (self._ind%N)==0: for func in funcs: func(self) self._ind += 1 def last(self): """ Get the last *x*, *y* or *None*. *None* if no data set. """ if self._ind==0: return None, None ind = (self._ind-1) % self._nmax return self._xs[ind], self._ys[ind] def asarrays(self): """ Return *x* and *y* as arrays; their length will be the len of data added or *nmax*. """ if self._ind<self._nmax: return self._xs[:self._ind], self._ys[:self._ind] ind = self._ind % self._nmax self._xa[:self._nmax-ind] = self._xs[ind:] self._xa[self._nmax-ind:] = self._xs[:ind] self._ya[:self._nmax-ind] = self._ys[ind:] self._ya[self._nmax-ind:] = self._ys[:ind] return self._xa, self._ya def update_datalim_to_current(self): """ Update the *datalim* in the current data in the fifo. """ if self.dataLim is None: raise ValueError('You must first set the dataLim attr') x, y = self.asarrays() self.dataLim.update_from_data(x, y, True) def movavg(x,n): """ Compute the len(*n*) moving average of *x*. """ w = np.empty((n,), dtype=np.float_) w[:] = 1.0/n return np.convolve(x, w, mode='valid') ### the following code was written and submitted by Fernando Perez ### from the ipython numutils package under a BSD license # begin fperez functions """ A set of convenient utilities for numerical work. Most of this module requires numpy or is meant to be used with it. Copyright (c) 2001-2004, Fernando Perez. <[email protected]> All rights reserved. This license was generated from the BSD license template as found in: http://www.opensource.org/licenses/bsd-license.php Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the IPython project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import math #***************************************************************************** # Globals #**************************************************************************** # function definitions exp_safe_MIN = math.log(2.2250738585072014e-308) exp_safe_MAX = 1.7976931348623157e+308 def exp_safe(x): """ Compute exponentials which safely underflow to zero. Slow, but convenient to use. Note that numpy provides proper floating point exception handling with access to the underlying hardware. """ if type(x) is np.ndarray: return np.exp(np.clip(x,exp_safe_MIN,exp_safe_MAX)) else: return math.exp(x) def amap(fn,*args): """ amap(function, sequence[, sequence, ...]) -> array. Works like :func:`map`, but it returns an array. This is just a convenient shorthand for ``numpy.array(map(...))``. """ return np.array(list(map(fn,*args))) def rms_flat(a): """ Return the root mean square of all the elements of *a*, flattened out. """ return np.sqrt(np.mean(np.absolute(a)**2)) def l1norm(a): """ Return the *l1* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sum(np.absolute(a)) def l2norm(a): """ Return the *l2* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sqrt(np.sum(np.absolute(a)**2)) def norm_flat(a,p=2): """ norm(a,p=2) -> l-p norm of a.flat Return the l-p norm of *a*, considered as a flat array. This is NOT a true matrix norm, since arrays of arbitrary rank are always flattened. *p* can be a number or the string 'Infinity' to get the L-infinity norm. """ # This function was being masked by a more general norm later in # the file. We may want to simply delete it. if p=='Infinity': return np.amax(np.absolute(a)) else: return (np.sum(np.absolute(a)**p))**(1.0/p) def frange(xini,xfin=None,delta=None,**kw): """ frange([start,] stop[, step, keywords]) -> array of floats Return a numpy ndarray containing a progression of floats. Similar to :func:`numpy.arange`, but defaults to a closed interval. ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start* defaults to 0, and the endpoint *is included*. This behavior is different from that of :func:`range` and :func:`numpy.arange`. This is deliberate, since :func:`frange` will probably be more useful for generating lists of points for function evaluation, and endpoints are often desired in this use. The usual behavior of :func:`range` can be obtained by setting the keyword *closed* = 0, in this case, :func:`frange` basically becomes :func:numpy.arange`. When *step* is given, it specifies the increment (or decrement). All arguments can be floating point numbers. ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where *xfin* <= *x1*. :func:`frange` can also be called with the keyword *npts*. This sets the number of points the list should contain (and overrides the value *step* might have been given). :func:`numpy.arange` doesn't offer this option. Examples:: >>> frange(3) array([ 0., 1., 2., 3.]) >>> frange(3,closed=0) array([ 0., 1., 2.]) >>> frange(1,6,2) array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries >>> frange(1,6.5,npts=5) array([ 1. , 2.375, 3.75 , 5.125, 6.5 ]) """ #defaults kw.setdefault('closed',1) endpoint = kw['closed'] != 0 # funny logic to allow the *first* argument to be optional (like range()) # This was modified with a simpler version from a similar frange() found # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472 if xfin == None: xfin = xini + 0.0 xini = 0.0 if delta == None: delta = 1.0 # compute # of points, spacing and return final list try: npts=kw['npts'] delta=(xfin-xini)/float(npts-endpoint) except KeyError: npts = int(round((xfin-xini)/delta)) + endpoint #npts = int(floor((xfin-xini)/delta)*(1.0+1e-10)) + endpoint # round finds the nearest, so the endpoint can be up to # delta/2 larger than xfin. return np.arange(npts)*delta+xini # end frange() def identity(n, rank=2, dtype='l', typecode=None): """ Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*). For ranks higher than 2, this object is simply a multi-index Kronecker delta:: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a *dtype* (or typecode) may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is much faster. """ if typecode is not None: dtype = typecode iden = np.zeros((n,)*rank, dtype) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden def base_repr (number, base = 2, padding = 0): """ Return the representation of a *number* in any given *base*. """ chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' if number < base: \ return (padding - 1) * chars [0] + chars [int (number)] max_exponent = int (math.log (number)/math.log (base)) max_power = long (base) ** max_exponent lead_digit = int (number/max_power) return chars [lead_digit] + \ base_repr (number - max_power * lead_digit, base, \ max (padding - 1, max_exponent)) def binary_repr(number, max_length = 1025): """ Return the binary representation of the input *number* as a string. This is more efficient than using :func:`base_repr` with base 2. Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is the largest integer power of 2 which can be converted to a Python float. """ #assert number < 2L << max_length shifts = list(map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1))) digits = list(map (operator.mod, shifts, max_length * [2])) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join (map (repr, digits)).replace('L','') def log2(x,ln2 = math.log(2.0)): """ Return the log(*x*) in base 2. This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an integer exact power of 2. """ try: bin_n = binary_repr(x)[1:] except (AssertionError,TypeError): return math.log(x)/ln2 else: if '1' in bin_n: return math.log(x)/ln2 else: return len(bin_n) def ispower2(n): """ Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise. Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly. """ bin_n = binary_repr(n)[1:] if '1' in bin_n: return 0 else: return len(bin_n) def isvector(X): """ Like the MATLAB function with the same name, returns *True* if the supplied numpy array or matrix *X* looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all must have length 1, except for one of them). If you just want to see if the array has 1 axis, use X.ndim == 1. """ return np.prod(X.shape)==np.max(X.shape) ### end fperez numutils code #helpers for loading, saving, manipulating and viewing numpy record arrays def safe_isnan(x): ':func:`numpy.isnan` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isnan(x) except NotImplementedError: return False except TypeError: return False else: return b def safe_isinf(x): ':func:`numpy.isinf` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isinf(x) except NotImplementedError: return False except TypeError: return False else: return b def rec_append_fields(rec, names, arrs, dtypes=None): """ Return a new record array with field names populated with data from arrays in *arrs*. If appending a single field, then *names*, *arrs* and *dtypes* do not have to be lists. They can just be the values themselves. """ if (not cbook.is_string_like(names) and cbook.iterable(names) \ and len(names) and cbook.is_string_like(names[0])): if len(names) != len(arrs): raise ValueError("number of arrays do not match number of names") else: # we have only 1 name and 1 array names = [names] arrs = [arrs] arrs = list(map(np.asarray, arrs)) if dtypes is None: dtypes = [a.dtype for a in arrs] elif not cbook.iterable(dtypes): dtypes = [dtypes] if len(arrs) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(arrs) else: raise ValueError("dtypes must be None, a single dtype or a list") newdtype = np.dtype(rec.dtype.descr + list(zip(names, dtypes))) newrec = np.recarray(rec.shape, dtype=newdtype) for field in rec.dtype.fields: newrec[field] = rec[field] for name, arr in zip(names, arrs): newrec[name] = arr return newrec def rec_drop_fields(rec, names): """ Return a new numpy record array with fields in *names* dropped. """ names = set(names) newdtype = np.dtype([(name, rec.dtype[name]) for name in rec.dtype.names if name not in names]) newrec = np.recarray(rec.shape, dtype=newdtype) for field in newdtype.names: newrec[field] = rec[field] return newrec def rec_keep_fields(rec, names): """ Return a new numpy record array with only fields listed in names """ if cbook.is_string_like(names): names = names.split(',') arrays = [] for name in names: arrays.append(rec[name]) return np.rec.fromarrays(arrays, names=names) def rec_groupby(r, groupby, stats): """ *r* is a numpy record array *groupby* is a sequence of record array attribute names that together form the grouping key. e.g., ('date', 'productcode') *stats* is a sequence of (*attr*, *func*, *outname*) tuples which will call ``x = func(attr)`` and assign *x* to the record array output with attribute *outname*. For example:: stats = ( ('sales', len, 'numsales'), ('sales', np.mean, 'avgsale') ) Return record array has *dtype* names for each attribute name in the the *groupby* argument, with the associated group values, and for each outname name in the *stats* argument, with the associated stat summary output. """ # build a dictionary from groupby keys-> list of indices into r with # those keys rowd = dict() for i, row in enumerate(r): key = tuple([row[attr] for attr in groupby]) rowd.setdefault(key, []).append(i) # sort the output by groupby keys keys = list(six.iterkeys(rowd)) keys.sort() rows = [] for key in keys: row = list(key) # get the indices for this groupby key ind = rowd[key] thisr = r[ind] # call each stat function for this groupby slice row.extend([func(thisr[attr]) for attr, func, outname in stats]) rows.append(row) # build the output record array with groupby and outname attributes attrs, funcs, outnames = list(zip(*stats)) names = list(groupby) names.extend(outnames) return np.rec.fromrecords(rows, names=names) def rec_summarize(r, summaryfuncs): """ *r* is a numpy record array *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples which will apply *func* to the the array *r*[attr] and assign the output to a new attribute name *outname*. The returned record array is identical to *r*, with extra arrays for each element in *summaryfuncs*. """ names = list(r.dtype.names) arrays = [r[name] for name in names] for attr, func, outname in summaryfuncs: names.append(outname) arrays.append(np.asarray(func(r[attr]))) return np.rec.fromarrays(arrays, names=names) def rec_join(key, r1, r2, jointype='inner', defaults=None, r1postfix='1', r2postfix='2'): """ Join record arrays *r1* and *r2* on *key*; *key* is a tuple of field names -- if *key* is a string it is assumed to be a single attribute name. If *r1* and *r2* have equal values on all the keys in the *key* tuple, then their fields will be merged into a new record array containing the intersection of the fields of *r1* and *r2*. *r1* (also *r2*) must not have any duplicate keys. The *jointype* keyword can be 'inner', 'outer', 'leftouter'. To do a rightouter join just reverse *r1* and *r2*. The *defaults* keyword is a dictionary filled with ``{column_name:default_value}`` pairs. The keywords *r1postfix* and *r2postfix* are postfixed to column names (other than keys) that are both in *r1* and *r2*. """ if cbook.is_string_like(key): key = (key, ) for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s'%name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s'%name) def makekey(row): return tuple([row[name] for name in key]) r1d = dict([(makekey(row),i) for i,row in enumerate(r1)]) r2d = dict([(makekey(row),i) for i,row in enumerate(r2)]) r1keys = set(r1d.keys()) r2keys = set(r2d.keys()) common_keys = r1keys & r2keys r1ind = np.array([r1d[k] for k in common_keys]) r2ind = np.array([r2d[k] for k in common_keys]) common_len = len(common_keys) left_len = right_len = 0 if jointype == "outer" or jointype == "leftouter": left_keys = r1keys.difference(r2keys) left_ind = np.array([r1d[k] for k in left_keys]) left_len = len(left_ind) if jointype == "outer": right_keys = r2keys.difference(r1keys) right_ind = np.array([r2d[k] for k in right_keys]) right_len = len(right_ind) def key_desc(name): 'if name is a string key, use the larger size of r1 or r2 before merging' dt1 = r1.dtype[name] if dt1.type != np.string_: return (name, dt1.descr[0][1]) dt2 = r2.dtype[name] if dt1 != dt2: msg = "The '{}' fields in arrays 'r1' and 'r2' must have the same" msg += " dtype." raise ValueError(msg.format(name)) if dt1.num>dt2.num: return (name, dt1.descr[0][1]) else: return (name, dt2.descr[0][1]) keydesc = [key_desc(name) for name in key] def mapped_r1field(name): """ The column name in *newrec* that corresponds to the column in *r1*. """ if name in key or name not in r2.dtype.names: return name else: return name + r1postfix def mapped_r2field(name): """ The column name in *newrec* that corresponds to the column in *r2*. """ if name in key or name not in r1.dtype.names: return name else: return name + r2postfix r1desc = [(mapped_r1field(desc[0]), desc[1]) for desc in r1.dtype.descr if desc[0] not in key] r2desc = [(mapped_r2field(desc[0]), desc[1]) for desc in r2.dtype.descr if desc[0] not in key] newdtype = np.dtype(keydesc + r1desc + r2desc) newrec = np.recarray((common_len + left_len + right_len,), dtype=newdtype) if defaults is not None: for thiskey in defaults: if thiskey not in newdtype.names: warnings.warn('rec_join defaults key="%s" not in new dtype names "%s"'%( thiskey, newdtype.names)) for name in newdtype.names: dt = newdtype[name] if dt.kind in ('f', 'i'): newrec[name] = 0 if jointype != 'inner' and defaults is not None: # fill in the defaults enmasse newrec_fields = list(six.iterkeys(newrec.dtype.fields.keys)) for k, v in six.iteritems(defaults): if k in newrec_fields: newrec[k] = v for field in r1.dtype.names: newfield = mapped_r1field(field) if common_len: newrec[newfield][:common_len] = r1[field][r1ind] if (jointype == "outer" or jointype == "leftouter") and left_len: newrec[newfield][common_len:(common_len+left_len)] = r1[field][left_ind] for field in r2.dtype.names: newfield = mapped_r2field(field) if field not in key and common_len: newrec[newfield][:common_len] = r2[field][r2ind] if jointype == "outer" and right_len: newrec[newfield][-right_len:] = r2[field][right_ind] newrec.sort(order=key) return newrec def recs_join(key, name, recs, jointype='outer', missing=0., postfixes=None): """ Join a sequence of record arrays on single column key. This function only joins a single column of the multiple record arrays *key* is the column name that acts as a key *name* is the name of the column that we want to join *recs* is a list of record arrays to join *jointype* is a string 'inner' or 'outer' *missing* is what any missing field is replaced by *postfixes* if not None, a len recs sequence of postfixes returns a record array with columns [rowkey, name0, name1, ... namen-1]. or if postfixes [PF0, PF1, ..., PFN-1] are supplied, [rowkey, namePF0, namePF1, ... namePFN-1]. Example:: r = recs_join("date", "close", recs=[r0, r1], missing=0.) """ results = [] aligned_iters = cbook.align_iterators(operator.attrgetter(key), *[iter(r) for r in recs]) def extract(r): if r is None: return missing else: return r[name] if jointype == "outer": for rowkey, row in aligned_iters: results.append([rowkey] + list(map(extract, row))) elif jointype == "inner": for rowkey, row in aligned_iters: if None not in row: # throw out any Nones results.append([rowkey] + list(map(extract, row))) if postfixes is None: postfixes = ['%d'%i for i in range(len(recs))] names = ",".join([key] + ["%s%s" % (name, postfix) for postfix in postfixes]) return np.rec.fromrecords(results, names=names) def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',', converterd=None, names=None, missing='', missingd=None, use_mrecords=False, dayfirst=False, yearfirst=False): """ Load data from comma/space/tab delimited file in *fname* into a numpy record array and return the record array. If *names* is *None*, a header row is required to automatically assign the recarray names. The headers will be lower cased, spaces will be converted to underscores, and illegal attribute name characters removed. If *names* is not *None*, it is a sequence of names to use for the column names. In this case, it is assumed there is no header row. - *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' - *comments*: the character used to indicate the start of a comment in the file, or *None* to switch off the removal of comments - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *converterd*: if not *None*, is a dictionary mapping column number or munged column name to a converter function. - *names*: if not None, is a list of header names. In this case, no header will be read from the file - *missingd* is a dictionary mapping munged column names to field values which signify that the field does not contain actual data and should be masked, e.g., '0000-00-00' or 'unused' - *missing*: a string whose value signals a missing field regardless of the column it appears in - *use_mrecords*: if True, return an mrecords.fromrecords record array if any of the data are missing - *dayfirst*: default is False so that MM-DD-YY has precedence over DD-MM-YY. See http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47 for further information. - *yearfirst*: default is False so that MM-DD-YY has precedence over YY-MM-DD. See http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47 for further information. If no rows are found, *None* is returned -- see :file:`examples/loadrec.py` """ if converterd is None: converterd = dict() if missingd is None: missingd = {} import dateutil.parser import datetime fh = cbook.to_filehandle(fname) delimiter = str(delimiter) class FH: """ For space-delimited files, we want different behavior than comma or tab. Generally, we want multiple spaces to be treated as a single separator, whereas with comma and tab we want multiple commas to return multiple (empty) fields. The join/strip trick below effects this. """ def __init__(self, fh): self.fh = fh def close(self): self.fh.close() def seek(self, arg): self.fh.seek(arg) def fix(self, s): return ' '.join(s.split()) def __next__(self): return self.fix(next(self.fh)) def __iter__(self): for line in self.fh: yield self.fix(line) if delimiter==' ': fh = FH(fh) reader = csv.reader(fh, delimiter=delimiter) def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i>=(skiprows-1): break return fh, reader process_skiprows(reader) def ismissing(name, val): "Should the value val in column name be masked?" if val == missing or val == missingd.get(name) or val == '': return True else: return False def with_default_value(func, default): def newfunc(name, val): if ismissing(name, val): return default else: return func(val) return newfunc def mybool(x): if x=='True': return True elif x=='False': return False else: raise ValueError('invalid bool') dateparser = dateutil.parser.parse mydateparser = with_default_value(dateparser, datetime.date(1,1,1)) myfloat = with_default_value(float, np.nan) myint = with_default_value(int, -1) mystr = with_default_value(str, '') mybool = with_default_value(mybool, None) def mydate(x): # try and return a date object d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst) if d.hour>0 or d.minute>0 or d.second>0: raise ValueError('not a date') return d.date() mydate = with_default_value(mydate, datetime.date(1,1,1)) def get_func(name, item, func): # promote functions in this order funcmap = {mybool:myint,myint:myfloat, myfloat:mydate, mydate:mydateparser, mydateparser:mystr} try: func(name, item) except: if func==mystr: raise ValueError('Could not find a working conversion function') else: return get_func(name, item, funcmap[func]) # recurse else: return func # map column names that clash with builtins -- TODO - extend this list itemd = { 'return' : 'return_', 'file' : 'file_', 'print' : 'print_', } def get_converters(reader): converters = None for i, row in enumerate(reader): if i==0: converters = [mybool]*len(row) if checkrows and i>checkrows: break #print i, len(names), len(row) #print 'converters', zip(converters, row) for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: #if not item.strip(): continue func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters # Get header and remove invalid characters needheader = names is None if needheader: for row in reader: #print 'csv2rec', row if len(row) and comments is not None and row[0].startswith(comments): continue headers = row break # remove these chars delete = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") delete.add('"') names = [] seen = dict() for i, item in enumerate(headers): item = item.strip().lower().replace(' ', '_') item = ''.join([c for c in item if c not in delete]) if not len(item): item = 'column%d'%i item = itemd.get(item, item) cnt = seen.get(item, 0) if cnt>0: names.append(item + '_%d'%cnt) else: names.append(item) seen[item] = cnt+1 else: if cbook.is_string_like(names): names = [n.strip() for n in names.split(',')] # get the converter functions by inspecting checkrows converters = get_converters(reader) if converters is None: raise ValueError('Could not find any valid data in CSV file') # reset the reader and start over fh.seek(0) reader = csv.reader(fh, delimiter=delimiter) process_skiprows(reader) if needheader: while 1: # skip past any comments and consume one line of column header row = next(reader) if len(row) and comments is not None and row[0].startswith(comments): continue break # iterate over the remaining rows and convert the data to date # objects, ints, or floats as approriate rows = [] rowmasks = [] for i, row in enumerate(reader): if not len(row): continue if comments is not None and row[0].startswith(comments): continue # Ensure that the row returned always has the same nr of elements row.extend([''] * (len(converters) - len(row))) rows.append([func(name, val) for func, name, val in zip(converters, names, row)]) rowmasks.append([ismissing(name, val) for name, val in zip(names, row)]) fh.close() if not len(rows): return None if use_mrecords and np.any(rowmasks): try: from numpy.ma import mrecords except ImportError: raise RuntimeError('numpy 1.05 or later is required for masked array support') else: r = mrecords.fromrecords(rows, names=names, mask=rowmasks) else: r = np.rec.fromrecords(rows, names=names) return r # a series of classes for describing the format intentions of various rec views class FormatObj: def tostr(self, x): return self.toval(x) def toval(self, x): return str(x) def fromstr(self, s): return s def __hash__(self): """ override the hash function of any of the formatters, so that we don't create duplicate excel format styles """ return hash(self.__class__) class FormatString(FormatObj): def tostr(self, x): val = repr(x) return val[1:-1] #class FormatString(FormatObj): # def tostr(self, x): # return '"%r"'%self.toval(x) class FormatFormatStr(FormatObj): def __init__(self, fmt): self.fmt = fmt def tostr(self, x): if x is None: return 'None' return self.fmt%self.toval(x) class FormatFloat(FormatFormatStr): def __init__(self, precision=4, scale=1.): FormatFormatStr.__init__(self, '%%1.%df'%precision) self.precision = precision self.scale = scale def __hash__(self): return hash((self.__class__, self.precision, self.scale)) def toval(self, x): if x is not None: x = x * self.scale return x def fromstr(self, s): return float(s)/self.scale class FormatInt(FormatObj): def tostr(self, x): return '%d'%int(x) def toval(self, x): return int(x) def fromstr(self, s): return int(s) class FormatBool(FormatObj): def toval(self, x): return str(x) def fromstr(self, s): return bool(s) class FormatPercent(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=100.) class FormatThousands(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-3) class FormatMillions(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-6) class FormatDate(FormatObj): def __init__(self, fmt): self.fmt = fmt def __hash__(self): return hash((self.__class__, self.fmt)) def toval(self, x): if x is None: return 'None' return x.strftime(self.fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x).date() class FormatDatetime(FormatDate): def __init__(self, fmt='%Y-%m-%d %H:%M:%S'): FormatDate.__init__(self, fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x) defaultformatd = { np.bool_ : FormatBool(), np.int16 : FormatInt(), np.int32 : FormatInt(), np.int64 : FormatInt(), np.float32 : FormatFloat(), np.float64 : FormatFloat(), np.object_ : FormatObj(), np.string_ : FormatString(), } def get_formatd(r, formatd=None): 'build a formatd guaranteed to have a key for every dtype name' if formatd is None: formatd = dict() for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = defaultformatd.get(dt.type, FormatObj()) formatd[name] = format return formatd def csvformat_factory(format): format = copy.deepcopy(format) if isinstance(format, FormatFloat): format.scale = 1. # override scaling for storage format.fmt = '%r' return format def rec2txt(r, header=None, padding=3, precision=3, fields=None): """ Returns a textual representation of a record array. *r*: numpy recarray *header*: list of column headers *padding*: space between each column *precision*: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to a list of integers to apply precision individually. Precision for non-floats is simply ignored. *fields* : if not None, a list of field names to print. fields can be a list of strings like ['field1', 'field2'] or a single comma separated string like 'field1,field2' Example:: precision=[0,2,3] Output:: ID Price Return ABC 12.54 0.234 XYZ 6.32 -0.076 """ if fields is not None: r = rec_keep_fields(r, fields) if cbook.is_numlike(precision): precision = [precision]*len(r.dtype) def get_type(item,atype=int): tdict = {None:int, int:float, float:str} try: atype(str(item)) except: return get_type(item,tdict[atype]) return atype def get_justify(colname, column, precision): ntype = type(column[0]) if ntype==np.str or ntype==np.str_ or ntype==np.string0 or ntype==np.string_: length = max(len(colname),column.itemsize) return 0, length+padding, "%s" # left justify if ntype==np.int or ntype==np.int16 or ntype==np.int32 or ntype==np.int64 or ntype==np.int8 or ntype==np.int_: length = max(len(colname),np.max(list(map(len, list(map(str,column)))))) return 1, length+padding, "%d" # right justify # JDH: my powerbook does not have np.float96 using np 1.3.0 """ In [2]: np.__version__ Out[2]: '1.3.0.dev5948' In [3]: !uname -a Darwin Macintosh-5.local 9.4.0 Darwin Kernel Version 9.4.0: Mon Jun 9 19:30:53 PDT 2008; root:xnu-1228.5.20~1/RELEASE_I386 i386 i386 In [4]: np.float96 --------------------------------------------------------------------------- AttributeError Traceback (most recent call la """ if ntype==np.float or ntype==np.float32 or ntype==np.float64 or (hasattr(np, 'float96') and (ntype==np.float96)) or ntype==np.float_: fmt = "%." + str(precision) + "f" length = max(len(colname),np.max(list(map(len, list(map(lambda x:fmt%x,column)))))) return 1, length+padding, fmt # right justify return 0, max(len(colname),np.max(list(map(len, list(map(str,column))))))+padding, "%s" if header is None: header = r.dtype.names justify_pad_prec = [get_justify(header[i],r.__getitem__(colname),precision[i]) for i, colname in enumerate(r.dtype.names)] justify_pad_prec_spacer = [] for i in range(len(justify_pad_prec)): just,pad,prec = justify_pad_prec[i] if i == 0: justify_pad_prec_spacer.append((just,pad,prec,0)) else: pjust,ppad,pprec = justify_pad_prec[i-1] if pjust == 0 and just == 1: justify_pad_prec_spacer.append((just,pad-padding,prec,0)) elif pjust == 1 and just == 0: justify_pad_prec_spacer.append((just,pad,prec,padding)) else: justify_pad_prec_spacer.append((just,pad,prec,0)) def format(item, just_pad_prec_spacer): just, pad, prec, spacer = just_pad_prec_spacer if just == 0: return spacer*' ' + str(item).ljust(pad) else: if get_type(item) == float: item = (prec%float(item)) elif get_type(item) == int: item = (prec%int(item)) return item.rjust(pad) textl = [] textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(header)])) for i, row in enumerate(r): textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(row)])) if i==0: textl[0] = textl[0].rstrip() text = os.linesep.join(textl) return text def rec2csv(r, fname, delimiter=',', formatd=None, missing='', missingd=None, withheader=True): """ Save the data from numpy recarray *r* into a comma-/space-/tab-delimited file. The record array dtype names will be used for column headers. *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' *withheader*: if withheader is False, do not write the attribute names in the first row for formatd type FormatFloat, we override the precision to store full precision floats in the CSV file .. seealso:: :func:`csv2rec` For information about *missing* and *missingd*, which can be used to fill in masked values into your CSV file. """ delimiter = str(delimiter) if missingd is None: missingd = dict() def with_mask(func): def newfunc(val, mask, mval): if mask: return mval else: return func(val) return newfunc if r.ndim != 1: raise ValueError('rec2csv only operates on 1 dimensional recarrays') formatd = get_formatd(r, formatd) funcs = [] for i, name in enumerate(r.dtype.names): funcs.append(with_mask(csvformat_factory(formatd[name]).tostr)) fh, opened = cbook.to_filehandle(fname, 'wb', return_opened=True) writer = csv.writer(fh, delimiter=delimiter) header = r.dtype.names if withheader: writer.writerow(header) # Our list of specials for missing values mvals = [] for name in header: mvals.append(missingd.get(name, missing)) ismasked = False if len(r): row = r[0] ismasked = hasattr(row, '_fieldmask') for row in r: if ismasked: row, rowmask = row.item(), row._fieldmask.item() else: rowmask = [False] * len(row) writer.writerow([func(val, mask, mval) for func, val, mask, mval in zip(funcs, row, rowmask, mvals)]) if opened: fh.close() def griddata(x, y, z, xi, yi, interp='nn'): """Interpolates from a nonuniformly spaced grid to some other grid. Fits a surface of the form z = f(`x`, `y`) to the data in the (usually) nonuniformly spaced vectors (`x`, `y`, `z`), then interpolates this surface at the points specified by (`xi`, `yi`) to produce `zi`. Parameters ---------- x, y, z : 1d array_like Coordinates of grid points to interpolate from. xi, yi : 1d or 2d array_like Coordinates of grid points to interpolate to. interp : string key from {'nn', 'linear'} Interpolation algorithm, either 'nn' for natural neighbor, or 'linear' for linear interpolation. Returns ------- 2d float array Array of values interpolated at (`xi`, `yi`) points. Array will be masked is any of (`xi`, `yi`) are outside the convex hull of (`x`, `y`). Notes ----- If `interp` is 'nn' (the default), uses natural neighbor interpolation based on Delaunay triangulation. This option is only available if the mpl_toolkits.natgrid module is installed. This can be downloaded from https://github.com/matplotlib/natgrid. The (`xi`, `yi`) grid must be regular and monotonically increasing in this case. If `interp` is 'linear', linear interpolation is used via matplotlib.tri.LinearTriInterpolator. Instead of using `griddata`, more flexible functionality and other interpolation options are available using a matplotlib.tri.Triangulation and a matplotlib.tri.TriInterpolator. """ # Check input arguments. x = np.asanyarray(x, dtype=np.float64) y = np.asanyarray(y, dtype=np.float64) z = np.asanyarray(z, dtype=np.float64) if x.shape != y.shape or x.shape != z.shape or x.ndim != 1: raise ValueError("x, y and z must be equal-length 1-D arrays") xi = np.asanyarray(xi, dtype=np.float64) yi = np.asanyarray(yi, dtype=np.float64) if xi.ndim != yi.ndim: raise ValueError("xi and yi must be arrays with the same number of " "dimensions (1 or 2)") if xi.ndim == 2 and xi.shape != yi.shape: raise ValueError("if xi and yi are 2D arrays, they must have the same " "shape") if xi.ndim == 1: xi, yi = np.meshgrid(xi, yi) if interp == 'nn': use_nn_interpolation = True elif interp == 'linear': use_nn_interpolation = False else: raise ValueError("interp keyword must be one of 'linear' (for linear " "interpolation) or 'nn' (for natural neighbor " "interpolation). Default is 'nn'.") # Remove masked points. mask = np.ma.getmask(z) if not (mask is np.ma.nomask): x = x.compress(~mask) y = y.compress(~mask) z = z.compressed() if use_nn_interpolation: try: from mpl_toolkits.natgrid import _natgrid except ImportError: raise RuntimeError("To use interp='nn' (Natural Neighbor " "interpolation) in griddata, natgrid must be installed. " "Either install it from http://sourceforge.net/projects/" "matplotlib/files/matplotlib-toolkits, or use interp='linear' " "instead.") if xi.ndim == 2: # natgrid expects 1D xi and yi arrays. xi = xi[0, :] yi = yi[:, 0] # Override default natgrid internal parameters. _natgrid.seti(b'ext', 0) _natgrid.setr(b'nul', np.nan) if np.min(np.diff(xi)) < 0 or np.min(np.diff(yi)) < 0: raise ValueError("Output grid defined by xi,yi must be monotone " "increasing") # Allocate array for output (buffer will be overwritten by natgridd) zi = np.empty((yi.shape[0], xi.shape[0]), np.float64) # Natgrid requires each array to be contiguous rather than e.g. a view # that is a non-contiguous slice of another array. Use numpy.require # to deal with this, which will copy if necessary. x = np.require(x, requirements=['C']) y = np.require(y, requirements=['C']) z = np.require(z, requirements=['C']) xi = np.require(xi, requirements=['C']) yi = np.require(yi, requirements=['C']) _natgrid.natgridd(x, y, z, xi, yi, zi) # Mask points on grid outside convex hull of input data. if np.any(np.isnan(zi)): zi = np.ma.masked_where(np.isnan(zi), zi) return zi else: # Linear interpolation performed using a matplotlib.tri.Triangulation # and a matplotlib.tri.LinearTriInterpolator. from .tri import Triangulation, LinearTriInterpolator triang = Triangulation(x, y) interpolator = LinearTriInterpolator(triang, z) return interpolator(xi, yi) ################################################## # Linear interpolation algorithms ################################################## def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function provides simple (but somewhat less so than :func:`cbook.simple_linear_interpolation`) linear interpolation. :func:`simple_linear_interpolation` will give a list of point between a start and an end, while this does true linear interpolation at an arbitrary set of points. This is very inefficient linear interpolation meant to be used only for a small number of points in relatively non-intensive use cases. For real linear interpolation, use scipy. """ if cbook.is_scalar(xi): xi = [xi] x = np.asarray(x) y = np.asarray(y) xi = np.asarray(xi) s = list(y.shape) s[0] = len(xi) yi = np.tile( np.nan, s ) for ii,xx in enumerate(xi): bb = x == xx if np.any(bb): jj, = np.nonzero(bb) yi[ii] = y[jj[0]] elif xx<x[0]: if extrap: yi[ii] = y[0] elif xx>x[-1]: if extrap: yi[ii] = y[-1] else: jj, = np.nonzero(x<xx) jj = max(jj) yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj]) return yi def slopes(x,y): """ :func:`slopes` calculates the slope *y*'(*x*) The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between *x*- and *y*-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases. Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ Given data vectors *x* and *y*, the slope vector *yp* and a new abscissa vector *xi*, the function :func:`stineman_interp` uses Stineman interpolation to calculate a vector *yi* corresponding to *xi*. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were: not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For *yp* = *None*, the routine automatically determines the slopes using the :func:`slopes` routine. *x* is assumed to be sorted in increasing order. For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine tries an extrapolation. The relevance of the data obtained from this, of course, is questionable... Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi class GaussianKDE(object): """ Representation of a kernel-density estimate using Gaussian kernels. Call signature:: kde = GaussianKDE(dataset, bw_method='silverman') Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `GaussianKDE` instance as only parameter and return a scalar. If None (default), 'scott' is used. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. dim : int Number of dimensions. num_dp : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) """ # This implementation with minor modification was too good to pass up. # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py def __init__(self, dataset, bw_method=None): self.dataset = np.atleast_2d(dataset) if not np.array(self.dataset).size > 1: raise ValueError("`dataset` input should have multiple elements.") self.dim, self.num_dp = np.array(self.dataset).shape if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif (np.isscalar(bw_method) and not isinstance(bw_method, six.string_types)): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) # Computes the covariance matrix for each Gaussian kernel using # covariance_factor(). self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self.data_covariance = np.atleast_2d( np.cov( self.dataset, rowvar=1, bias=False)) self.data_inv_cov = np.linalg.inv(self.data_covariance) self.covariance = self.data_covariance * self.factor ** 2 self.inv_cov = self.data_inv_cov / self.factor ** 2 self.norm_factor = np.sqrt( np.linalg.det( 2 * np.pi * self.covariance)) * self.num_dp def scotts_factor(self): return np.power(self.num_dp, -1. / (self.dim + 4)) def silverman_factor(self): return np.power( self.num_dp * (self.dim + 2.0) / 4.0, -1. / (self.dim + 4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = np.atleast_2d(points) dim, num_m = np.array(points).shape if dim != self.dim: msg = "points have dimension %s, dataset has dimension %s" % ( dim, self.dim) raise ValueError(msg) result = np.zeros((num_m,), dtype=np.float) if num_m >= self.num_dp: # there are more points than data, so loop over data for i in range(self.num_dp): diff = self.dataset[:, i, np.newaxis] - points tdiff = np.dot(self.inv_cov, diff) energy = np.sum(diff * tdiff, axis=0) / 2.0 result = result + np.exp(-energy) else: # loop over points for i in range(num_m): diff = self.dataset - points[:, i, np.newaxis] tdiff = np.dot(self.inv_cov, diff) energy = np.sum(diff * tdiff, axis=0) / 2.0 result[i] = np.sum(np.exp(-energy), axis=0) result = result / self.norm_factor return result __call__ = evaluate ################################################## # Code related to things in and around polygons ################################################## def inside_poly(points, verts): """ *points* is a sequence of *x*, *y* points. *verts* is a sequence of *x*, *y* vertices of a polygon. Return value is a sequence of indices into points for the points that are inside the polygon. """ # Make a closed polygon path poly = Path( verts ) # Check to see which points are contained withing the Path return [ idx for idx, p in enumerate(points) if poly.contains_point(p) ] def poly_below(xmin, xs, ys): """ Given a sequence of *xs* and *ys*, return the vertices of a polygon that has a horizontal base at *xmin* and an upper bound at the *ys*. *xmin* is a scalar. Intended for use with :meth:`matplotlib.axes.Axes.fill`, e.g.,:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ if ma.isMaskedArray(xs) or ma.isMaskedArray(ys): numpy = ma else: numpy = np xs = numpy.asarray(xs) ys = numpy.asarray(ys) Nx = len(xs) Ny = len(ys) assert(Nx==Ny) x = xmin*numpy.ones(2*Nx) y = numpy.ones(2*Nx) x[:Nx] = xs y[:Nx] = ys y[Nx:] = ys[::-1] return x, y def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): numpy = ma else: numpy = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*numpy.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*numpy.ones(Nx) x = numpy.concatenate( (x, x[::-1]) ) y = numpy.concatenate( (yupper, ylower[::-1]) ) return x,y def is_closed_polygon(X): """ Tests whether first and last object in a sequence are the same. These are presumably coordinates on a polygonal curve, in which case this function tests if that curve is closed. """ return np.all(X[0] == X[-1]) def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions TODO: this is a pure python implementation which probably has a much faster numpy impl """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries def cross_from_below(x, threshold): """ return the indices into *x* where *x* crosses some threshold from below, e.g., the i's where:: x[i-1]<threshold and x[i]>=threshold Example code:: import matplotlib.pyplot as plt t = np.arange(0.0, 2.0, 0.1) s = np.sin(2*np.pi*t) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(t, s, '-o') ax.axhline(0.5) ax.axhline(-0.5) ind = cross_from_below(s, 0.5) ax.vlines(t[ind], -1, 1) ind = cross_from_above(s, -0.5) ax.vlines(t[ind], -1, 1) plt.show() .. seealso:: :func:`cross_from_above` and :func:`contiguous_regions` """ x = np.asarray(x) threshold = threshold ind = np.nonzero( (x[:-1]<threshold) & (x[1:]>=threshold))[0] if len(ind): return ind+1 else: return ind def cross_from_above(x, threshold): """ return the indices into *x* where *x* crosses some threshold from below, e.g., the i's where:: x[i-1]>threshold and x[i]<=threshold .. seealso:: :func:`cross_from_below` and :func:`contiguous_regions` """ x = np.asarray(x) ind = np.nonzero( (x[:-1]>=threshold) & (x[1:]<threshold))[0] if len(ind): return ind+1 else: return ind ################################################## # Vector and path length geometry calculations ################################################## def vector_lengths( X, P=2., axis=None ): """ Finds the length of a set of vectors in *n* dimensions. This is like the :func:`numpy.norm` function for vectors, but has the ability to work over a particular axis of the supplied array or matrix. Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the elements of *X* along the given axis. If *axis* is *None*, compute over all elements of *X*. """ X = np.asarray(X) return (np.sum(X**(P),axis=axis))**(1./P) def distances_along_curve( X ): """ Computes the distance between a set of successive points in *N* dimensions. Where *X* is an *M* x *N* array or matrix. The distances between successive rows is computed. Distance is the standard Euclidean distance. """ X = np.diff( X, axis=0 ) return vector_lengths(X,axis=1) def path_length(X): """ Computes the distance travelled along a polygonal curve in *N* dimensions. Where *X* is an *M* x *N* array or matrix. Returns an array of length *M* consisting of the distance along the curve at each point (i.e., the rows of *X*). """ X = distances_along_curve(X) return np.concatenate( (np.zeros(1), np.cumsum(X)) ) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ Converts a quadratic Bezier curve to a cubic approximation. The inputs are the *x* and *y* coordinates of the three control points of a quadratic curve, and the output is a tuple of *x* and *y* coordinates of the four control points of the cubic curve. """ # c0x, c0y = q0x, q0y c1x, c1y = q0x + 2./3. * (q1x - q0x), q0y + 2./3. * (q1y - q0y) c2x, c2y = c1x + 1./3. * (q2x - q0x), c1y + 1./3. * (q2y - q0y) # c3x, c3y = q2x, q2y return q0x, q0y, c1x, c1y, c2x, c2y, q2x, q2y def offset_line(y, yerr): """ Offsets an array *y* by +/- an error and returns a tuple (y - err, y + err). The error term can be: * A scalar. In this case, the returned tuple is obvious. * A vector of the same length as *y*. The quantities y +/- err are computed component-wise. * A tuple of length 2. In this case, yerr[0] is the error below *y* and yerr[1] is error above *y*. For example:: from pylab import * x = linspace(0, 2*pi, num=100, endpoint=True) y = sin(x) y_minus, y_plus = mlab.offset_line(y, 0.1) plot(x, y) fill_between(x, ym, y2=yp) show() """ if cbook.is_numlike(yerr) or (cbook.iterable(yerr) and len(yerr) == len(y)): ymin = y - yerr ymax = y + yerr elif len(yerr) == 2: ymin, ymax = y - yerr[0], y + yerr[1] else: raise ValueError("yerr must be scalar, 1xN or 2xN") return ymin, ymax
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/matplotlib/mlab.py
Python
gpl-2.0
128,046
[ "Gaussian" ]
de289236a11c26ba41b95347b0a8ef99778ff6e9cf8e9811af0c9b5173152091
# Copyright 2008-2015 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from robot.utils import setter from .configurer import SuiteConfigurer from .filter import Filter, EmptySuiteRemover from .itemlist import ItemList from .keyword import Keyword, Keywords from .metadata import Metadata from .modelobject import ModelObject from .tagsetter import TagSetter from .testcase import TestCase, TestCases class TestSuite(ModelObject): """Base model for single suite. Extended by :class:`robot.running.model.TestSuite` and :class:`robot.result.model.TestSuite`. """ __slots__ = ['parent', 'source', '_name', 'doc', '_my_visitors'] test_class = TestCase #: Internal usage only. keyword_class = Keyword #: Internal usage only. def __init__(self, name='', doc='', metadata=None, source=None): self.parent = None #: Parent suite. ``None`` with the root suite. self._name = name self.doc = doc #: Test suite documentation. self.metadata = metadata self.source = source #: Path to the source file or directory. self.suites = None self.tests = None self.keywords = None self._my_visitors = [] @property def _visitors(self): parent_visitors = self.parent._visitors if self.parent else [] return self._my_visitors + parent_visitors @property def name(self): """Test suite name. If not set, constructed from child suite names.""" return self._name or ' & '.join(s.name for s in self.suites) @name.setter def name(self, name): self._name = name @property def longname(self): """Suite name prefixed with the long name of the parent suite.""" if not self.parent: return self.name return '%s.%s' % (self.parent.longname, self.name) @setter def metadata(self, metadata): """Free test suite metadata as a dictionary.""" return Metadata(metadata) @setter def suites(self, suites): """Child suites as a :class:`~.TestSuites` object.""" return TestSuites(self.__class__, self, suites) @setter def tests(self, tests): """Tests as a :class:`~.TestCases` object.""" return TestCases(self.test_class, self, tests) @setter def keywords(self, keywords): """Suite setup and teardown as a :class:`~.Keywords` object.""" return Keywords(self.keyword_class, self, keywords) @property def id(self): """An automatically generated unique id. The root suite has id ``s1``, its child suites have ids ``s1-s1``, ``s1-s2``, ..., their child suites get ids ``s1-s1-s1``, ``s1-s1-s2``, ..., ``s1-s2-s1``, ..., and so on. The first test in a suite has an id like ``s1-t1``, the second has an id ``s1-t2``, and so on. Similarly keywords in suites (setup/teardown) and in tests get ids like ``s1-k1``, ``s1-t1-k1``, and ``s1-s4-t2-k5``. """ if not self.parent: return 's1' return '%s-s%d' % (self.parent.id, self.parent.suites.index(self)+1) @property def test_count(self): """Number of the tests in this suite, recursively.""" return len(self.tests) + sum(suite.test_count for suite in self.suites) def set_tags(self, add=None, remove=None, persist=False): """Add and/or remove specified tags to the tests in this suite. :param add: Tags to add as a list or, if adding only one, as a single string. :param remove: Tags to remove as a list or as a single string. Can be given as patterns where ``*`` and ``?`` work as wildcards. :param persist: Add/remove specified tags also to new tests added to this suite in the future. """ setter = TagSetter(add, remove) self.visit(setter) if persist: self._my_visitors.append(setter) def filter(self, included_suites=None, included_tests=None, included_tags=None, excluded_tags=None): """Select test cases and remove others from this suite. Parameters have the same semantics as ``--suite``, ``--test``, ``--include``, and ``--exclude`` command line options. All of them can be given as a list of strings, or when selecting only one, as a single string. Child suites that contain no tests after filtering are automatically removed. Example:: suite.filter(included_tests=['Test 1', '* Example'], included_tags='priority-1') """ self.visit(Filter(included_suites, included_tests, included_tags, excluded_tags)) def configure(self, **options): """A shortcut to configure a suite using one method call. :param options: Passed to :class:`~robot.model.configurer.SuiteConfigurer` that will then set suite attributes, call :meth:`filter`, etc. as needed. """ self.visit(SuiteConfigurer(**options)) def remove_empty_suites(self): """Removes all child suites not containing any tests, recursively.""" self.visit(EmptySuiteRemover()) def visit(self, visitor): """:mod:`Visitor interface <robot.model.visitor>` entry-point.""" visitor.visit_suite(self) class TestSuites(ItemList): __slots__ = [] def __init__(self, suite_class=TestSuite, parent=None, suites=None): ItemList.__init__(self, suite_class, {'parent': parent}, suites)
snyderr/robotframework
src/robot/model/testsuite.py
Python
apache-2.0
6,114
[ "VisIt" ]
06cb69c2ca4b6fb5a1caa2ee90babb7b4d2f38e9408b88ad025041d5ce4ea9ab
from .. import nengo as nengo from ..nengo.connection import gen_transform ## This example demonstrates how to create a neuronal ensemble that will combine two 1-D ## inputs into one 2-D representation. ## ## Network diagram: ## ## [Input A] ---> (A) --. ## v ## (C) ## ^ ## [Input B] ---> (B) --' ## ## ## Network behaviour: ## A = Input_A ## B = Input_B ## C = [A,B] ## # Create the nengo model model = nengo.Model('Combining') # Create the model inputs model.make_node('Input A', [0]) # Create a controllable input function # with a starting value of 0 model.make_node('Input B', [0]) # Create another controllable input # function with a starting value of 0 # Create the neuronal ensembles model.make_ensemble('A', 100, 1) # Make a population with 100 neurons, 1 dimension model.make_ensemble('B', 100, 1) # Make a population with 100 neurons, 1 dimension model.make_ensemble('C', 100, 2, # Make a population with 100 neurons, 2 dimensions, radius = 1.5) # and set a larger radius (so [1,1] input still # fits within the circle of that radius) # Create the connections within the model model.connect('Input A', 'A') # Connect the inputs to the appropriate neuron model.connect('Input B', 'B') # populations (default connection is identity) model.connect('A', 'C', gen_transform(index_post = 0)) # Connect with A to the first dimension of C model.connect('B', 'C', gen_transform(index_post = 1)) # Connect with B to the second dimension of C # Build the model model.build() # Run the model model.run(1) # Run the model for 1 second
jaberg/nengo
examples/combining.py
Python
mit
1,970
[ "NEURON" ]
33aa9fd75f1d286fb0fd796158d912ab03b6eb1cef6d88fcb9bc19c9ce820214
from multiasecalc.lammps import unitconversion from ase.optimize.optimize import Dynamics from ase.io.trajectory import PickleTrajectory from ase.md.logger import MDLogger from ase import units from random import random import numpy as np class LAMMPSOptimizer(Dynamics): """ Geometry optimizer for LAMMPS. works only with LAMMPS calculators """ def __init__(self, atoms, restart=None, logfile=None, trajectory=None, algorithm='cg', relax_cell=False): Dynamics.__init__(self, atoms, logfile, trajectory) self.algorithm = algorithm self.relax_cell = relax_cell def run(self, fmax=0.001, steps=1e8): self.atoms.calc.minimize(self.atoms, ftol=fmax, maxeval=steps, min_style=self.algorithm, relax_cell=self.relax_cell) class LAMMPSMolecularDynamics(Dynamics): """ Base class for molecular dynamics with LAMMPS. Requires a LAMMPS calculator. """ def __init__(self, atoms, timestep, integrator='verlet', trajectory=None, traj_interval=1000, logfile=None, loginterval=100): Dynamics.__init__(self, atoms, None, None) self.dt = timestep if integrator == 'verlet': self.run_style = 'verlet' else: raise RuntimeError('Unknown integrator: %s' % thermostat) if trajectory: if isinstance(trajectory, str): trajectory = PickleTrajectory(trajectory, 'w', atoms) self.attach(trajectory, interval=traj_interval) if logfile: self.attach(MDLogger(dyn=self, atoms=atoms, logfile=logfile), interval=loginterval) self.fix = None self.cell_relaxed = False def run(self, steps=50, constraints=[]): self.nsteps = 0 fix = 'all '+self.fix calc = self.atoms.calc it = self.run_iterator(steps) calc.molecular_dynamics(self.atoms, self.dt, fix, it, self.cell_relaxed, steps, constraints) def run_iterator(self, steps): cur_step = 0 for target_step in range(steps+1): for function, interval, args, kwargs in self.observers: if target_step % interval == 0: if target_step > cur_step: yield target_step - cur_step cur_step = target_step function(*args, **kwargs) if cur_step < steps: yield steps - cur_step def get_time(self): return self.nsteps * self.dt class LAMMPS_NVE(LAMMPSMolecularDynamics): """ Microcanonical ensemble """ def __init__(self, atoms, timestep, **kwargs): LAMMPSMolecularDynamics.__init__(self, atoms, timestep, **kwargs) self.fix = 'nve' class LAMMPS_NVT(LAMMPSMolecularDynamics): """ Constant temperature calculations with Nose-Hoover or Berendsen """ def __init__(self, atoms, timestep, temperature, t_damp=100*units.fs, thermostat='Nose-Hoover', ramp_to_temp=None, **kwargs): LAMMPSMolecularDynamics.__init__(self, atoms, timestep, **kwargs) if thermostat == 'Nose-Hoover': cmd = 'nvt temp' elif thermostat == 'Berendsen': cmd = 'temp/berendsen' else: raise RuntimeError('Unknown thermostat: %s' % thermostat) t_damp = atoms.calc.from_ase_units(t_damp, 'time') if not ramp_to_temp: ramp_to_temp = temperature self.fix = '%s %f %f %f' %(cmd, temperature, ramp_to_temp, t_damp) class LAMMPS_NPT(LAMMPSMolecularDynamics): """ Constant temperature and pressure calculations with Nose-Hoover """ def __init__(self, atoms, timestep, temperature, externalstress, isotropic=True, t_damp=100*units.fs, p_damp=1000*units.fs, ramp_to_temp=None, **kwargs): LAMMPSMolecularDynamics.__init__(self, atoms, timestep, **kwargs) pressure = atoms.calc.from_ase_units(externalstress, 'pressure') t_damp = atoms.calc.from_ase_units(t_damp, 'time') p_damp = atoms.calc.from_ase_units(p_damp, 'time') if not ramp_to_temp: ramp_to_temp = temperature if hasattr(pressure, 'shape'): px, pxy, pxz = pressure[0,:] py, pyz = pressure[1,1:] pz = pressure[2,2] p_diags = [px, py, pz] args = ' '.join(['%s %f %f %f' % ('xyz'[i], p_diags[i], p_diags[i], p_damp) for i in range(3) if atoms.pbc[i]]) if atoms.pbc[0] and atoms.pbc[1]: args += ' xy %f %f %f' % (pxy, pxy, p_damp) if atoms.pbc[1] and atoms.pbc[2]: args += ' yz %f %f %f' % (pyz, pyz, p_damp) if atoms.pbc[1] and atoms.pbc[2]: args += ' xz %f %f %f' % (pxz, pxz, p_damp) else: pvalues = '%f %f %f' % (pressure, pressure, p_damp) if atoms.pbc.all(): if isotropic: coupling = 'iso' elif (np.dot(atoms.cell, atoms.cell) == atoms.cell**2).all(): # orthogonal cell coupling = 'aniso' else: coupling = 'tri' args = '%s %s' % (coupling, pvalues) else: args = ' '.join(['%s %s' % ('xyz'[i], pvalues) for i in range(3) if atoms.pbc[i]]) self.fix = 'npt temp %f %f %f %s' %(temperature, ramp_to_temp, t_damp, args) self.cell_relaxed = True class SimpleConstraint: def __init__(self, indices): self.indices = indices def get_commands(self, atoms): fix = self.get_fix(atoms) id = '%s%s' % (self.__class__.__name__, abs(hash(tuple(self.indices)))) groupname = 'group%s' % id fixname = 'fix%s' % id cmds = [] indices_str = ' '.join([str(i+1) for i in self.indices]) cmds.append('group %s id %s' % (groupname, indices_str)) cmds.append('fix %s %s %s' % (fixname, groupname, fix)) return cmds def get_fix(self, atoms): raise NotImplementedError() class Spring(SimpleConstraint): def __init__(self, indices, point, spring_constant, R0=0.0): SimpleConstraint.__init__(self, indices) self.point = point self.K = spring_constant self.R0 = R0 def get_fix(self, atoms): K = atoms.calc.from_ase_units(self.K, 'force') x, y, z = atoms.calc.prism.vector_to_lammps(self.point) return 'spring tether %f %f %f %f %f' % (K, x, y, z, self.R0) class AddForce(SimpleConstraint): def __init__(self, indices, total_force): SimpleConstraint.__init__(self, indices) self.total_force = total_force def get_fix(self, atoms): force = self.total_force / len(self.indices) force = atoms.calc.prism.vector_to_lammps(force) fx, fy, fz = atoms.calc.from_ase_units(force, 'force') return 'addforce %f %f %f' % (fx, fy, fz) class LJWall: def __init__(self, face, epsilon, sigma, wall_offset=None, final_wall_offset=None, mixing='arithmetic'): self.face = face self.epsilon = epsilon self.sigma = sigma self.offset = wall_offset self.final_offset = final_wall_offset self.mixing = mixing self.commands = [] self.ngroups = 0 self.nfixes = 0 self.id = '%s%s' % (self.__class__.__name__, abs(hash(epsilon + sigma) + hash(face))) #if 'hi' in face: # self.offset = -abs(self.offset) def get_commands(self, atoms): ffdata = atoms.calc.ff_data if self.final_offset != None: rampname = 'ramp%s' % self.id self.commands.append('variable %s equal ramp(%f,%f)' % (rampname, self.offset, self.final_offset)) coord = 'v_%s' % rampname elif self.offset != None: coord = '%f' % self.offset else: coord = 'EDGE' for tp in atoms.calc.data.atom_typeorder: actual_type = ffdata.get_actual_type('atom', tp) eps, sig = ffdata.get_params('atom', actual_type)['Pair Coeffs'] mixeps = np.sqrt(self.epsilon*eps) if self.mixing == 'arithmetic': mixsig = (self.sigma+sig)/2 elif self.mixing == 'geometric': mixsig = np.sqrt(self.sigma*sig) else: raise RuntimeError('Invalid mixing type: %s' % self.mixing) typeid = atoms.calc.data.atom_typeorder.index(tp) + 1 groupname = self.create_group_by_type(typeid) cutoff = 10.0 fixstr = 'wall/lj126 %s %s %f %f %f units box pbc yes' % (self.face, coord, mixeps, mixsig, cutoff) self.create_fix(groupname, fixstr) return self.commands def create_group_by_type(self, typeid): groupname = 'group%s%s' % (self.id, typeid) self.commands.append('group %s type %i' % (groupname, typeid)) self.ngroups += 1 return groupname def create_fix(self, groupname, fixstr): fixname = 'fix%s%i' % (self.id, self.nfixes) self.commands.append('fix %s %s %s' % (fixname, groupname, fixstr)) self.nfixes += 1 return fixname
csmm/multiase
multiasecalc/lammps/dynamics.py
Python
gpl-2.0
7,937
[ "ASE", "LAMMPS" ]
85f65c9b7d7d6acfac34a9174000b319bc7ac363020801bb3b93f93d6c460361
''' Created on Aug 5, 2014 @author: gearsad ''' # To allow the project to be run from outside Eclipse PyDev import sys sys.path.append('../') import vtk from math import cos, sin from scene import Terrain from scene import Bot from scene import Axes from scene import LIDAR from scene import InteractorMapUser from scene import Interactor1stPersonUser from scene import Interactor3rdPerson from scene import Interactor1stPersonVuzix def __3DRenderingLoop(obj, event): ''' Main loop for rendering at a constant ~30Hz ''' iren = obj iren.GetRenderWindow().Render() if __name__ == '__main__': renderWindow = vtk.vtkRenderWindow() # A renderer and render window renderers = [] renderers.append(vtk.vtkRenderer()) renderers.append(vtk.vtkRenderer()) renderWindow = vtk.vtkRenderWindow() for renderer in renderers: renderWindow.AddRenderer(renderer) renderers[0].SetViewport(0, 0, 0.5, 1) renderers[1].SetViewport(0.5, 0, 1, 1) # Let's put in the other screen renderWindow.SetSize(1600, 1024) # renderWindow.SetPosition(1600,0) # An interactor renderWindowInteractor = vtk.vtkRenderWindowInteractor() renderWindowInteractor.SetRenderWindow(renderWindow) # Create our new scene objects... terrain = Terrain.Terrain(renderers, 100) # Initialize a set of test bots numBots = 8 bots = [] for i in xrange(0, numBots): bot = Bot.Bot(renderers) # Put the bot in a cool location location = [10 * cos(i / float(numBots) * 6.242), 0, 10 * sin(i / float(numBots) * 6.242)] bot.SetPositionVec3(location) # Make them all look outward yRot = 90.0 - i / float(numBots) * 360.0 bot.SetOrientationVec3([0, yRot, 0]) bots.append(bot) # axes = Axes.Axes(renderer) # Render an image (lights and cameras are created automatically) renderWindow.Render() #FORCE the cameras to a shared, reasonable position for renderer in renderers: camera = renderer.GetActiveCamera() camera.SetPosition([20, 20, 20]) camera.SetFocalPoint([0, 0, 0]) # Sign up to receive TimerEvent for the timed rendering loop renderObserverId = renderWindowInteractor.AddObserver('TimerEvent', __3DRenderingLoop) __3DViewLoopTimerId = renderWindowInteractor.CreateRepeatingTimer(30); # Set up the custom style for your camera interactor # Uncomment one of the following below to select it #interactorStyle = InteractorMapUser.InteractorMapUser(renderer, renderWindowInteractor) #interactorStyle = Interactor1stPersonUser.Interactor1stPersonUser(renderer, renderWindowInteractor) #interactorStyle = Interactor3rdPerson.Interactor3rdPerson(renderer, renderWindowInteractor, bots[1], [0, 7, -10]) interactorStyle = Interactor1stPersonVuzix.Interactor1stPersonVuzix(renderers, renderWindowInteractor) # Now set it as the interactor style for the interactor renderWindowInteractor.SetInteractorStyle(interactorStyle) interactorStyle.EnabledOn() # Begin mouse interaction renderWindowInteractor.Start() renderWindowInteractor.Initialize() # Once done, remove the timer to clean up just to be neat renderWindowInteractor.DestroyTimer(__3DViewLoopTimerId) renderWindowInteractor.RemoveObserver(renderObserverId) pass
GearsAD/semisorted_arnerve
sandbox/bot_vis_platform_oculus/bot_vis_platform/bot_vis_main.py
Python
mit
3,432
[ "VTK" ]
b4ef0995167be55e8f5f3a8b3f69a2dfec29518870024fc8722a879cc8833973
"""siegert.py: Function calculating the firing rates of leaky integrate-and-fire neurons given their parameter and mean and variance of the input. Rates rates for delta shaped PSCs after Brunel & Hakim 1999. Rate of neuron with synaptic filtering with time constant tau_s after Fourcoud & Brunel 2002. Authors: Moritz Helias, Jannis Schuecker, Hannah Bos """ from scipy.integrate import quad from scipy.special import erf from scipy.special import zetac import numpy as np import math """ Variables used in this module: tau_m: membrane time constant tau_r: refractory time constant V_th: threshold V_r: reset potential mu: mean input sigma: std of equivalent GWN input """ def nu_0(tau_m, tau_r, V_th, V_r, mu, sigma): """ Calculates stationary firing rates for delta shaped PSCs.""" if mu <= V_th + (0.95 * abs(V_th) - abs(V_th)): return siegert1(tau_m, tau_r, V_th, V_r, mu, sigma) else: return siegert2(tau_m, tau_r, V_th, V_r, mu, sigma) def nu0_fb(tau_m, tau_s, tau_r, V_th, V_r, mu, sigma): alpha = np.sqrt(2)*abs(zetac(0.5)+1) # effective threshold V_th1 = V_th + sigma*alpha/2.*np.sqrt(tau_s/tau_m) # effective reset V_r1 = V_r + sigma*alpha/2.*np.sqrt(tau_s/tau_m) # use standard Siegert with modified threshold and reset return nu_0(tau_m, tau_r, V_th1, V_r1, mu, sigma) # stationary firing rate of neuron with synaptic low-pass filter # of time constant tau_s driven by Gaussian noise with mean mu and # standard deviation sigma, from Fourcaud & Brunel 2002 def nu0_fb433(tau_m, tau_s, tau_r, V_th, V_r, mu, sigma, switch_fb=-7.): """Calculates stationary firing rates for exponential PSCs using expression with taylor expansion in k = sqrt(tau_s/tau_m) (Eq. 433 in Fourcoud & Brunel 2002) """ alpha = np.sqrt(2.) * abs(zetac(0.5) + 1) x_th = np.sqrt(2.) * (V_th - mu) / sigma x_r = np.sqrt(2.) * (V_r - mu) / sigma if x_r < switch_fb: return nu0_fb(tau_m, tau_s, tau_r, V_th, V_r, mu, sigma) # preventing overflow in np.exponent in Phi(s) if x_th > 20.0 / np.sqrt(2.): result = nu_0(tau_m, tau_r, V_th, V_r, mu, sigma) else: r = nu_0(tau_m, tau_r, V_th, V_r, mu, sigma) dPhi = Phi(x_th) - Phi(x_r) result = r - np.sqrt(tau_s / tau_m) * alpha / \ (tau_m * np.sqrt(2)) * dPhi * (r * tau_m)**2 if math.isnan(result): print mu, sigma, x_th, x_r return result def Phi(s): return np.sqrt(np.pi / 2.) * (np.exp(s**2 / 2.) * (1 + erf(s / np.sqrt(2)))) def Phi_prime_mu(s, sigma): return -np.sqrt(np.pi) / sigma * (s * np.exp(s**2 / 2.) * (1 + erf(s / np.sqrt(2))) + np.sqrt(2) / np.sqrt(np.pi)) def siegert1(tau_m, tau_r, V_th, V_r, mu, sigma): # for mu < V_th y_th = (V_th - mu) / sigma y_r = (V_r - mu) / sigma def integrand(u): if u == 0: return np.exp(-y_th**2) * 2 * (y_th - y_r) else: return np.exp(-(u - y_th)**2) * (1.0 - np.exp(2 * (y_r - y_th) * u)) / u lower_bound = y_th err_dn = 1.0 while err_dn > 1e-12 and lower_bound > 1e-16: err_dn = integrand(lower_bound) if err_dn > 1e-12: lower_bound /= 2 upper_bound = y_th err_up = 1.0 while err_up > 1e-12: err_up = integrand(upper_bound) if err_up > 1e-12: upper_bound *= 2 # check preventing overflow if y_th >= 20: out = 0. if y_th < 20: out = 1.0 / (tau_r + np.exp(y_th**2) * quad(integrand, lower_bound, upper_bound)[0] * tau_m) return out def siegert2(tau_m, tau_r, V_th, V_r, mu, sigma): # for mu > V_th y_th = (V_th - mu) / sigma y_r = (V_r - mu) / sigma def integrand(u): if u == 0: return 2 * (y_th - y_r) else: return (np.exp(2 * y_th * u - u**2) - np.exp(2 * y_r * u - u**2)) / u upper_bound = 1.0 err = 1.0 while err > 1e-12: err = integrand(upper_bound) upper_bound *= 2 return 1.0 / (tau_r + quad(integrand, 0.0, upper_bound)[0] * tau_m) def d_nu_d_mu_fb433(tau_m, tau_s, tau_r, V_th, V_r, mu, sigma): alpha = np.sqrt(2) * abs(zetac(0.5) + 1) x_th = np.sqrt(2) * (V_th - mu) / sigma x_r = np.sqrt(2) * (V_r - mu) / sigma integral = 1. / (nu_0(tau_m, tau_r, V_th, V_r, mu, sigma) * tau_m) prefactor = np.sqrt(tau_s / tau_m) * alpha / (tau_m * np.sqrt(2)) dnudmu = d_nu_d_mu(tau_m, tau_r, V_th, V_r, mu, sigma) dPhi_prime = Phi_prime_mu(x_th, sigma) - Phi_prime_mu(x_r, sigma) dPhi = Phi(x_th) - Phi(x_r) phi = dPhi_prime * integral + (2 * np.sqrt(2) / sigma) * dPhi**2 return dnudmu - prefactor * phi / integral**3 def d_nu_d_mu(tau_m, tau_r, V_th, V_r, mu, sigma): y_th = (V_th - mu)/sigma y_r = (V_r - mu)/sigma nu0 = nu_0(tau_m, tau_r, V_th, V_r, mu, sigma) return np.sqrt(np.pi) * tau_m * nu0**2 / sigma * (np.exp(y_th**2) * (1 + erf(y_th)) - np.exp(y_r**2) * (1 + erf(y_r)))
INM-6/neural_network_meanfield
siegert.py
Python
gpl-3.0
5,026
[ "Gaussian", "NEURON" ]
36e8ebbf063ba7bf72026dd77a338621c418223eb79bbc1067e530912725fa07
from espressomd import System, shapes, electrokinetics import sys system = System(box_l = [10, 10, 10]) system.set_random_state_PRNG() #system.seed = system.cell_system.get_state()['n_nodes'] * [1234] system.cell_system.skin = 0.4 system.time_step = 0.1 ek = electrokinetics.Electrokinetics( lb_density=1, friction=1, agrid=1, viscosity=1, T=1, prefactor=1) pos = electrokinetics.Species( density=0.05, D=0.1, valency=1, ext_force=[0, 0, 1.]) neg = electrokinetics.Species( density=0.05, D=0.1, valency=-1, ext_force=[0, 0, -1.]) ek.add_species(pos) ek.add_species(neg) system.actors.add(ek) print(ek.get_params()) print(pos.get_params()) print(neg.get_params()) print(pos[5, 5, 5].density) ek_wall_left = electrokinetics.EKBoundary( shape=shapes.Wall(dist=1, normal=[1, 0, 0]), charge_density=-0.01) ek_wall_right = electrokinetics.EKBoundary( shape=shapes.Wall(dist=-9, normal=[-1, 0, 0]), charge_density=0.01) system.ekboundaries.add(ek_wall_left) system.ekboundaries.add(ek_wall_right) for i in range(1000): system.integrator.run(100) sys.stdout.write("\rIntegrating: %03i" % i) sys.stdout.flush() pos.print_vtk_density("ek/pos_dens_%i.vtk" % i) neg.print_vtk_density("ek/neg_dens_%i.vtk" % i) pos.print_vtk_flux("ek/pos_flux_%i.vtk" % i) neg.print_vtk_flux("ek/neg_flux_%i.vtk" % i) ek.print_vtk_velocity("ek/ekv_%i.vtk" % i) ek.print_vtk_boundary("ek/ekb_%i.vtk" % i)
KonradBreitsprecher/espresso
samples/ekboundaries.py
Python
gpl-3.0
1,441
[ "VTK" ]
b4e9504edb7b23a5c5f40a1104a773679393c6e8b58d517caa88f2d08058ff9f
##=============================================================================== # This file is part of TEMPy. # It describes the implementation of Assembly class for the purpose of fitting multiple component into the assembly map # # TEMPy is a software designed to help the user in the manipulation # and analyses of macromolecular assemblies using 3D electron microscopy maps. # # Copyright 2010-2014 TEMPy Inventors and Birkbeck College University of London. # The TEMPy Inventors are: Maya Topf, Daven Vasishtan, # Arun Prasad Pandurangan, Irene Farabella, Agnel-Praveen Joseph, # Harpal Sahota # # # TEMPy is available under Public Licence. # # Please cite your use of TEMPy in published work: # # Vasishtan D, Topf M. (2011) J Struct Biol 174:333-343. Scoring functions for cryoEM density fitting. # Pandurangan AP, Vasishtan D, Topf M. (2015) Structure 23:2365-2376. GAMMA-TEMPy: Simultaneous fitting of components in 3D-EM Maps of their assembly using genetic algorithm. #=============================================================================== from TEMPy.ProtRep_Biopy import * from TEMPy.StructureBlurrer import StructureBlurrer #from EMMap import * #from MapParser import * #from PDBParser import * #from StructureBlurrer import * #from Vector import * #from VQ import * #from Quaternion import * class Assembly: """ A class to represent multi-subunit component and its corresponding density map. """ def __init__(self, structList): """ A constructor to initialise the assembly object. Arguments: *structList* A list of BioPy_Structure objects. """ self.structList = structList self.initMapList = [] self.mapList = [] def build_maps(self, resolution, template_map, sig_coeff=0.356): """ Build list of maps corresponding to the protein components in the structList. Arguments: *resolution* Desired resolution of the density map in Angstrom units. *template_map* A map object that will be uesd as the template to build maps of for the individual maps. Usually the input map used for the assembly fitting. *sigma_coeff* the sigma value (multiplied by the resolution) that controls the width of the Gaussian. Default values is 0.356. """ sb = StructureBlurrer() for x in self.structList: self.mapList.append(sb.gaussian_blur(x, resolution, template_map, sig_coeff)) self.initMapList.append(self.mapList[-1].copy()) def randomise_structs(self, max_trans, max_rot, v_grain=30, rad=False): """ Randomise the position and orientation of the protein components in the structList. Arguments: *max_trans* Maximum translation permitted *max_rot* Maximum rotation permitted (in degree if rad=False) *v_grain* Graning Level for the generation of random vetors (default=30) """ for x in self.structList: x.randomise_position(max_trans, max_rot, v_grain, rad) def randomise_structs_and_maps(self, max_trans, max_rot, v_grain=30, rad=False): """ Randomise the position and orientation of the protein components and its corresponding map objects. Arguments: *max_trans* Maximum translation permitted *max_rot* Maximum rotation permitted (in degree if rad=False) *v_grain* Graning Level for the generation of random vetors (default=30) """ if len(self.mapList) != len(self.structList): print('Maps not built yet') else: for x in range(len(self.structList)): com = self.structList[x].CoM.copy() rx,ry,rz,ra,tx,ty,tz = self.structList[x].randomise_position(max_trans, max_rot, v_grain, rad, verbose=True) self.mapList[x] = self.mapList[x].rotate_by_axis_angle(rx, ry, rz, ra, com) self.mapList[x] = self.mapList[x].translate(tx,ty,tz) def reset_structs(self): """ Translate the list of structure objects back into initial position. """ for x in self.structList: x.reset_position() def reset_maps(self): """ Undo all the transformations applied to the list of map objects and restore it to its original state. """ for x in range(len(self.mapList)): self.mapList[x] = self.initMapList[x].copy() def reset_all(self): """ Reset the map and structure objects to is initial state. """ self.reset_maps() self.reset_structs() def move_map_and_prot_by_aa(self, index, rx, ry, rz, ra, tx, ty, tz): """ Translate and rotate the structure and map objects in the assembly around its centre given an axis and angle. Arguments: *index* Index of the structure and map list. *rx,ry,rz* Axis to rotate about, ie. rx,ry,rz = 0,0,1 rotates the structure and map round the xy-plane. *ra* Angle (in degrees) to rotate map. *tx,ty,tz* Distance in Angstroms to move structure and map in respective x, y, and z directions. """ com = self.structList[index].CoM.copy() self.structList[index].rotate_by_axis_angle(rx, ry, rz, ra, tx, ty, tz) self.mapList[index] = self.mapList[index].rotate_by_axis_angle(rx, ry, rz, ra, com) self.mapList[index] = self.mapList[index].translate(tx,ty,tz) def move_map_and_prot_by_euler(self, index, rx, ry, rz, tx, ty, tz): """ Translate and rotate the structure and map objects in the assembly around its centre using Euler angles. Arguments: *index* Index of the structure and map list. *rx,ry,rz* Axis to rotate about, ie. rx,ry,rz = 0,0,1 rotates the structure and map round the xy-plane. *ra* Angle (in degrees) to rotate map. *tx,ty,tz* Distance in Angstroms to move structure and map in respective x, y, and z directions. """ com = self.structList[index].CoM.copy() self.structList[index].rotate_by_euler(rx, ry, rz, 0, 0, 0) self.structList[index].translate(tx,ty,tz) self.mapList[index] = self.mapList[index].rotate_by_euler(rx, ry, rz, com) self.mapList[index] = self.mapList[index].translate(tx,ty,tz) def move_map_and_prot_by_mat(self, index, mat, tx, ty, tz): """ Translate and rotate the structure and map objects around pivot given by CoM using a translation vector and a rotation matrix respectively. Arguments: *mat* 3x3 matrix used to rotate structure and map objects. *tx,ty,tz* Distance in Angstroms to move structure and map in respective x, y, and z directions. """ com = self.structList[index].CoM.copy() self.structList[index].rotate_by_mat(mat) self.structList[index].translate(tx,ty,tz) self.mapList[index] = self.mapList[index].rotate_by_matrix(mat, com) self.mapList[index] = self.mapList[index].translate(tx,ty,tz) def move_map_and_prot_by_quat(self, index, tx, ty, tz, q_param, mat): """ Translate the structure objects using a translation vector and rotate it using a quaternion object Translate and rotate the map objects around pivot given by CoM using a translation vector and a rotation matrix respectively. Arguments: *index* Index of the structure and map list. *tx,ty,tz* Distance in Angstroms to move structure and map in respective x, y, and z directions. *q_param* Is a list of type [w, x, y, z] which represents a quaternion vector used for rotation *mat* 3x3 matrix used to rotate structure and map objects. """ com = self.structList[index].CoM.copy() self.structList[index].rotate_by_quaternion(q_param) self.structList[index].translate(tx,ty,tz) self.mapList[index] = self.mapList[index].rotate_by_matrix(mat, com) self.mapList[index] = self.mapList[index].translate(tx,ty,tz) def combine_structs(self): """ Used to combine the list of structure objects into a single structure object """ if len(self.structList)>1: return self.structList[0].combine_structures(self.structList[1:]) elif len(self.structList)==1: return self.structList[0] else: print('No structures found') def combine_maps(self): """ Used to combine the list of map objects into a single map object """ if len(self.mapList)>1: newMap = self.mapList[0].copy() for x in self.mapList[1:]: newMap.fullMap += x.fullMap return newMap elif len(self.structList)==1: return self.mapList[0].copy() else: print('No maps found') def make_VQ_points(self, threshold, noOfPoints, lap_fil, epochs=300): """ Cluster the density maps in the assembly object into n points using vector quantisation algorithm. Arguments: *emmap* Map (to be clustered) instance. *threshold* voxels with density above this value are used in the VQ run. *noOfPoints* Number of Vector quantisation points to output. *lap_fil* True if you want to Laplacian filter the map first, False otherwise. Note that filtering the map change the density values of the map, which is relevant for the threshold parameter. *epochs* Number of iterations to run the Vector quantisation algorithm. Default is set to 300 Return: A list of vector objects containing the vector quatisation points """ vq = [] if len(self.mapList) > 0: for s in range(len(self.mapList)): vq.append(get_VQ_points(self.mapList[s], threshold, noOfPoints[s], epochs, None, lap_fil)) return vq def write_all_to_files(self, templateName): """ Write the all the strucrure and map objects separately to a pdb and mrc formatted file respectively. Arguments: *templateName* A string representing the prefix of the file name """ for x in range(len(self.structList)): self.structList[x].write_to_PDB(templateName+str(x)+'.pdb') if len(self.mapList) > 0: self.mapList[x].write_to_MRC_file(templateName+str(x)+'.mrc') # Methods not used #========================================================================================================= # def make_sub_VQ_points(self, i, threshold, noOfPoints, lap_fil, epochs=300): # vq = [] # if len(self.mapList) > 0: # vq.append(get_VQ_points(self.mapList[i], threshold, noOfPoints, epochs, None, lap_fil)) # return vq # def make_subVQ_points(self, threshold, noOfPoints, lap_fil, epochs=300): # vq = [] # vq.append(get_VQ_points(self.mapList[0], threshold, noOfPoints, epochs, None, lap_fil)) # return vq #=========================================================================================================
OniDaito/ChimeraXTempy
TEMPy/Assembly.py
Python
mit
12,365
[ "Gaussian" ]
481ef716a6d29b3939ca87007410705224067e8e1aa6b16d568d8612f695fe33
from keras.models import Sequential, Model from keras.layers import Flatten, Dense, Dropout, Reshape, Permute, Activation, Input #, merge from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD, Adam import numpy as np from scipy.misc import imread, imresize, imsave from keras import backend as K # from convnetskeras.customlayers import crosschannelnormalization #, convolution2Dgroup, splittensor, Softmax4D # from convnetskeras.imagenet_tool import synset_to_id, id_to_synset,synset_to_dfs_ids """ Returns a keras model for a CNN. input data are of the shape (227,227), and the colors in the RGB order (default) model: The keras model for this convnet output_dict: Dict of feature layers, asked for in output_layers. """ def AlexNet(weights_path=None): if K.image_dim_ordering() == 'tf': inputs = Input(shape=(210, 280, 3)) else: inputs = Input(shape=(3, 210, 280)) conv_1 = Convolution2D(96, 11, 11, subsample=(4,4), activation='relu', name='conv_1')(inputs) # initial weights filler? gaussian, std 0.01 conv_2 = MaxPooling2D((3, 3), strides=(2,2))(conv_1) #conv_2 = crosschannelnormalization(name="convpool_1")(conv_2) # in caffe: Local Response Normalization (LRN) # alpha = 1e-4, k=2, beta=0.75, n=5, conv_2 = ZeroPadding2D((2,2))(conv_2) # split unnecessary on modern GPUs, no stride conv_2 = Convolution2D(256, 5, 5, activation="relu", name='conv_2')(conv_2) conv_3 = MaxPooling2D((3, 3), strides=(2, 2))(conv_2) #conv_3 = crosschannelnormalization()(conv_3) conv_3 = ZeroPadding2D((1, 1))(conv_3) conv_3 = Convolution2D(384, 3, 3, activation='relu', name='conv_3')(conv_3) conv_4 = ZeroPadding2D((1,1))(conv_3) # split unnecessary on modern GPUs, no stride conv_4 = Convolution2D(384, 3, 3, activation="relu", name='conv_4')(conv_4) conv_5 = ZeroPadding2D((1,1))(conv_4) # split unnecessary on modern GPUs, no stride conv_5 = Convolution2D(256, 3, 3, activation="relu", name='conv_5')(conv_5) dense_1 = MaxPooling2D((3, 3), strides=(2,2), name="convpool_5")(conv_5) dense_1 = Flatten(name="flatten")(dense_1) # initial weights filler? gaussian, std 0.005 dense_1 = Dense(4096, activation='relu', name='dense_1')(dense_1) dense_2 = Dropout(0.5)(dense_1) dense_2 = Dense(4096, activation='relu', name='dense_2')(dense_2) dense_3 = Dropout(0.5)(dense_2) # initial weights filler? gaussian, std 0.01 dense_3 = Dense(256, activation='relu', name='dense_3')(dense_3) dense_4 = Dropout(0.5)(dense_3) # output: 14 affordances, gaussian std 0.01 dense_4 = Dense(13, activation='sigmoid', name='dense_4')(dense_4) # dense_4 = Dense(14, activation='linear', name='dense_4')(dense_4) model = Model(input=inputs, output=dense_4) model.summary() if weights_path: model.load_weights(weights_path) sgd = SGD(lr=0.01, decay=0.0005, momentum=0.9) # nesterov=True) adam = Adam() # caffe: euclidean loss model.compile(optimizer=adam, loss='mse') return model
babraham123/deepdriving
alexnet_13.py
Python
mit
3,156
[ "Gaussian" ]
cd7b1c2f394ed5eedb3456ca4cf6373ef69dfcb3d6128872d3948e67c9c54ff8
import cPickle as pickle import datetime import signal import numpy as np import theano, theano.tensor as T from DataHandler import MidiDataHandler as MDH class connectionTransformation(theano.Op): """ theano op class to implement the connection of nodes the neuron connections of the rnn and the neurons net itself """ __props__ = () def make_node(self, state, time): """ make node ... :param state: :param time: :return: """ state = T.as_tensor_variable(state) time = T.as_tensor_variable(time) return theano.Apply(self, [state, time], [T.bmatrix()]) def perform(self, node, inputs_storage, output_storage,params = None): """ Required: Calculate the function on the inputs and put the variables in the output storage. Return None. """ state, time = inputs_storage beat = MDH.buildBeat(time) context = MDH.buildContext(state) notes = [] for note in range(len(state)): notes.append(MDH.noteInputForm(note, state, context, beat)) output_storage[0][0] = np.array(notes, dtype='int8') def getTrainedPhaseData(modelTemp, dataPieces, batches, name="trainedData"): """ collect and save the temp trained data for further use also good if the machine crashes so u can continue from the last checkPoint :param modelTemp: the model learned so far :param dataPieces: the data set to learn upon :param batches: number of batches to run with :param name: name of the output p file ... p for properties :return: none ... it pickle(serialize) the result """ learnedData = [] for i in range(batches): ipt, opt = MDH.getPieceBatch(dataPieces) rnnFlowConnections = modelTemp.updateDatafun(ipt, opt) learnedData.append((ipt, opt, rnnFlowConnections)) pickle.dump(learnedData, open('output/' + name + '.p', 'wb')) def generatMusicFunction(modelTemp, pcs, times, keepDataTempLearning=False, name="final",destName = 'output\\'): """ as the name sugest this function used to compose music from the trained model :param modelTemp: the trained model to learn from :param pcs: the data pices to generet music with :param times: the data that give the times to the model building phase :param keepDataTempLearning: is to keep data trough the learning ..make it havier to learn :param name: the name of the file to generate :return: """ md = MDH.MidiDataHandler() xIpt, xOpt = map(lambda x: np.array(x, dtype='int8'), MDH.splitToSegments(pcs)) all_outputs = [xOpt[0]] if keepDataTempLearning: allDataUpdate = [] modelTemp.initSlowLearning(xIpt[0]) cons = 1 for time in range(MDH.batchLength * times): resdata = modelTemp.slowFunction(cons) nnotes = np.sum(resdata[-1][:, 0]) if nnotes < 2: if cons > 1: cons = 1 cons -= 0.02 else: cons += (1 - cons) * 0.3 all_outputs.append(resdata[-1]) if keepDataTempLearning: allDataUpdate.append(resdata) md.DataMatrixToMidiFile(np.array(all_outputs), destName + name) if keepDataTempLearning: pickle.dump(allDataUpdate, open(destName + name + '.p', 'wb')) def trainDataPart(modelTemp,pieces,epochs,start=0,destLoctation = 'output\\' ): """ initiate the training sequence a pseudo epoch like process of learning in the deep learning this iterative process initiate the rnn learning procedure of foreword propagation and back propagation in which the weights between the layers of the deep learning being updated :param modelTemp: the model to train Continue train the model allowes us to continue training an existent model so we can create even smarter net in the future. :param pieces: the data to run trough the net with :param epochs: the number of epochs / iterations to train upone :param start: if we continue to train from a given point (not really important past logical continuation of the process) :return: """ mh = MDH.MidiDataHandler() stopflag = [False] def signalWorker(signame, sf): stopflag[0] = True old_handler = signal.signal(signal.SIGINT, signalWorker) prevTime = datetime.datetime.now() with open(destLoctation+"logFile.txt", "w") as text_file: for i in range(start,start+epochs): currTime = datetime.datetime.now() total_time=(currTime -prevTime) prevTime = currTime if stopflag[0]: break error = modelTemp.updateFunction(*MDH.getPieceBatch(pieces)) # if i % 10 == 0: print "epoch {}, time {}, error {}".format(i,total_time.total_seconds(),error) text_file.write("epoch {}, time {}, error {}".format(i,total_time.total_seconds(),error)) if i % 50 == 0 or (i % 20 == 0 and i < 100): xIpt, xOpt = map(np.array, MDH.splitToSegments(pieces)) mh.DataMatrixToMidiFile(np.concatenate((np.expand_dims(xOpt[0], 0), modelTemp.predict_fun(MDH.batchLength, 1, xIpt[0])), axis=0),'output/sample{}'.format(i)) pickle.dump(modelTemp.learned_config,open(destLoctation+'params{}.p'.format(i), 'wb')) signal.signal(signal.SIGINT, old_handler)
Ilya-Simkin/MusicGuru-RNN-Composer
DeepLearning/DeepLearningHandler.py
Python
lgpl-3.0
5,523
[ "NEURON" ]
3c873f2538ef5ba62235a3c44e823244d6ee6267a79e83091ee1169386680b15
# Copyright: 2005 Gentoo Foundation # Author(s): Brian Harring ([email protected]) # License: GPL2 import sys from portage.cache import template, cache_errors from portage.cache.template import reconstruct_eclasses class SQLDatabase(template.database): """template class for RDBM based caches This class is designed such that derivatives don't have to change much code, mostly constant strings. _BaseError must be an exception class that all Exceptions thrown from the derived RDBMS are derived from. SCHEMA_INSERT_CPV_INTO_PACKAGE should be modified dependant on the RDBMS, as should SCHEMA_PACKAGE_CREATE- basically you need to deal with creation of a unique pkgid. If the dbapi2 rdbms class has a method of recovering that id, then modify _insert_cpv to remove the extra select. Creation of a derived class involves supplying _initdb_con, and table_exists. Additionally, the default schemas may have to be modified. """ SCHEMA_PACKAGE_NAME = "package_cache" SCHEMA_PACKAGE_CREATE = "CREATE TABLE %s (\ pkgid INTEGER PRIMARY KEY, label VARCHAR(255), cpv VARCHAR(255), UNIQUE(label, cpv))" % SCHEMA_PACKAGE_NAME SCHEMA_PACKAGE_DROP = "DROP TABLE %s" % SCHEMA_PACKAGE_NAME SCHEMA_VALUES_NAME = "values_cache" SCHEMA_VALUES_CREATE = "CREATE TABLE %s ( pkgid integer references %s (pkgid) on delete cascade, \ key varchar(255), value text, UNIQUE(pkgid, key))" % (SCHEMA_VALUES_NAME, SCHEMA_PACKAGE_NAME) SCHEMA_VALUES_DROP = "DROP TABLE %s" % SCHEMA_VALUES_NAME SCHEMA_INSERT_CPV_INTO_PACKAGE = "INSERT INTO %s (label, cpv) VALUES(%%s, %%s)" % SCHEMA_PACKAGE_NAME _BaseError = () _dbClass = None autocommits = False # cleanse_keys = True # boolean indicating if the derived RDBMS class supports replace syntax _supports_replace = False def __init__(self, location, label, auxdbkeys, *args, **config): """initialize the instance. derived classes shouldn't need to override this""" super(SQLDatabase, self).__init__(location, label, auxdbkeys, *args, **config) config.setdefault("host","127.0.0.1") config.setdefault("autocommit", self.autocommits) self._initdb_con(config) self.label = self._sfilter(self.label) def _dbconnect(self, config): """should be overridden if the derived class needs special parameters for initializing the db connection, or cursor""" self.db = self._dbClass(**config) self.con = self.db.cursor() def _initdb_con(self,config): """ensure needed tables are in place. If the derived class needs a different set of table creation commands, overload the approriate SCHEMA_ attributes. If it needs additional execution beyond, override""" self._dbconnect(config) if not self._table_exists(self.SCHEMA_PACKAGE_NAME): if self.readonly: raise cache_errors.ReadOnlyRestriction("table %s doesn't exist" % \ self.SCHEMA_PACKAGE_NAME) try: self.con.execute(self.SCHEMA_PACKAGE_CREATE) except self._BaseError as e: raise cache_errors.InitializationError(self.__class__, e) if not self._table_exists(self.SCHEMA_VALUES_NAME): if self.readonly: raise cache_errors.ReadOnlyRestriction("table %s doesn't exist" % \ self.SCHEMA_VALUES_NAME) try: self.con.execute(self.SCHEMA_VALUES_CREATE) except self._BaseError as e: raise cache_errors.InitializationError(self.__class__, e) def _table_exists(self, tbl): """return true if a table exists derived classes must override this""" raise NotImplementedError def _sfilter(self, s): """meta escaping, returns quoted string for use in sql statements""" return "\"%s\"" % s.replace("\\","\\\\").replace("\"","\\\"") def _getitem(self, cpv): try: self.con.execute("SELECT key, value FROM %s NATURAL JOIN %s " "WHERE label=%s AND cpv=%s" % (self.SCHEMA_PACKAGE_NAME, self.SCHEMA_VALUES_NAME, self.label, self._sfilter(cpv))) except self._BaseError as e: raise cache_errors.CacheCorruption(self, cpv, e) rows = self.con.fetchall() if len(rows) == 0: raise KeyError(cpv) vals = dict([(k,"") for k in self._known_keys]) vals.update(dict(rows)) return vals def _delitem(self, cpv): """delete a cpv cache entry derived RDBM classes for this *must* either support cascaded deletes, or override this method""" try: try: self.con.execute("DELETE FROM %s WHERE label=%s AND cpv=%s" % \ (self.SCHEMA_PACKAGE_NAME, self.label, self._sfilter(cpv))) if self.autocommits: self.commit() except self._BaseError as e: raise cache_errors.CacheCorruption(self, cpv, e) if self.con.rowcount <= 0: raise KeyError(cpv) except SystemExit: raise except Exception: if not self.autocommits: self.db.rollback() # yes, this can roll back a lot more then just the delete. deal. raise def __del__(self): # just to be safe. if "db" in self.__dict__ and self.db != None: self.commit() self.db.close() def _setitem(self, cpv, values): try: # insert. try: pkgid = self._insert_cpv(cpv) except self._BaseError as e: raise cache_errors.CacheCorruption(cpv, e) # __getitem__ fills out missing values, # so we store only what's handed to us and is a known key db_values = [] for key in self._known_keys: if key in values and values[key]: db_values.append({"key":key, "value":values[key]}) if len(db_values) > 0: try: self.con.executemany("INSERT INTO %s (pkgid, key, value) VALUES(\"%s\", %%(key)s, %%(value)s)" % \ (self.SCHEMA_VALUES_NAME, str(pkgid)), db_values) except self._BaseError as e: raise cache_errors.CacheCorruption(cpv, e) if self.autocommits: self.commit() except SystemExit: raise except Exception: if not self.autocommits: try: self.db.rollback() except self._BaseError: pass raise def _insert_cpv(self, cpv): """uses SCHEMA_INSERT_CPV_INTO_PACKAGE, which must be overloaded if the table definition doesn't support auto-increment columns for pkgid. returns the cpvs new pkgid note this doesn't commit the transaction. The caller is expected to.""" cpv = self._sfilter(cpv) if self._supports_replace: query_str = self.SCHEMA_INSERT_CPV_INTO_PACKAGE.replace("INSERT","REPLACE",1) else: # just delete it. try: del self[cpv] except (cache_errors.CacheCorruption, KeyError): pass query_str = self.SCHEMA_INSERT_CPV_INTO_PACKAGE try: self.con.execute(query_str % (self.label, cpv)) except self._BaseError: self.db.rollback() raise self.con.execute("SELECT pkgid FROM %s WHERE label=%s AND cpv=%s" % \ (self.SCHEMA_PACKAGE_NAME, self.label, cpv)) if self.con.rowcount != 1: raise cache_error.CacheCorruption(cpv, "Tried to insert the cpv, but found " " %i matches upon the following select!" % len(rows)) return self.con.fetchone()[0] def __contains__(self, cpv): if not self.autocommits: try: self.commit() except self._BaseError as e: raise cache_errors.GeneralCacheCorruption(e) try: self.con.execute("SELECT cpv FROM %s WHERE label=%s AND cpv=%s" % \ (self.SCHEMA_PACKAGE_NAME, self.label, self._sfilter(cpv))) except self._BaseError as e: raise cache_errors.GeneralCacheCorruption(e) return self.con.rowcount > 0 def __iter__(self): if not self.autocommits: try: self.commit() except self._BaseError as e: raise cache_errors.GeneralCacheCorruption(e) try: self.con.execute("SELECT cpv FROM %s WHERE label=%s" % (self.SCHEMA_PACKAGE_NAME, self.label)) except self._BaseError as e: raise cache_errors.GeneralCacheCorruption(e) # return [ row[0] for row in self.con.fetchall() ] for x in self.con.fetchall(): yield x[0] def iteritems(self): try: self.con.execute("SELECT cpv, key, value FROM %s NATURAL JOIN %s " "WHERE label=%s" % (self.SCHEMA_PACKAGE_NAME, self.SCHEMA_VALUES_NAME, self.label)) except self._BaseError as e: raise cache_errors.CacheCorruption(self, cpv, e) oldcpv = None l = [] for x, y, v in self.con.fetchall(): if oldcpv != x: if oldcpv != None: d = dict(l) if "_eclasses_" in d: d["_eclasses_"] = reconstruct_eclasses(oldcpv, d["_eclasses_"]) else: d["_eclasses_"] = {} yield cpv, d l.clear() oldcpv = x l.append((y,v)) if oldcpv != None: d = dict(l) if "_eclasses_" in d: d["_eclasses_"] = reconstruct_eclasses(oldcpv, d["_eclasses_"]) else: d["_eclasses_"] = {} yield cpv, d def commit(self): self.db.commit() def get_matches(self,match_dict): query_list = [] for k,v in match_dict.items(): if k not in self._known_keys: raise cache_errors.InvalidRestriction(k, v, "key isn't known to this cache instance") v = v.replace("%","\\%") v = v.replace(".*","%") query_list.append("(key=%s AND value LIKE %s)" % (self._sfilter(k), self._sfilter(v))) if len(query_list): query = " AND "+" AND ".join(query_list) else: query = '' print("query = SELECT cpv from package_cache natural join values_cache WHERE label=%s %s" % (self.label, query)) try: self.con.execute("SELECT cpv from package_cache natural join values_cache WHERE label=%s %s" % \ (self.label, query)) except self._BaseError as e: raise cache_errors.GeneralCacheCorruption(e) return [ row[0] for row in self.con.fetchall() ] if sys.hexversion >= 0x3000000: items = iteritems keys = __iter__
funtoo/portage-funtoo
pym/portage/cache/sql_template.py
Python
gpl-2.0
9,396
[ "Brian" ]
907f6fc66d6d12aa8d7bd92adb35772bb528e75c0b6ebb709ca45791e09e69c7
from math import sqrt import numpy as np from ase.data import covalent_radii from ase.atoms import Atoms from ase.calculators.singlepoint import SinglePointCalculator from ase.io import read, write, string2index from ase.constraints import FixAtoms from ase.gui.defaults import read_defaults from ase.quaternions import Quaternion class Images: def __init__(self, images=None): if images is not None: self.initialize(images) def initialize(self, images, filenames=None, init_magmom=False): self.natoms = len(images[0]) self.nimages = len(images) if filenames is None: filenames = [None] * self.nimages self.filenames = filenames if hasattr(images[0], 'get_shapes'): self.Q = np.empty((self.nimages, self.natoms, 4)) self.shapes = images[0].get_shapes() import os as os if os.path.exists('shapes'): shapesfile = open('shapes') lines = shapesfile.readlines() shapesfile.close() if '#{type:(shape_x,shape_y,shape_z), .....,}' in lines[0]: shape = eval(lines[1]) shapes=[] for an in images[0].get_atomic_numbers(): shapes.append(shape[an]) self.shapes = np.array(shapes) else: print 'shape file has wrong format' else: print 'no shapesfile found: default shapes were used!' else: self.shapes = None self.P = np.empty((self.nimages, self.natoms, 3)) self.V = np.empty((self.nimages, self.natoms, 3)) self.E = np.empty(self.nimages) self.K = np.empty(self.nimages) self.F = np.empty((self.nimages, self.natoms, 3)) self.M = np.empty((self.nimages, self.natoms)) self.T = np.empty((self.nimages, self.natoms), int) self.A = np.empty((self.nimages, 3, 3)) self.D = np.empty((self.nimages, 3)) self.Z = images[0].get_atomic_numbers() self.q = np.empty((self.nimages, self.natoms)) self.pbc = images[0].get_pbc() self.covalent_radii = covalent_radii config = read_defaults() if config['covalent_radii'] is not None: for data in config['covalent_radii']: self.covalent_radii[data[0]] = data[1] warning = False for i, atoms in enumerate(images): natomsi = len(atoms) if (natomsi != self.natoms or (atoms.get_atomic_numbers() != self.Z).any()): raise RuntimeError('Can not handle different images with ' + 'different numbers of atoms or different ' + 'kinds of atoms!') self.P[i] = atoms.get_positions() self.V[i] = atoms.get_velocities() if hasattr(self, 'Q'): self.Q[i] = atoms.get_quaternions() self.A[i] = atoms.get_cell() self.D[i] = atoms.get_celldisp().reshape((3,)) if (atoms.get_pbc() != self.pbc).any(): warning = True try: self.E[i] = atoms.get_potential_energy() except RuntimeError: self.E[i] = np.nan self.K[i] = atoms.get_kinetic_energy() try: self.F[i] = atoms.get_forces(apply_constraint=False) except RuntimeError: self.F[i] = np.nan try: if init_magmom: self.M[i] = atoms.get_initial_magnetic_moments() else: self.M[i] = atoms.get_magnetic_moments() except (RuntimeError, AttributeError): self.M[i] = atoms.get_initial_magnetic_moments() self.q[i] = atoms.get_initial_charges() # added support for tags try: self.T[i] = atoms.get_tags() except RuntimeError: self.T[i] = 0 if warning: print('WARNING: Not all images have the same bondary conditions!') self.selected = np.zeros(self.natoms, bool) self.selected_ordered = [] self.atoms_to_rotate_0 = np.zeros(self.natoms, bool) self.visible = np.ones(self.natoms, bool) self.nselected = 0 self.set_dynamic(constraints = images[0].constraints) self.repeat = np.ones(3, int) self.set_radii(config['radii_scale']) def prepare_new_atoms(self): "Marks that the next call to append_atoms should clear the images." self.next_append_clears = True def append_atoms(self, atoms, filename=None): "Append an atoms object to the images already stored." assert len(atoms) == self.natoms if self.next_append_clears: i = 0 else: i = self.nimages for name in ('P', 'V', 'E', 'K', 'F', 'M', 'A', 'T', 'D', 'q'): a = getattr(self, name) newa = np.empty( (i+1,) + a.shape[1:], a.dtype ) if not self.next_append_clears: newa[:-1] = a setattr(self, name, newa) self.next_append_clears = False self.P[i] = atoms.get_positions() self.V[i] = atoms.get_velocities() self.A[i] = atoms.get_cell() self.D[i] = atoms.get_celldisp().reshape((3,)) self.q[i] = atoms.get_initial_charges() try: self.E[i] = atoms.get_potential_energy() except RuntimeError: self.E[i] = np.nan self.K[i] = atoms.get_kinetic_energy() try: self.F[i] = atoms.get_forces(apply_constraint=False) except RuntimeError: self.F[i] = np.nan try: self.M[i] = atoms.get_magnetic_moments() except (RuntimeError, AttributeError): self.M[i] = np.nan try: self.T[i] = atoms.get_tags() except AttributeError: if i == 0: self.T[i] = 0 else: self.T[i] = self.T[i-1] self.nimages = i + 1 self.filenames.append(filename) self.set_dynamic() return self.nimages def set_radii(self, scale): if self.shapes == None: self.r = self.covalent_radii[self.Z] * scale else: self.r = np.sqrt(np.sum(self.shapes**2, axis=1)) * scale def read(self, filenames, index=-1, filetype=None): images = [] names = [] for filename in filenames: i = read(filename, index,filetype) if not isinstance(i, list): i = [i] images.extend(i) names.extend([filename] * len(i)) self.initialize(images, names) def import_atoms(self, filename, cur_frame): if filename: filename = filename[0] old_a = self.get_atoms(cur_frame) imp_a = read(filename, -1) new_a = old_a + imp_a self.initialize([new_a], [filename]) def repeat_images(self, repeat): n = self.repeat.prod() repeat = np.array(repeat) self.repeat = repeat N = repeat.prod() natoms = self.natoms // n P = np.empty((self.nimages, natoms * N, 3)) V = np.empty((self.nimages, natoms * N, 3)) M = np.empty((self.nimages, natoms * N)) T = np.empty((self.nimages, natoms * N), int) F = np.empty((self.nimages, natoms * N, 3)) Z = np.empty(natoms * N, int) r = np.empty(natoms * N) dynamic = np.empty(natoms * N, bool) a0 = 0 for i0 in range(repeat[0]): for i1 in range(repeat[1]): for i2 in range(repeat[2]): a1 = a0 + natoms for i in range(self.nimages): P[i, a0:a1] = (self.P[i, :natoms] + np.dot((i0, i1, i2), self.A[i])) V[:, a0:a1] = self.V[:, :natoms] F[:, a0:a1] = self.F[:, :natoms] M[:, a0:a1] = self.M[:, :natoms] T[:, a0:a1] = self.T[:, :natoms] Z[a0:a1] = self.Z[:natoms] r[a0:a1] = self.r[:natoms] dynamic[a0:a1] = self.dynamic[:natoms] a0 = a1 self.P = P self.V = V self.F = F self.Z = Z self.T = T self.M = M self.r = r self.dynamic = dynamic self.natoms = natoms * N self.selected = np.zeros(natoms * N, bool) self.atoms_to_rotate_0 = np.zeros(self.natoms, bool) self.visible = np.ones(natoms * N, bool) self.nselected = 0 def center(self): """ center each image in the existing unit cell, keeping the cell constant. """ c = self.A.sum(axis=1) / 2.0 - self.P.mean(axis=1) self.P += c[:, np.newaxis, :] def graph(self, expr): """ routine to create the data in ase-gui graphs, defined by the string expr. """ import ase.units as units code = compile(expr + ',', 'atoms.py', 'eval') n = self.nimages def d(n1, n2): return sqrt(((R[n1] - R[n2])**2).sum()) def a(n1, n2, n3): v1 = R[n1]-R[n2] v2 = R[n3]-R[n2] arg = np.vdot(v1,v2)/(sqrt((v1**2).sum()*(v2**2).sum())) if arg > 1.0: arg = 1.0 if arg < -1.0: arg = -1.0 return 180.0*np.arccos(arg)/np.pi def dih(n1, n2, n3, n4): # vector 0->1, 1->2, 2->3 and their normalized cross products: a = R[n2]-R[n1] b = R[n3]-R[n2] c = R[n4]-R[n3] bxa = np.cross(b,a) bxa /= np.sqrt(np.vdot(bxa,bxa)) cxb = np.cross(c,b) cxb /= np.sqrt(np.vdot(cxb,cxb)) angle = np.vdot(bxa,cxb) # check for numerical trouble due to finite precision: if angle < -1: angle = -1 if angle > 1: angle = 1 angle = np.arccos(angle) if (np.vdot(bxa,c)) > 0: angle = 2*np.pi-angle return angle*180.0/np.pi # get number of mobile atoms for temperature calculation ndynamic = 0 for dyn in self.dynamic: if dyn: ndynamic += 1 S = self.selected D = self.dynamic[:, np.newaxis] E = self.E s = 0.0 data = [] for i in range(n): R = self.P[i] V = self.V[i] F = self.F[i] A = self.A[i] M = self.M[i] f = ((F * D)**2).sum(1)**.5 fmax = max(f) fave = f.mean() epot = E[i] ekin = self.K[i] e = epot + ekin T = 2.0 * ekin / (3.0 * ndynamic * units.kB) data = eval(code) if i == 0: m = len(data) xy = np.empty((m, n)) xy[:, i] = data if i + 1 < n: s += sqrt(((self.P[i + 1] - R)**2).sum()) return xy def set_dynamic(self, constraints = None): self.dynamic = np.ones(self.natoms, bool) if constraints is not None: for con in constraints: if isinstance(con,FixAtoms): self.dynamic[con.index] = False def write(self, filename, rotations='', show_unit_cell=False, bbox=None, **kwargs): indices = range(self.nimages) p = filename.rfind('@') if p != -1: try: slice = string2index(filename[p + 1:]) except ValueError: pass else: indices = indices[slice] filename = filename[:p] if isinstance(indices, int): indices = [indices] images = [self.get_atoms(i) for i in indices] if len(filename) > 4 and filename[-4:] in ['.eps', '.png', '.pov']: write(filename, images, rotation=rotations, show_unit_cell=show_unit_cell, bbox=bbox, **kwargs) else: write(filename, images, **kwargs) def get_atoms(self, frame, remove_hidden=False): atoms = Atoms(positions=self.P[frame], numbers=self.Z, magmoms=self.M[0], tags=self.T[frame], cell=self.A[frame], pbc=self.pbc) if not np.isnan(self.V).any(): atoms.set_velocities(self.V[frame]) # check for constrained atoms and add them accordingly: if not self.dynamic.all(): atoms.set_constraint(FixAtoms(mask=1-self.dynamic)) # Remove hidden atoms if applicable if remove_hidden: atoms = atoms[self.visible] f = self.F[frame][self.visible] else: f = self.F[frame] atoms.set_calculator(SinglePointCalculator(atoms, energy=self.E[frame], forces=f)) return atoms def delete(self, i): self.nimages -= 1 P = np.empty((self.nimages, self.natoms, 3)) V = np.empty((self.nimages, self.natoms, 3)) F = np.empty((self.nimages, self.natoms, 3)) A = np.empty((self.nimages, 3, 3)) E = np.empty(self.nimages) P[:i] = self.P[:i] P[i:] = self.P[i + 1:] self.P = P V[:i] = self.V[:i] V[i:] = self.V[i + 1:] self.V = V F[:i] = self.F[:i] F[i:] = self.F[i + 1:] self.F = F A[:i] = self.A[:i] A[i:] = self.A[i + 1:] self.A = A E[:i] = self.E[:i] E[i:] = self.E[i + 1:] self.E = E del self.filenames[i] def aneb(self): n = self.nimages assert n % 5 == 0 levels = n // 5 n = self.nimages = 2 * levels + 3 P = np.empty((self.nimages, self.natoms, 3)) V = np.empty((self.nimages, self.natoms, 3)) F = np.empty((self.nimages, self.natoms, 3)) E = np.empty(self.nimages) for L in range(levels): P[L] = self.P[L * 5] P[n - L - 1] = self.P[L * 5 + 4] V[L] = self.V[L * 5] V[n - L - 1] = self.V[L * 5 + 4] F[L] = self.F[L * 5] F[n - L - 1] = self.F[L * 5 + 4] E[L] = self.E[L * 5] E[n - L - 1] = self.E[L * 5 + 4] for i in range(3): P[levels + i] = self.P[levels * 5 - 4 + i] V[levels + i] = self.V[levels * 5 - 4 + i] F[levels + i] = self.F[levels * 5 - 4 + i] E[levels + i] = self.E[levels * 5 - 4 + i] self.P = P self.V = V self.F = F self.E = E def interpolate(self, m): assert self.nimages == 2 self.nimages = 2 + m P = np.empty((self.nimages, self.natoms, 3)) V = np.empty((self.nimages, self.natoms, 3)) F = np.empty((self.nimages, self.natoms, 3)) A = np.empty((self.nimages, 3, 3)) E = np.empty(self.nimages) T = np.empty((self.nimages, self.natoms), int) D = np.empty((self.nimages, 3)) P[0] = self.P[0] V[0] = self.V[0] F[0] = self.F[0] A[0] = self.A[0] E[0] = self.E[0] T[:] = self.T[0] for i in range(1, m + 1): x = i / (m + 1.0) y = 1 - x P[i] = y * self.P[0] + x * self.P[1] V[i] = y * self.V[0] + x * self.V[1] F[i] = y * self.F[0] + x * self.F[1] A[i] = y * self.A[0] + x * self.A[1] E[i] = y * self.E[0] + x * self.E[1] D[i] = y * self.D[0] + x * self.D[1] P[-1] = self.P[1] V[-1] = self.V[1] F[-1] = self.F[1] A[-1] = self.A[1] E[-1] = self.E[1] D[-1] = self.D[1] self.P = P self.V = V self.F = F self.A = A self.E = E self.T = T self.D = D self.filenames[1:1] = [None] * m if __name__ == '__main__': import os os.system('python gui.py')
PHOTOX/fuase
ase/ase/gui/images.py
Python
gpl-2.0
16,499
[ "ASE" ]
7b6de0a17fbd36620e38be1b01b00b421362d10f6d2de74a947c4c8db57a8e5b
# ################################################################ # # Active Particles on Curved Spaces (APCS) # # Author: Silke Henkes # # ICSMB, Department of Physics # University of Aberdeen # Author: Rastko Sknepnek # # Division of Physics # School of Engineering, Physics and Mathematics # University of Dundee # # (c) 2013, 2014 # # This program cannot be used, copied, or modified without # explicit permission of the author. # # ################################################################ # Integrator code for batch processing of full data runs (incorporating parts of earlier analysis scripts) # Data interfacing from read_data import * from read_param import * # Pre-existing analysis scripts from nematic_analysis import * #from glob import glob # This is the structured data file hierarchy. Replace as appropriate (do not go the Yaouen way and fully automatize ...) basefolder='/home/silke/Documents/CurrentProjects/Rastko/nematic/data/' #basefolder = '/home/silke/Documents/CurrentProjects/Rastko/nematic/data/J_1_0_v0_1_0/' #outfolder= '/home/silke/Documents/CurrentProjects/Rastko/nematic/data/J_1_0_v0_1_0/' outfolder = '/home/silke/Documents/CurrentProjects/Rastko/nematic/data/' #v0val=['0.3','0.5','0.7','1.5','2.0','3.0','7.0','10.0'] v0val=['3.0','5.0','7.0','10.0'] sigma=1 rval=['30.0'] nstep=10100000 nsave=5000 nsnap=int(nstep/nsave) #skip=835 skip=0 startvtk=1500 for r in rval: for v0 in v0val: #param = Param(basefolder) files = sorted(glob(basefolder+'R_'+ r+ '/v0_' + v0 + '/sphere_*.dat'))[skip:] defects=np.zeros((len(files),12)) ndefect=np.zeros((len(files),1)) u=0 for f in files: print f outname =outfolder +'R_'+ r+ '/v0_' + v0 + '/frame_data' + str(u-startvtk)+'.vtk' if u<startvtk: defects0,ndefect0=getDefects(f,float(r),sigma,outname,False,False) else: defects0,ndefect0=getDefects(f,float(r),sigma,outname,False,True) outname = '.'.join((f).split('.')[:-1]) + '_defects.vtk' outname =outfolder +'R_'+ r+ '/v0_' + v0 + '/frame_defects' + str(u-startvtk)+'.vtk' print outname writeDefects(defects0,ndefect0,outname) defects[u,0:3]=defects0[0,:] defects[u,3:6]=defects0[1,:] defects[u,6:9]=defects0[2,:] defects[u,9:12]=defects0[3,:] ndefect[u]=ndefect0 u+=1 outfile2=outfolder + 'defects_v0_' + v0 + '_R_'+ r+ '.dat' np.savetxt(outfile2,np.concatenate((ndefect,defects),axis=1),fmt='%12.6g', header='ndefect defects')
sknepneklab/SAMoS
analysis/batch_nematic/batch_analyze_nematic_R30c.py
Python
gpl-3.0
2,511
[ "VTK" ]
ea830e03ac8ad689bfe53a06b3dfd8d7faf7bff53ee60b19441d6fa5d75fa74b
""" Instructor Dashboard Views """ import datetime import logging import uuid from functools import reduce from unittest.mock import patch import pytz from django.conf import settings from django.contrib.auth.decorators import login_required from django.http import Http404, HttpResponseServerError from django.urls import reverse from django.utils.html import escape from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_noop from django.views.decorators.cache import cache_control from django.views.decorators.csrf import ensure_csrf_cookie from django.views.decorators.http import require_POST from edx_proctoring.api import does_backend_support_onboarding from edx_when.api import is_enabled_for_course from opaque_keys import InvalidKeyError from opaque_keys.edx.keys import CourseKey from xblock.field_data import DictFieldData from xblock.fields import ScopeIds from common.djangoapps.course_modes.models import CourseMode, CourseModesArchive from common.djangoapps.edxmako.shortcuts import render_to_response from common.djangoapps.student.models import CourseEnrollment from common.djangoapps.student.roles import ( CourseFinanceAdminRole, CourseInstructorRole, CourseSalesAdminRole, CourseStaffRole ) from common.djangoapps.util.json_request import JsonResponse from lms.djangoapps.bulk_email.api import is_bulk_email_feature_enabled from lms.djangoapps.certificates import api as certs_api from lms.djangoapps.certificates.models import ( CertificateGenerationConfiguration, CertificateGenerationHistory, CertificateInvalidation, CertificateStatuses, CertificateWhitelist, GeneratedCertificate ) from lms.djangoapps.courseware.access import has_access from lms.djangoapps.courseware.courses import get_course_by_id, get_studio_url from lms.djangoapps.courseware.module_render import get_module_by_usage_id from lms.djangoapps.discussion.django_comment_client.utils import available_division_schemes, has_forum_access from lms.djangoapps.grades.api import is_writable_gradebook_enabled from openedx.core.djangoapps.course_groups.cohorts import DEFAULT_COHORT_NAME, get_course_cohorts, is_course_cohorted from openedx.core.djangoapps.django_comment_common.models import FORUM_ROLE_ADMINISTRATOR, CourseDiscussionSettings from openedx.core.djangoapps.site_configuration import helpers as configuration_helpers from openedx.core.djangoapps.verified_track_content.models import VerifiedTrackCohortedCourse from openedx.core.djangolib.markup import HTML, Text from openedx.core.lib.url_utils import quote_slashes from openedx.core.lib.xblock_utils import wrap_xblock from xmodule.html_module import HtmlBlock from xmodule.modulestore.django import modulestore from xmodule.tabs import CourseTab from .. import permissions from ..toggles import data_download_v2_is_enabled from .tools import get_units_with_due_date, title_or_url log = logging.getLogger(__name__) class InstructorDashboardTab(CourseTab): """ Defines the Instructor Dashboard view type that is shown as a course tab. """ type = "instructor" title = ugettext_noop('Instructor') view_name = "instructor_dashboard" is_dynamic = True # The "Instructor" tab is instead dynamically added when it is enabled @classmethod def is_enabled(cls, course, user=None): """ Returns true if the specified user has staff access. """ return bool(user and user.is_authenticated and user.has_perm(permissions.VIEW_DASHBOARD, course.id)) def show_analytics_dashboard_message(course_key): """ Defines whether or not the analytics dashboard URL should be displayed. Arguments: course_key (CourseLocator): The course locator to display the analytics dashboard message on. """ if hasattr(course_key, 'ccx'): ccx_analytics_enabled = settings.FEATURES.get('ENABLE_CCX_ANALYTICS_DASHBOARD_URL', False) return settings.ANALYTICS_DASHBOARD_URL and ccx_analytics_enabled return settings.ANALYTICS_DASHBOARD_URL @ensure_csrf_cookie @cache_control(no_cache=True, no_store=True, must_revalidate=True) def instructor_dashboard_2(request, course_id): # lint-amnesty, pylint: disable=too-many-statements """ Display the instructor dashboard for a course. """ try: course_key = CourseKey.from_string(course_id) except InvalidKeyError: log.error("Unable to find course with course key %s while loading the Instructor Dashboard.", course_id) return HttpResponseServerError() course = get_course_by_id(course_key, depth=None) access = { 'admin': request.user.is_staff, 'instructor': bool(has_access(request.user, 'instructor', course)), 'finance_admin': CourseFinanceAdminRole(course_key).has_user(request.user), 'sales_admin': CourseSalesAdminRole(course_key).has_user(request.user), 'staff': bool(has_access(request.user, 'staff', course)), 'forum_admin': has_forum_access(request.user, course_key, FORUM_ROLE_ADMINISTRATOR), 'data_researcher': request.user.has_perm(permissions.CAN_RESEARCH, course_key), } if not request.user.has_perm(permissions.VIEW_DASHBOARD, course_key): raise Http404() is_white_label = CourseMode.is_white_label(course_key) # lint-amnesty, pylint: disable=unused-variable reports_enabled = configuration_helpers.get_value('SHOW_ECOMMERCE_REPORTS', False) # lint-amnesty, pylint: disable=unused-variable sections = [] if access['staff']: sections.extend([ _section_course_info(course, access), _section_membership(course, access), _section_cohort_management(course, access), _section_discussions_management(course, access), _section_student_admin(course, access), ]) if access['data_researcher']: sections.append(_section_data_download(course, access)) analytics_dashboard_message = None if show_analytics_dashboard_message(course_key) and (access['staff'] or access['instructor']): # Construct a URL to the external analytics dashboard analytics_dashboard_url = '{}/courses/{}'.format(settings.ANALYTICS_DASHBOARD_URL, str(course_key)) link_start = HTML("<a href=\"{}\" rel=\"noopener\" target=\"_blank\">").format(analytics_dashboard_url) analytics_dashboard_message = _( "To gain insights into student enrollment and participation {link_start}" "visit {analytics_dashboard_name}, our new course analytics product{link_end}." ) analytics_dashboard_message = Text(analytics_dashboard_message).format( link_start=link_start, link_end=HTML("</a>"), analytics_dashboard_name=settings.ANALYTICS_DASHBOARD_NAME) # Temporarily show the "Analytics" section until we have a better way of linking to Insights sections.append(_section_analytics(course, access)) # Check if there is corresponding entry in the CourseMode Table related to the Instructor Dashboard course course_mode_has_price = False # lint-amnesty, pylint: disable=unused-variable paid_modes = CourseMode.paid_modes_for_course(course_key) if len(paid_modes) == 1: course_mode_has_price = True elif len(paid_modes) > 1: log.error( "Course %s has %s course modes with payment options. Course must only have " "one paid course mode to enable eCommerce options.", str(course_key), len(paid_modes) ) if access['instructor'] and is_enabled_for_course(course_key): sections.insert(3, _section_extensions(course)) # Gate access to course email by feature flag & by course-specific authorization if is_bulk_email_feature_enabled(course_key) and (access['staff'] or access['instructor']): sections.append(_section_send_email(course, access)) # Gate access to Special Exam tab depending if either timed exams or proctored exams # are enabled in the course user_has_access = any([ request.user.is_staff, CourseStaffRole(course_key).has_user(request.user), CourseInstructorRole(course_key).has_user(request.user) ]) course_has_special_exams = course.enable_proctored_exams or course.enable_timed_exams can_see_special_exams = course_has_special_exams and user_has_access and settings.FEATURES.get( 'ENABLE_SPECIAL_EXAMS', False) if can_see_special_exams: sections.append(_section_special_exams(course, access)) # Certificates panel # This is used to generate example certificates # and enable self-generated certificates for a course. # Note: This is hidden for all CCXs certs_enabled = CertificateGenerationConfiguration.current().enabled and not hasattr(course_key, 'ccx') if certs_enabled and access['instructor']: sections.append(_section_certificates(course)) openassessment_blocks = modulestore().get_items( course_key, qualifiers={'category': 'openassessment'} ) # filter out orphaned openassessment blocks openassessment_blocks = [ block for block in openassessment_blocks if block.parent is not None ] if len(openassessment_blocks) > 0 and access['staff']: sections.append(_section_open_response_assessment(request, course, openassessment_blocks, access)) disable_buttons = not CourseEnrollment.objects.is_small_course(course_key) certificate_white_list = CertificateWhitelist.get_certificate_white_list(course_key) generate_certificate_exceptions_url = reverse( 'generate_certificate_exceptions', kwargs={'course_id': str(course_key), 'generate_for': ''} ) generate_bulk_certificate_exceptions_url = reverse( 'generate_bulk_certificate_exceptions', kwargs={'course_id': str(course_key)} ) certificate_exception_view_url = reverse( 'certificate_exception_view', kwargs={'course_id': str(course_key)} ) certificate_invalidation_view_url = reverse( 'certificate_invalidation_view', kwargs={'course_id': str(course_key)} ) certificate_invalidations = CertificateInvalidation.get_certificate_invalidations(course_key) context = { 'course': course, 'studio_url': get_studio_url(course, 'course'), 'sections': sections, 'disable_buttons': disable_buttons, 'analytics_dashboard_message': analytics_dashboard_message, 'certificate_white_list': certificate_white_list, 'certificate_invalidations': certificate_invalidations, 'generate_certificate_exceptions_url': generate_certificate_exceptions_url, 'generate_bulk_certificate_exceptions_url': generate_bulk_certificate_exceptions_url, 'certificate_exception_view_url': certificate_exception_view_url, 'certificate_invalidation_view_url': certificate_invalidation_view_url, 'xqa_server': settings.FEATURES.get('XQA_SERVER', "http://your_xqa_server.com"), } return render_to_response('instructor/instructor_dashboard_2/instructor_dashboard_2.html', context) ## Section functions starting with _section return a dictionary of section data. ## The dictionary must include at least { ## 'section_key': 'circus_expo' ## 'section_display_name': 'Circus Expo' ## } ## section_key will be used as a css attribute, javascript tie-in, and template import filename. ## section_display_name will be used to generate link titles in the nav bar. def _section_special_exams(course, access): """ Provide data for the corresponding dashboard section """ course_key = str(course.id) proctoring_provider = course.proctoring_provider escalation_email = None if proctoring_provider == 'proctortrack': escalation_email = course.proctoring_escalation_email from edx_proctoring.api import is_backend_dashboard_available section_data = { 'section_key': 'special_exams', 'section_display_name': _('Special Exams'), 'access': access, 'course_id': course_key, 'escalation_email': escalation_email, 'show_dashboard': is_backend_dashboard_available(course_key), 'show_onboarding': does_backend_support_onboarding(course.proctoring_provider), } return section_data def _section_certificates(course): """Section information for the certificates panel. The certificates panel allows global staff to generate example certificates and enable self-generated certificates for a course. Arguments: course (Course) Returns: dict """ example_cert_status = None html_cert_enabled = certs_api.has_html_certificates_enabled(course) if html_cert_enabled: can_enable_for_course = True else: example_cert_status = certs_api.example_certificates_status(course.id) # Allow the user to enable self-generated certificates for students # *only* once a set of example certificates has been successfully generated. # If certificates have been misconfigured for the course (for example, if # the PDF template hasn't been uploaded yet), then we don't want # to turn on self-generated certificates for students! can_enable_for_course = ( example_cert_status is not None and all( cert_status['status'] == 'success' for cert_status in example_cert_status ) ) instructor_generation_enabled = settings.FEATURES.get('CERTIFICATES_INSTRUCTOR_GENERATION', False) certificate_statuses_with_count = { certificate['status']: certificate['count'] for certificate in GeneratedCertificate.get_unique_statuses(course_key=course.id) } return { 'section_key': 'certificates', 'section_display_name': _('Certificates'), 'example_certificate_status': example_cert_status, 'can_enable_for_course': can_enable_for_course, 'enabled_for_course': certs_api.cert_generation_enabled(course.id), 'is_self_paced': course.self_paced, 'instructor_generation_enabled': instructor_generation_enabled, 'html_cert_enabled': html_cert_enabled, 'active_certificate': certs_api.get_active_web_certificate(course), 'certificate_statuses_with_count': certificate_statuses_with_count, 'status': CertificateStatuses, 'certificate_generation_history': CertificateGenerationHistory.objects.filter(course_id=course.id).order_by("-created"), 'urls': { 'generate_example_certificates': reverse( 'generate_example_certificates', kwargs={'course_id': course.id} ), 'enable_certificate_generation': reverse( 'enable_certificate_generation', kwargs={'course_id': course.id} ), 'start_certificate_generation': reverse( 'start_certificate_generation', kwargs={'course_id': course.id} ), 'start_certificate_regeneration': reverse( 'start_certificate_regeneration', kwargs={'course_id': course.id} ), 'list_instructor_tasks_url': reverse( 'list_instructor_tasks', kwargs={'course_id': course.id} ), } } @ensure_csrf_cookie @cache_control(no_cache=True, no_store=True, must_revalidate=True) @require_POST @login_required def set_course_mode_price(request, course_id): """ set the new course price and add new entry in the CourseModesArchive Table """ try: course_price = int(request.POST['course_price']) except ValueError: return JsonResponse( {'message': _("Please Enter the numeric value for the course price")}, status=400) # status code 400: Bad Request currency = request.POST['currency'] course_key = CourseKey.from_string(course_id) course_honor_mode = CourseMode.objects.filter(mode_slug='honor', course_id=course_key) if not course_honor_mode: return JsonResponse( {'message': _("CourseMode with the mode slug({mode_slug}) DoesNotExist").format(mode_slug='honor')}, status=400) # status code 400: Bad Request CourseModesArchive.objects.create( course_id=course_id, mode_slug='honor', mode_display_name='Honor Code Certificate', min_price=course_honor_mode[0].min_price, currency=course_honor_mode[0].currency, expiration_datetime=datetime.datetime.now(pytz.utc), expiration_date=datetime.date.today() ) course_honor_mode.update( min_price=course_price, currency=currency ) return JsonResponse({'message': _("CourseMode price updated successfully")}) def _section_course_info(course, access): """ Provide data for the corresponding dashboard section """ course_key = course.id section_data = { 'section_key': 'course_info', 'section_display_name': _('Course Info'), 'access': access, 'course_id': course_key, 'course_display_name': course.display_name_with_default, 'course_org': course.display_org_with_default, 'course_number': course.display_number_with_default, 'has_started': course.has_started(), 'has_ended': course.has_ended(), 'start_date': course.start, 'end_date': course.end, 'num_sections': len(course.children), 'list_instructor_tasks_url': reverse('list_instructor_tasks', kwargs={'course_id': str(course_key)}), } if settings.FEATURES.get('DISPLAY_ANALYTICS_ENROLLMENTS'): section_data['enrollment_count'] = CourseEnrollment.objects.enrollment_counts(course_key) if show_analytics_dashboard_message(course_key): # dashboard_link is already made safe in _get_dashboard_link dashboard_link = _get_dashboard_link(course_key) # so we can use Text() here so it's not double-escaped and rendering HTML on the front-end message = Text( _("Enrollment data is now available in {dashboard_link}.") ).format(dashboard_link=dashboard_link) section_data['enrollment_message'] = message try: sorted_cutoffs = sorted(list(course.grade_cutoffs.items()), key=lambda i: i[1], reverse=True) advance = lambda memo, letter_score_tuple: "{}: {}, ".format(letter_score_tuple[0], letter_score_tuple[1]) \ + memo section_data['grade_cutoffs'] = reduce(advance, sorted_cutoffs, "")[:-2] except Exception: # pylint: disable=broad-except section_data['grade_cutoffs'] = "Not Available" try: section_data['course_errors'] = [(escape(a), '') for (a, _unused) in modulestore().get_course_errors(course.id)] except Exception: # pylint: disable=broad-except section_data['course_errors'] = [('Error fetching errors', '')] return section_data def _section_membership(course, access): """ Provide data for the corresponding dashboard section """ course_key = course.id ccx_enabled = settings.FEATURES.get('CUSTOM_COURSES_EDX', False) and course.enable_ccx section_data = { 'section_key': 'membership', 'section_display_name': _('Membership'), 'access': access, 'ccx_is_enabled': ccx_enabled, 'enroll_button_url': reverse('students_update_enrollment', kwargs={'course_id': str(course_key)}), 'unenroll_button_url': reverse('students_update_enrollment', kwargs={'course_id': str(course_key)}), 'upload_student_csv_button_url': reverse( 'register_and_enroll_students', kwargs={'course_id': str(course_key)} ), 'modify_beta_testers_button_url': reverse( 'bulk_beta_modify_access', kwargs={'course_id': str(course_key)} ), 'list_course_role_members_url': reverse( 'list_course_role_members', kwargs={'course_id': str(course_key)} ), 'modify_access_url': reverse('modify_access', kwargs={'course_id': str(course_key)}), 'list_forum_members_url': reverse('list_forum_members', kwargs={'course_id': str(course_key)}), 'update_forum_role_membership_url': reverse( 'update_forum_role_membership', kwargs={'course_id': str(course_key)} ), 'is_reason_field_enabled': configuration_helpers.get_value('ENABLE_MANUAL_ENROLLMENT_REASON_FIELD', False) } return section_data def _section_cohort_management(course, access): """ Provide data for the corresponding cohort management section """ course_key = course.id ccx_enabled = hasattr(course_key, 'ccx') section_data = { 'section_key': 'cohort_management', 'section_display_name': _('Cohorts'), 'access': access, 'ccx_is_enabled': ccx_enabled, 'course_cohort_settings_url': reverse( 'course_cohort_settings', kwargs={'course_key_string': str(course_key)} ), 'cohorts_url': reverse('cohorts', kwargs={'course_key_string': str(course_key)}), 'upload_cohorts_csv_url': reverse('add_users_to_cohorts', kwargs={'course_id': str(course_key)}), 'verified_track_cohorting_url': reverse( 'verified_track_cohorting', kwargs={'course_key_string': str(course_key)} ), } return section_data def _section_discussions_management(course, access): # lint-amnesty, pylint: disable=unused-argument """ Provide data for the corresponding discussion management section """ course_key = course.id enrollment_track_schemes = available_division_schemes(course_key) section_data = { 'section_key': 'discussions_management', 'section_display_name': _('Discussions'), 'is_hidden': (not is_course_cohorted(course_key) and CourseDiscussionSettings.ENROLLMENT_TRACK not in enrollment_track_schemes), 'discussion_topics_url': reverse('discussion_topics', kwargs={'course_key_string': str(course_key)}), 'course_discussion_settings': reverse( 'course_discussions_settings', kwargs={'course_key_string': str(course_key)} ), } return section_data def _section_student_admin(course, access): """ Provide data for the corresponding dashboard section """ course_key = course.id is_small_course = CourseEnrollment.objects.is_small_course(course_key) section_data = { 'section_key': 'student_admin', 'section_display_name': _('Student Admin'), 'access': access, 'is_small_course': is_small_course, 'get_student_enrollment_status_url': reverse( 'get_student_enrollment_status', kwargs={'course_id': str(course_key)} ), 'get_student_progress_url_url': reverse( 'get_student_progress_url', kwargs={'course_id': str(course_key)} ), 'enrollment_url': reverse('students_update_enrollment', kwargs={'course_id': str(course_key)}), 'reset_student_attempts_url': reverse( 'reset_student_attempts', kwargs={'course_id': str(course_key)} ), 'reset_student_attempts_for_entrance_exam_url': reverse( 'reset_student_attempts_for_entrance_exam', kwargs={'course_id': str(course_key)}, ), 'rescore_problem_url': reverse('rescore_problem', kwargs={'course_id': str(course_key)}), 'override_problem_score_url': reverse( 'override_problem_score', kwargs={'course_id': str(course_key)} ), 'rescore_entrance_exam_url': reverse('rescore_entrance_exam', kwargs={'course_id': str(course_key)}), 'student_can_skip_entrance_exam_url': reverse( 'mark_student_can_skip_entrance_exam', kwargs={'course_id': str(course_key)}, ), 'list_instructor_tasks_url': reverse('list_instructor_tasks', kwargs={'course_id': str(course_key)}), 'list_entrace_exam_instructor_tasks_url': reverse( 'list_entrance_exam_instructor_tasks', kwargs={'course_id': str(course_key)} ), 'spoc_gradebook_url': reverse('spoc_gradebook', kwargs={'course_id': str(course_key)}), } if is_writable_gradebook_enabled(course_key) and settings.WRITABLE_GRADEBOOK_URL: section_data['writable_gradebook_url'] = '{}/{}'.format(settings.WRITABLE_GRADEBOOK_URL, str(course_key)) return section_data def _section_extensions(course): """ Provide data for the corresponding dashboard section """ section_data = { 'section_key': 'extensions', 'section_display_name': _('Extensions'), 'units_with_due_dates': [(title_or_url(unit), str(unit.location)) for unit in get_units_with_due_date(course)], 'change_due_date_url': reverse('change_due_date', kwargs={'course_id': str(course.id)}), 'reset_due_date_url': reverse('reset_due_date', kwargs={'course_id': str(course.id)}), 'show_unit_extensions_url': reverse('show_unit_extensions', kwargs={'course_id': str(course.id)}), 'show_student_extensions_url': reverse( 'show_student_extensions', kwargs={'course_id': str(course.id)} ), } return section_data def _section_data_download(course, access): """ Provide data for the corresponding dashboard section """ course_key = course.id show_proctored_report_button = ( settings.FEATURES.get('ENABLE_SPECIAL_EXAMS', False) and course.enable_proctored_exams ) section_key = 'data_download_2' if data_download_v2_is_enabled() else 'data_download' section_data = { 'section_key': section_key, 'section_display_name': _('Data Download'), 'access': access, 'show_generate_proctored_exam_report_button': show_proctored_report_button, 'get_problem_responses_url': reverse('get_problem_responses', kwargs={'course_id': str(course_key)}), 'get_grading_config_url': reverse('get_grading_config', kwargs={'course_id': str(course_key)}), 'get_students_features_url': reverse('get_students_features', kwargs={'course_id': str(course_key)}), 'get_issued_certificates_url': reverse( 'get_issued_certificates', kwargs={'course_id': str(course_key)} ), 'get_students_who_may_enroll_url': reverse( 'get_students_who_may_enroll', kwargs={'course_id': str(course_key)} ), 'get_anon_ids_url': reverse('get_anon_ids', kwargs={'course_id': str(course_key)}), 'list_proctored_results_url': reverse( 'get_proctored_exam_results', kwargs={'course_id': str(course_key)} ), 'list_instructor_tasks_url': reverse('list_instructor_tasks', kwargs={'course_id': str(course_key)}), 'list_report_downloads_url': reverse('list_report_downloads', kwargs={'course_id': str(course_key)}), 'calculate_grades_csv_url': reverse('calculate_grades_csv', kwargs={'course_id': str(course_key)}), 'problem_grade_report_url': reverse('problem_grade_report', kwargs={'course_id': str(course_key)}), 'course_has_survey': True if course.course_survey_name else False, # lint-amnesty, pylint: disable=simplifiable-if-expression 'course_survey_results_url': reverse( 'get_course_survey_results', kwargs={'course_id': str(course_key)} ), 'export_ora2_data_url': reverse('export_ora2_data', kwargs={'course_id': str(course_key)}), 'export_ora2_submission_files_url': reverse( 'export_ora2_submission_files', kwargs={'course_id': str(course_key)} ), 'export_ora2_summary_url': reverse('export_ora2_summary', kwargs={'course_id': str(course_key)}), } if not access.get('data_researcher'): section_data['is_hidden'] = True return section_data def null_applicable_aside_types(block): # pylint: disable=unused-argument """ get_aside method for monkey-patching into applicable_aside_types while rendering an HtmlBlock for email text editing. This returns an empty list. """ return [] def _section_send_email(course, access): """ Provide data for the corresponding bulk email section """ course_key = course.id # Monkey-patch applicable_aside_types to return no asides for the duration of this render with patch.object(course.runtime, 'applicable_aside_types', null_applicable_aside_types): # This HtmlBlock is only being used to generate a nice text editor. html_module = HtmlBlock( course.system, DictFieldData({'data': ''}), ScopeIds(None, None, None, course_key.make_usage_key('html', 'fake')) ) fragment = course.system.render(html_module, 'studio_view') fragment = wrap_xblock( 'LmsRuntime', html_module, 'studio_view', fragment, None, extra_data={"course-id": str(course_key)}, usage_id_serializer=lambda usage_id: quote_slashes(str(usage_id)), # Generate a new request_token here at random, because this module isn't connected to any other # xblock rendering. request_token=uuid.uuid1().hex ) cohorts = [] if is_course_cohorted(course_key): cohorts = get_course_cohorts(course) course_modes = [] if not VerifiedTrackCohortedCourse.is_verified_track_cohort_enabled(course_key): course_modes = CourseMode.modes_for_course(course_key, include_expired=True, only_selectable=False) email_editor = fragment.content section_data = { 'section_key': 'send_email', 'section_display_name': _('Email'), 'access': access, 'send_email': reverse('send_email', kwargs={'course_id': str(course_key)}), 'editor': email_editor, 'cohorts': cohorts, 'course_modes': course_modes, 'default_cohort_name': DEFAULT_COHORT_NAME, 'list_instructor_tasks_url': reverse( 'list_instructor_tasks', kwargs={'course_id': str(course_key)} ), 'email_background_tasks_url': reverse( 'list_background_email_tasks', kwargs={'course_id': str(course_key)} ), 'email_content_history_url': reverse( 'list_email_content', kwargs={'course_id': str(course_key)} ), } return section_data def _get_dashboard_link(course_key): """ Construct a URL to the external analytics dashboard """ analytics_dashboard_url = '{}/courses/{}'.format(settings.ANALYTICS_DASHBOARD_URL, str(course_key)) link = HTML("<a href=\"{0}\" rel=\"noopener\" target=\"_blank\">{1}</a>").format( analytics_dashboard_url, settings.ANALYTICS_DASHBOARD_NAME ) return link def _section_analytics(course, access): """ Provide data for the corresponding dashboard section """ section_data = { 'section_key': 'instructor_analytics', 'section_display_name': _('Analytics'), 'access': access, 'course_id': str(course.id), } return section_data def _section_open_response_assessment(request, course, openassessment_blocks, access): """Provide data for the corresponding dashboard section """ course_key = course.id ora_items = [] parents = {} for block in openassessment_blocks: block_parent_id = str(block.parent) result_item_id = str(block.location) if block_parent_id not in parents: parents[block_parent_id] = modulestore().get_item(block.parent) assessment_name = _("Team") + " : " + block.display_name if block.teams_enabled else block.display_name ora_items.append({ 'id': result_item_id, 'name': assessment_name, 'parent_id': block_parent_id, 'parent_name': parents[block_parent_id].display_name, 'staff_assessment': 'staff-assessment' in block.assessment_steps, 'url_base': reverse('xblock_view', args=[course.id, block.location, 'student_view']), 'url_grade_available_responses': reverse('xblock_view', args=[course.id, block.location, 'grade_available_responses_view']), }) openassessment_block = openassessment_blocks[0] block, __ = get_module_by_usage_id( request, str(course_key), str(openassessment_block.location), disable_staff_debug_info=True, course=course ) section_data = { 'fragment': block.render('ora_blocks_listing_view', context={ 'ora_items': ora_items, 'ora_item_view_enabled': settings.FEATURES.get('ENABLE_XBLOCK_VIEW_ENDPOINT', False) }), 'section_key': 'open_response_assessment', 'section_display_name': _('Open Responses'), 'access': access, 'course_id': str(course_key), } return section_data def is_ecommerce_course(course_key): """ Checks if the given course is an e-commerce course or not, by checking its SKU value from CourseMode records for the course """ sku_count = len([mode.sku for mode in CourseMode.modes_for_course(course_key) if mode.sku]) return sku_count > 0
eduNEXT/edunext-platform
lms/djangoapps/instructor/views/instructor_dashboard.py
Python
agpl-3.0
33,422
[ "VisIt" ]
ede08f20c3270d13ba616525c16da85a6bc5b33b9fcaa2da2ea9b79c7c31c4b7
#Character level RNN import numpy as np file = open('alice.txt' , 'r').read() chars = list(set(file)) file_size , char_size = len(file) , len(chars) print "File has %d characters and %d unique characters" %(file_size,char_size) #Builds the Vector model char_ix = {ch:i for i,ch in enumerate(chars)} ix_char = {i:ch for i,ch in enumerate(chars)} # Example Vector for 'x' vector_for_char = np.zeros((char_size , 1)) vector_for_char[char_ix['x']] = 1 # print the sample vector print vector_for_char.ravel() #param neuron_size = 100 seq_length = 25 # number of steps to unroll RNN learn_rate = 1e-1 #weights Wxh = np.random.randn(neuron_size , char_size)*0.01 Whh = np.random.randn(neuron_size , neuron_size)*0.01 Why = np.random.randn(char_size , neuron_size)*0.01 bh = np.zeros((neuron_size , 1)) by = np.zeros((char_size,1)) # Creating a sample text model without any optimization def text_sample(h , start_ix , n): ''' h -> memory state start_ix -> start char ''' x = np.zeros((char_size , 1)) x[start_ix] = 1 ixs = [] for t in xrange(n): h = np.tanh(np.dot(Wxh , x) + np.dot(Whh ,h) + bh) y = np.dot(Why , h) + by p = np.exp(y) / np.sum(np.exp(y)) ix = np.random.choice(range(char_size) , p = p.ravel()) x = np.zeros((char_size , 1)) x[ix] = 1 ixs.append(ix) txt = ''.join(ix_char[ix] for ix in ixs) print '------ \n %s \n ------'%(txt,) hprev = np.zeros((neuron_size , 1)) # reset the memory state text_sample(hprev , char_ix['a'] , 2000) # The above model makes no sense #Now defining the loss function def lossFunc(inputs , targets , hprev): ''' input , target -> list of integers hprev -> initial memory state of hidden neurons (we start with zeros) returns the loss , gradients on model parameters , last neuron hidden state ''' n = len(inputs) xs , hs , ys , ps = {} , {}, {} ,{} hs[-1] = np.copy(hprev) loss= 0 #Forward Pass for t in xrange(n): xs[t] = np.zeros((char_size,1)) xs[t][inputs[t]] = 1 hs[t] = np.tanh(np.dot(Wxh , xs[t] + np.dot(Whh , hs[t-1] + bh))) #Hidden neuron state ys = np.dot(Why , hs[t]) + by # Probalibity fro next char ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) loss += -np.log(ps[t][targets[t] , 0]) #softmax # Backward Pass dWxh ,dWhh , dWhy = np.zeros_like(Wxh) , np.zeros_like(Whh) , np.zeros_like(Why) dbh , dby = np.zeros_like(bh) , np.zeros_like(by) dhnext = np.zeros_like(hs[0]) # Going backwards so reversed( xrange() ) ** for t in reversed(xrange(n)): dy = np.copy[ps[t]] dy[targets[t]] -= 1 # Backprop into y dWhy += np.dot(dy,hs[t].T)
PadamSethia/shakeyshakespeare
main.py
Python
mit
2,679
[ "NEURON" ]
58ec70b0d955f7a7ec7f4047e205df3c80d0a205bc26a39ba97ed3944f685acb
# Moogul.py: MOOSE Graphics 3D. # Copyright (C) Upinder S. Bhalla NCBS 2022 # This program is licensed under the GNU Public License version 3. # import moose import numpy as np import matplotlib import matplotlib.pyplot as plt import vpython as vp import time from packaging import version #from mpl_toolkits.mplot3d.art3d import Line3DCollection NUM_CMAP = 64 SCALE_SCENE = 64 bgvector = vp.vector(0.7, 0.8, 0.9) # RGB bgDict = {'default': bgvector, 'black': vp.color.black, 'white': vp.color.white, 'cyan': vp.color.cyan, 'grey': vp.vector( 0.5, 0.5, 0.5 ) } sleepTimes = [0.0, 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] def bgLookup( bg ): col = bgDict.get( bg ) if not col: return bgvector return col class MoogulError( Exception ): def __init__( self, value ): self.value = value def __str__( self ): return repr( self.value ) class MooView: ''' The MooView class is a window in which to display one or more neurons, using the MooNeuron and MooReacSystemclass.''' viewIdx = 0 origScene = None rgb = [] viewList = [] consolidatedTitle = "" def __init__( self, swx = 10, swy = 10, hideAxis = True, title = "view", colormap = 'jet' ): self.viewIdx = MooView.viewIdx MooView.viewIdx += 1 MooView.viewList.append( self ) MooView.consolidatedTitle += title + " " self.title = title self.swx = swx self.swy = swy self.drawables_ = [] self.sensitivity = 0.05 # radians rotation, and other adjustments self.sleep = 0.005 # Seconds to sleep per frame self.colormap = colormap self.colorbar = None self.valMin = 0.0 self.valMmax = 1.0 self.plotFlag_ = True @staticmethod def replayLoop(): if len( MooView.viewList ) == 0: return numFrames = MooView.viewList[0].numFrames() while MooView.viewList[0].replayButton.text == "Stop Replay": for idx in range( numFrames ): for view in MooView.viewList: view.replaySnapshot( idx ) vp.sleep( MooView.viewList[0].sleep ) vp.sleep( 0.5 ) # Pause 0.5 sec between replays def notifySimulationEnd( self ): if self.viewIdx == 0: self.replayButton.disabled = False def numFrames( self ): if len( self.drawables_ ) == 0: return 0 return len( self.drawables_[0].snapshot ) def addDrawable( self, n ): self.drawables_.append( n ) if len( self.drawables_ ) == 1: self.valMin = n.valMin self.valMax = n.valMax # self.scene.objects also maintains list. def toggleReplay( self ): if self.replayButton.text == "Start Replay": self.replayButton.text = "Stop Replay" self.replayButton.background = vp.color.red MooView.replayLoop() else: self.replayButton.text = "Start Replay" self.replayButton.background = vp.color.white def setSleepTime( self ): idx = int( round( self.sleepSlider.value ) ) self.sleep = sleepTimes[idx] self.sleepLabel.text = " Frame dt = {:1.3f} sec".format( self.sleep ) def updateAxis( self ): if not self.colorbar: return forward = vp.norm( self.scene.forward ) screenUp = vp.norm( self.scene.up ) right = vp.norm( vp.cross( forward, screenUp ) ) up = vp.norm( vp.cross( right, forward ) ) dx = 0.8 x = vp.vector( dx, 0.0, 0.0 ) y = vp.vector( 0.0, dx, 0.0 ) z = vp.vector( 0.0, 0.0, dx ) self.xAx.axis = vp.vector( x.dot( right ), x.dot( up ), 0.0 ) self.yAx.axis = vp.vector( y.dot( right ), y.dot( up ), 0.0 ) self.zAx.axis = vp.vector( z.dot( right ), z.dot( up ), 0.0 ) self.axisLength.text = "{:.2f} <i>u</i>m".format( dx * 1e6*self.scene.range * self.colorbar.width / self.scene.width ) def innerColorbar( self, title, bg ): barWidth = SCALE_SCENE * 1.5 if ( bgLookup(bg).mag < 1 ): barTextColor = vp.color.white else: barTextColor = vp.color.black self.colorbar = vp.canvas( title = title, width = barWidth, height = self.swy * SCALE_SCENE, background = bgLookup(bg), align = 'left', range = 1, autoscale = False ) #self.colorbar = vp.canvas( title = title, width = barWidth, height = self.swy * SCALE_SCENE, background = vp.color.cyan, align = 'left', range = 1, autoscale = False ) self.colorbar.userzoom = False self.colorbar.userspin = False self.colorbar.userpan = False height = 0.10 width = 5 axOrigin = vp.vector( 0, -5.5, 0 ) for idx, rgb in enumerate( self.rgb ): cbox = vp.box( canvas = self.colorbar, pos = vp.vector( 0, height * (idx - 26), 0), width = width, height = height, color = rgb ) barName = self.title.replace( ' ', '\n' ) self.barName = vp.label( canvas = self.colorbar, align = 'left', pixel_pos = True, pos = vp.vector( 2, (self.swy - 0.32) * SCALE_SCENE, 0), text = barName, height = 15, color = barTextColor, box = False, opacity = 0 ) self.barMin = vp.label( canvas = self.colorbar, align = 'center', pixel_pos = True, pos = vp.vector( barWidth/2, self.swy * SCALE_SCENE * 0.22, 0), text = "{:.3f}".format(self.valMin), height = 12, color = barTextColor, box = False, opacity = 0 ) self.barMax = vp.label( canvas = self.colorbar, align = 'center', pixel_pos = True, pos = vp.vector( barWidth/2, (self.swy - 1.2) * SCALE_SCENE, 0), text = "{:.3f}".format(self.valMax), height = 12, color = barTextColor, box = False, opacity = 0 ) self.xAx = vp.cylinder( canvas = self.colorbar, pos = axOrigin, axis = vp.vector( 0.8, 0, 0 ), radius = 0.04, color = vp.color.red ) self.yAx = vp.cylinder( canvas = self.colorbar, pos = axOrigin, axis = vp.vector( 0, 0.8, 0 ), radius = 0.04, color = vp.color.green ) self.zAx = vp.cylinder( canvas = self.colorbar, pos = axOrigin, axis = vp.vector( 0, 0, 0 ), radius = 0.04, color = vp.color.blue ) self.axisLength = vp.label( pos = axOrigin + vp.vector(0, 1, 0), text = "1.00 <i>u</i>m", color = barTextColor, box = False ) def makeColorbar( self, doOrnaments = True, colorscale = 'jet', bg = 'default' ): title = None if doOrnaments: title = MooView.consolidatedTitle + "\n" self.innerColorbar( title, bg ) if doOrnaments: self.timeLabel = vp.wtext( text = "Time = 0.000 sec", pos = self.colorbar.title_anchor ) self.sleepLabel = vp.wtext( text = " Frame dt = 0.005 sec", pos = self.colorbar.title_anchor ) self.sleepSlider = vp.slider( pos = self.colorbar.title_anchor, length = 200, bind = self.setSleepTime, min = 0, max = len( sleepTimes ) -1, value = min( len( sleepTimes ), 2 ) ) self.replayButton = vp.button( text = "Start Replay", pos = self.colorbar.title_anchor, bind=self.toggleReplay, disabled = True ) self.colorbar.append_to_title("\n") def pickObj( self ): obj = self.scene.mouse.pick if obj == None: return elmPath = self.innerPickObj( obj ) if elmPath: self.handlePick( elmPath ) return elif self.viewIdx == 0: for view in MooView.viewList[1:]: if view.colorbar == None: elmPath = view.innerPickObj( obj ) if elmPath: self.handlePick( elmPath ) return print( "Object {} not found on view {}".format( obj, self.title ) ) def innerPickObj( self, obj ): for dr in self.drawables_: elmPath = dr.findDisplayObject( obj ) if elmPath: return (elmPath[0], elmPath[1], dr) return None def handlePick( self, elmPath ): path, field, drawable = elmPath if self.plotFlag_: drawable.plotHistory( path, field, self.graph, self.graphPlot1 ) else: print( path, field ) def makeScene( self, mergeDisplays, bg = 'default' ): if self.viewIdx == 0: MooView.origScene = vp.canvas( width = self.swx * SCALE_SCENE, height = self.swy * SCALE_SCENE, background = bgLookup( bg ), align = 'left', autoscale = True ) self.scene = MooView.origScene self.scene.bind( 'keydown', self.moveView ) self.scene.bind( 'keydown', self.updateAxis ) self.scene.bind( 'mousedown', self.pickObj ) #self.flatbox = vp.box( width = 10, height = 6 ) elif mergeDisplays: self.scene = MooView.origScene else: self.scene = vp.canvas( width = self.swx * SCALE_SCENE, height = self.swy * SCALE_SCENE, background = bgvector, align = 'left', autoscale = True ) self.scene.bind( 'keydown', self.moveView ) self.scene.bind( 'keydown', self.updateAxis ) self.scene.bind( 'mousedown', self.pickObj ) ''' self.xAx2 = vp.cylinder( canvas = self.scene, pos = vp.vector( 0, 0, 0), axis = vp.vector( 1e-5, 0, 0 ), radius = 0.2e-6, color = vp.color.red ) self.yAx2 = vp.cylinder( canvas = self.scene, pos = vp.vector( 0, 0, 0), axis = vp.vector( 0, 1e-5, 0 ), radius = 0.2e-6, color = vp.color.green ) self.zAx2 = vp.cylinder( canvas = self.scene, pos = vp.vector( 0, 0, 0), axis = vp.vector( 0, 0, 1e-5 ), radius = 0.2e-6, color = vp.color.blue ) ''' self.scene.bind( 'mousedown mousemove mouseup', self.updateAxis ) def firstDraw( self, mergeDisplays, rotation=0.0, elev=0.0, azim=0.0, center = [0.0, 0,0, 0.0], colormap = 'jet', bg = 'default' ): self.colormap = colormap cmap = plt.get_cmap( self.colormap, lut = NUM_CMAP ) self.rgb = [ list2vec(cmap(i)[0:3]) for i in range( NUM_CMAP ) ] doOrnaments = (self.viewIdx == 0) if doOrnaments or not mergeDisplays: self.makeColorbar( doOrnaments = doOrnaments, bg = bg ) self.makeScene( mergeDisplays, bg = bg ) if rotation == 0.0: self.doRotation = False self.rotation = 0.1 # default rotation per frame, in radians. else: self.doRotation = True self.rotation = rotation # arg units: radians/frame for i in self.drawables_: i.rgb = self.rgb i.drawForTheFirstTime( self.scene ) if doOrnaments or not mergeDisplays: if len( center ) == 3: self.scene.center = list2vec( center ) else: self.doAutoscale() self.updateAxis() if self.viewIdx == (MooView.viewIdx-1): self.graph = vp.graph( title = "Graph", xtitle = "Time (s)", ytitle = " Units here", width = 700, fast=False, align = "left" ) self.graphPlot1 = vp.gcurve( color = vp.color.blue, interval=-1) #self.graphPlot1.data = [[0,0], [1,1],[2,0],[3,4],[4,0], [5,1]] #self.graphPlot1.plot( [[0,0], [1,1],[2,0],[3,4],[4,0]] ) def updateValues( self, simTime ): for i in self.drawables_: i.updateValues( simTime ) if self.doRotation and abs( self.rotation ) < 2.0 * 3.14 / 3.0: self.scene.forward = vp.rotate( self.scene.forward, angle = self.rotation, axis = self.scene.up ) self.updateAxis() if self.viewIdx == 0: self.timeLabel.text = "Time = {:7.3f} sec".format( simTime ) vp.sleep( self.sleep ) def replaySnapshot( self, idx ): for i in self.drawables_: simTime = i.replaySnapshot( idx ) if self.viewIdx == 0: self.timeLabel.text = "Time = {:7.3f} sec".format( simTime ) self.updateAxis() def doAutoscale( self ): if self.drawables_[0].dataWrapper_.numObj() == 0: print( "Warning: No values to display in Moogli view ", self.title ) return cmin = self.drawables_[0].dataWrapper_.coordMin_ cmax = self.drawables_[0].dataWrapper_.coordMax_ diamax = max( self.drawables_[0].dataWrapper_.getCoords()[:,6] ) v0 = vp.vector( cmin[0], cmin[1], cmin[2] ) v1 = vp.vector( cmax[0], cmax[1], cmax[2] ) #self.scene.camera.axis = self.scene.forward * vp.mag(v1 - v0) * 4 self.scene.center = (v0 + v1 ) / 2.0 self.scene.range = (diamax + vp.mag(v0 - v1 ) ) / 1.5 def moveView(self, event): camAxis = self.scene.camera.axis camDist = vp.mag(self.scene.center - self.scene.camera.pos) dtheta = self.sensitivity up = self.scene.up if event.key in ["up", "k", "K"]: self.scene.camera.pos -= up.norm() * dtheta * camDist return if event.key in ["down", "j", "J"]: self.scene.camera.pos += up.norm() * dtheta * camDist return if event.key in ["right", "l", "L"]: self.scene.camera.pos += vp.norm(up.cross(camAxis)) * dtheta * camDist return if event.key in ["left", "h", "H"]: self.scene.camera.pos -= vp.norm(up.cross(camAxis)) * dtheta * camDist return if event.key in [".", ">"]: # Get closer, by ratio ctr = self.scene.center self.scene.camera.pos = ctr - camAxis/( 1+dtheta ) self.scene.camera.axis = ctr - self.scene.camera.pos return if event.key in [",", "<"]: # Get further ctr = self.scene.center self.scene.camera.pos = ctr - camAxis*( 1+dtheta ) self.scene.camera.axis = ctr - self.scene.camera.pos return if event.key == "p": # pitch: Rotate camera around ctr-horiz axis self.scene.forward = vp.rotate( self.scene.forward, angle = dtheta, axis = vp.cross( self.scene.forward, self.scene.up ) ) return if event.key == "P": self.scene.forward = vp.rotate( self.scene.forward, angle = -dtheta, axis = vp.cross( self.scene.forward, self.scene.up ) ) return if event.key == "y": # yaw: Rotate camera around ctr - up axis. self.scene.forward = vp.rotate( self.scene.forward, angle = dtheta, axis = self.scene.up ) return return if event.key == "Y": self.scene.forward = vp.rotate( self.scene.forward, angle = -dtheta, axis = self.scene.up ) return if event.key == "r": # Roll, that is, change the 'up' vector self.scene.camera.rotate( angle = dtheta, axis = camAxis, origin = self.scene.camera.pos ) return if event.key == "R": self.scene.camera.rotate( angle = -dtheta, axis = camAxis, origin = self.scene.camera.pos ) return if event.key == "d": # Diameter scaling down for dbl in self.drawables_: dbl.diaScale *= 1.0 - self.sensitivity * 4 dbl.updateDiameter() return if event.key == "D": for dbl in self.drawables_: dbl.diaScale *= 1.0 + self.sensitivity * 4 dbl.updateDiameter() return if event.key == "s": # Scale down sleep time, make it faster. self.sleep *= 1 - self.sensitivity return if event.key == "S": # Scale up sleep time, make it slower. self.sleep *= 1 + self.sensitivity return if event.key == "a": # autoscale to fill view. self.doAutoscale() return if event.key == "g": self.hideAxis = not self.hideAxis # show/hide the axis here. if event.key == "t": # Turn on/off twisting/autorotate self.doRotation = not self.doRotation if event.key == "?": # Print out help for these commands self.printMoogulHelp() def printMoogulHelp( self ): print( ''' Key bindings for Moogul: Up or k: pan object up Down or j: pan object down left or h: pan object left. right or l: pan object right . or >: Zoom in: make object appear bigger , or <: Zoom out: make object appear smaller a: Autoscale to fill view p: Pitch down P: Pitch up y: Yaw counterclockwise Y: Yaw counterclockwise d: diminish diameter D: Distend diameter. g: Toggle visibility of grid t: Toggle turn (rotation along long axis of cell) ?: Print this help page. ''') ##################################################################### def list2vec( arg ): return vp.vector( arg[0], arg[1], arg[2] ) class DataWrapper: ''' Class for interfacing between moogli and the data source. Currently implemented for MOOSE and for nsdf reader. ''' def __init__( self, field ): self.coordMin_ = np.zeros( 3 ) self.coordMax_ = np.ones( 3 ) self.field_ = field self.objList_ = [] def getValues( self ): return np.zeros( 1 ) def numObj( self ): return len( self.objList_ ) def getCoords( self ): return np.array( [] ) def getMinMax( self ): nmin = np.amin(self.coords_, axis = 0) self.coordMin_ = np.amin( np.array( [nmin[0:3], nmin[3:6]] ), axis = 0 ) nmax = np.amax(self.coords_, axis = 0) self.coordMax_ = np.amax( np.array( [nmax[0:3], nmax[3:6]] ), axis = 0 ) def objPathFromIndex( self, idx ): if idx < len( self.objList_ ): return self.objList_[idx].path return None def advance( self, simTime ): # Checks that the simTime has crossed upcomingTime return True # used for multi timestep cases. def getHistory( self, path, field ): # stub function. Derived classes fill it in and return useful values return [0, 1, 2, 3], [ 1, 4, 9, 16] class MooDrawable: ''' Base class for drawing things''' def __init__( self, dataWrapper, colormap, lenScale, diaScale, fieldScale, autoscale, valMin, valMax ): self.dataWrapper_ = dataWrapper self.lenScale = lenScale self.diaScale = diaScale self.fieldScale = fieldScale self.colormap = colormap self.autoscale = autoscale self.valMin = valMin self.valMax = valMax self.segments = [] self.snapshot = [] #cmap = plt.get_cmap( self.colormap, lut = NUM_CMAP ) #self.rgb = [ list2vec(cmap(i)[0:3]) for i in range( NUM_CMAP ) ] def updateValues( self, simTime ): if self.dataWrapper_.advance( simTime ): self.val = self.dataWrapper_.getValues() * self.fieldScale else: return if self.autoscale: valMin = min( self.val ) valMax = max( self.val ) else: valMin = self.valMin valMax = self.valMax scaleVal = NUM_CMAP * (self.val - valMin) / (valMax - valMin) #indices = scaleVal.ndarray.astype( int ) indices = np.maximum( np.minimum( scaleVal, NUM_CMAP-0.5), 0.0).astype(int) # Have to figure how this will work with multiple update rates. self.snapshot.append( [simTime, indices] ) self.displayValues( indices ) def displayValues( self, indices ): for idx, seg in zip( indices, self.segments ): seg.color = self.rgb[ idx] #seg.radius = self.diaScale * self.activeDia[idx] def replaySnapshot( self, idx ): if idx >= len( self.snapshot ): return 0.0 self.displayValues( self.snapshot[idx][1] ) return self.snapshot[idx][0] # return frame time def updateDiameter( self ): dia = self.dataWrapper_.getCoords()[:,6] for s, w in zip( self.segments, dia ): s.radius = self.diaScale * w / 2.0 def cylinderDraw( self, _scene ): for idx, coord in enumerate( self.dataWrapper_.getCoords() ): v0 = list2vec( coord[0:3] ) v1 = list2vec( coord[3:6] ) radius = self.diaScale * coord[6] / 2.0 opacity = self.opacity[idx] rod = vp.cylinder( canvas = _scene, pos = v0, axis = v1 - v0, radius = radius, opacity = opacity ) self.segments.append( rod ) def findDisplayObject( self, obj ): try: idx = self.segments.index( obj ) return self.dataWrapper_.objPathFromIndex( idx ), self.dataWrapper_.field_ except ValueError: return None def plotHistory( self, path, field, graph, plot ): t, v = self.dataWrapper_.getHistory( path, field ) if len( t ) == 0: print( "No data history for '", path, ".", field ) return #self.graph = vp.graph( title = path + "." + field, xtitle = "Time (s)", ytitle = field + " Units here", width = 800, fast=False, pos=self.colorbar.caption_anchor ) graph.title = path + "." + field dat = [[x,y] for x, y in zip( t, v ) ] plot.data = dat #print (dat) #print( "IN plotHistory, ", len( dat), len( v ) ) #plot.data = [[x,y] for x, y in zip( t, v ) ] #plot.data = [[x,sin(x)] for x in range( 0.0, 10.0, 0.1 ) ] ''' fig = plt.figure( 1 ) plt.ion() plt.title( path + "." + field ) plt.xlabel( "Time (s)" ) plt.ylabel( field + " um, units?" ) plt.plot( t, v ) plt.show( block = False ) fig.canvas.draw() ''' ##################################################################### class MooNeuron( MooDrawable ): ''' Draws collection of line segments of defined dia and color''' def __init__( self, dataWrapper, field = 'Vm', colormap = 'jet', lenScale = 1.0, diaScale = 1.0, fieldScale = 1.0, autoscale = False, valMin = -0.1, valMax = 0.05, ): #self.isFieldOnCompt = #field in ( 'Vm', 'Im', 'Rm', 'Cm', 'Ra', 'inject', 'diameter' ) MooDrawable.__init__( self, dataWrapper, colormap = colormap, lenScale = lenScale, diaScale = diaScale, fieldScale = fieldScale, autoscale = autoscale, valMin = valMin, valMax = valMax ) self.opacity = np.ones( dataWrapper.numObj() ) * 0.5 def drawForTheFirstTime( self, _scene ): self.cylinderDraw( _scene ) ##################################################################### class MooReacSystem( MooDrawable ): ''' Draws collection of line segments of defined dia and color''' def __init__( self, dataWrapper, colormap = 'jet', lenScale = 1e0, diaScale = 1.0, fieldScale = 1.0, autoscale = False, valMin = 0.0, valMax = 1.0 ): MooDrawable.__init__( self, dataWrapper, colormap = colormap, lenScale = lenScale, diaScale = diaScale, fieldScale = fieldScale, autoscale = autoscale, valMin = valMin, valMax = valMax ) self.opacity = np.ones( dataWrapper.numObj() ) def drawForTheFirstTime( self, _scene ): if self.dataWrapper_.numObj() == 0: return mt = self.dataWrapper_.meshType() if mt in ["NeuroMesh", "CylMesh", "SpineMesh", "PsdMesh"]: self.cylinderDraw( _scene ) elif mt == "SpineMesh": self.spineDraw( _scene ) elif mt == "PresynMesh": self.presynDraw( _scene ) elif mt == "EndoMesh": self.endoDraw( _scene ) def spineDraw( self, _scene ): # Spine entry has head[3], shaft[3], root[3], dia. for idx, coord in enumerate( self.dataWrapper_.getCoords() ): v0 = list2vec( coord[0:3] ) v1 = list2vec( coord[3:6] ) radius = self.diaScale * coord[6] / 2.0 opacity = self.opacity[idx] rod = vp.cylinder( canvas = _scene, pos = v0, axis = v1 - v0, radius = radius, opacity = opacity ) self.segments.append( rod ) def presynDraw( self, _scene ): for idx, coord in enumerate( self.dataWrapper_.getCoords() ): v0 = list2vec( coord[0:3] ) v1 = list2vec( coord[3:6] ) radius = self.diaScale * coord[6] / 2.0 opacity = self.opacity[idx] cone = vp.cone( canvas = _scene, pos = v0, axis = v0 - v1, radius = radius, opacity = opacity ) self.segments.append( cone ) def endoDraw( self, _scene ): for idx, coord in enumerate( self.dataWrapper_.getCoords() ): v0 = list2vec( coord[0:3] ) v1 = list2vec( coord[3:6] ) radius = self.diaScale * coord[6] / 2.0 opacity = self.opacity[idx] sphere = vp.sphere( canvas = _scene, pos = (v0 + v1)/2.0, radius = radius, opacity = opacity ) self.segments.append( sphere )
BhallaLab/moose-core
python/rdesigneur/moogul.py
Python
gpl-3.0
25,407
[ "MOOSE" ]
7ad2bf32fd36f87066e4cd6937ba4a13b9fcae005f2da14fcfd1bc2325e6ef54
import numpy as np import numpy.random as rng from Gaussian import Gaussian class Track: """ A trajectory in space """ def __init__(self, num=10, ndim=6): """ num = number of points in the track ndim = dimensionality of the space """ self.num, self.ndim = num, ndim self.pos = np.empty((num, ndim)) def from_prior(self, L=5.): """ Generate a track from a standard AR(1) prior """ alpha = np.exp(-1./L) beta = np.sqrt(1. - alpha**2) self.pos[0, :] = rng.randn(self.ndim) for i in range(1, self.num): self.pos[i, :] = alpha*self.pos[i-1, :] + beta*rng.randn(self.ndim) def evaluate_mog(self, x, y): """ Make a mixture of gaussians from this track and evaluate it """ f = np.zeros(x.shape) params = self.pos.copy() params[:,2] = np.exp(params[:,2]) params[:,3] = np.exp(params[:,3]) params[:,4] = np.exp(0.5*params[:,4]) for i in range(self.num): gaussian = Gaussian(params=params[i, :]) f += gaussian.evaluate(x, y) return f if __name__ == '__main__': import matplotlib.pyplot as plt track = Track(100) track.from_prior(L=20.) plt.plot(track.pos[:,0]) plt.show() # Set up cartesian coordinate grid x = np.linspace(-5., 5., 1001) [x, y] = np.meshgrid(x, x[::-1]) # Make a gaussian gaussian = Gaussian() f = track.evaluate_mog(x, y) plt.imshow(f, interpolation='nearest') plt.show()
eggplantbren/MogTrack
code/python/Track.py
Python
mit
1,365
[ "Gaussian" ]
e4ad96cc77d09cb00655a410006540c8e7dfac2d8561b1fb439fb60d4f32e97c
# Load the list of available alignments when the tool is initialized aligndb = dict() for line in open( "/depot/data2/galaxy/alignseq.loc" ): fields = line.split() if fields[0] == "align": try: aligndb[fields[1]].append( fields[2] ) except: aligndb[fields[1]] = [ fields[2] ] def get_available_alignments_for_build( build ): # FIXME: We need a database of descriptive names corresponding to dbkeys. # We need to resolve the musMusX <--> mmX confusion rval = [] if build[0:2] == "mm": build = build.replace('mm','musMus') if build[0:2] == "rn": build = build.replace('rn','ratNor') if build in aligndb: for val in aligndb[build]: rval.append( ( val, val, False ) ) return rval
jmchilton/galaxy-central
tools/extract/extractAxt_wrapper_code.py
Python
mit
780
[ "Galaxy" ]
f3f909f3d1c4fcf5783e40ad1552ffbfa454e5ffbbab56d51325648370228e5a
""" ..mod: FTSRequest ================= Helper class to perform FTS job submission and monitoring. """ # # imports import sys import re import time # # from DIRAC from DIRAC import gLogger, S_OK, S_ERROR from DIRAC.Core.Utilities.File import checkGuid from DIRAC.Core.Utilities.Adler import compareAdler, intAdlerToHex, hexAdlerToInt from DIRAC.Core.Utilities.SiteSEMapping import getSitesForSE from DIRAC.Core.Utilities.Time import dateTime from DIRAC.Resources.Storage.StorageElement import StorageElement from DIRAC.Resources.Catalog.FileCatalog import FileCatalog from DIRAC.Core.Utilities.ReturnValues import returnSingleResult from DIRAC.AccountingSystem.Client.Types.DataOperation import DataOperation from DIRAC.Core.Security.ProxyInfo import getProxyInfo from DIRAC.ConfigurationSystem.Client.Helpers.Operations import Operations from DIRAC.DataManagementSystem.Client.FTSJob import FTSJob from DIRAC.DataManagementSystem.Client.FTSFile import FTSFile # # RCSID __RCSID__ = "$Id$" class FTSRequest( object ): """ .. class:: FTSRequest Helper class for FTS job submission and monitoring. """ # # default checksum type __defaultCksmType = "ADLER32" # # flag to disablr/enable checksum test, default: disabled __cksmTest = False def __init__( self ): """c'tor :param self: self reference """ self.log = gLogger.getSubLogger( self.__class__.__name__, True ) # # final states tuple self.finalStates = ( 'Canceled', 'Failed', 'Hold', 'Finished', 'FinishedDirty' ) # # failed states tuple self.failedStates = ( 'Canceled', 'Failed', 'Hold', 'FinishedDirty' ) # # successful states tuple self.successfulStates = ( 'Finished', 'Done' ) # # all file states tuple self.fileStates = ( 'Done', 'Active', 'Pending', 'Ready', 'Canceled', 'Failed', 'Finishing', 'Finished', 'Submitted', 'Hold', 'Waiting' ) self.statusSummary = {} # # request status self.requestStatus = 'Unknown' # # dict for FTS job files self.fileDict = {} # # dict for replicas information self.catalogReplicas = {} # # dict for metadata information self.catalogMetadata = {} # # dict for files that failed to register self.failedRegistrations = {} # # placehoder for FileCatalog reference self.oCatalog = None # # submit timestamp self.submitTime = '' # # placeholder FTS job GUID self.ftsGUID = '' # # placeholder for FTS server URL self.ftsServer = '' # # flag marking FTS job completness self.isTerminal = False # # completness percentage self.percentageComplete = 0.0 # # source SE name self.sourceSE = '' # # flag marking source SE validity self.sourceValid = False # # source space token self.sourceToken = '' # # target SE name self.targetSE = '' # # flag marking target SE validity self.targetValid = False # # target space token self.targetToken = '' # # placeholder for target StorageElement self.oTargetSE = None # # placeholder for source StorageElement self.oSourceSE = None # # checksum type, set it to default self.__cksmType = self.__defaultCksmType # # disable checksum test by default self.__cksmTest = False # # statuses that prevent submitting to FTS self.noSubmitStatus = ( 'Failed', 'Done', 'Staging' ) # # were sources resolved? self.sourceResolved = False # # Number of file transfers actually submitted self.submittedFiles = 0 self.transferTime = 0 self.submitCommand = Operations().getValue( 'DataManagement/FTSPlacement/FTS2/SubmitCommand', 'glite-transfer-submit' ) self.monitorCommand = Operations().getValue( 'DataManagement/FTSPlacement/FTS2/MonitorCommand', 'glite-transfer-status' ) self.ftsVersion = Operations().getValue( 'DataManagement/FTSVersion', 'FTS2' ) self.ftsJob = None self.ftsFiles = [] #################################################################### # # Methods for setting/getting/checking the SEs # def setSourceSE( self, se ): """ set SE for source :param self: self reference :param str se: source SE name """ if se == self.targetSE: return S_ERROR( "SourceSE is TargetSE" ) self.sourceSE = se self.oSourceSE = StorageElement( self.sourceSE ) return self.__checkSourceSE() def __checkSourceSE( self ): """ check source SE availability :param self: self reference """ if not self.sourceSE: return S_ERROR( "SourceSE not set" ) res = self.oSourceSE.isValid( 'Read' ) if not res['OK']: return S_ERROR( "SourceSE not available for reading" ) res = self.__getSESpaceToken( self.oSourceSE ) if not res['OK']: self.log.error( "FTSRequest failed to get SRM Space Token for SourceSE", res['Message'] ) return S_ERROR( "SourceSE does not support FTS transfers" ) if self.__cksmTest: res = self.oSourceSE.getChecksumType() if not res["OK"]: self.log.error( "Unable to get checksum type for SourceSE", "%s: %s" % ( self.sourceSE, res["Message"] ) ) cksmType = res["Value"] if cksmType in ( "NONE", "NULL" ): self.log.warn( "Checksum type set to %s at SourceSE %s, disabling checksum test" % ( cksmType, self.sourceSE ) ) self.__cksmTest = False elif cksmType != self.__cksmType: self.log.warn( "Checksum type mismatch, disabling checksum test" ) self.__cksmTest = False self.sourceToken = res['Value'] self.sourceValid = True return S_OK() def setTargetSE( self, se ): """ set target SE :param self: self reference :param str se: target SE name """ if se == self.sourceSE: return S_ERROR( "TargetSE is SourceSE" ) self.targetSE = se self.oTargetSE = StorageElement( self.targetSE ) return self.__checkTargetSE() def setTargetToken( self, token ): """ target space token setter :param self: self reference :param str token: target space token """ self.targetToken = token return S_OK() def __checkTargetSE( self ): """ check target SE availability :param self: self reference """ if not self.targetSE: return S_ERROR( "TargetSE not set" ) res = self.oTargetSE.isValid( 'Write' ) if not res['OK']: return S_ERROR( "TargetSE not available for writing" ) res = self.__getSESpaceToken( self.oTargetSE ) if not res['OK']: self.log.error( "FTSRequest failed to get SRM Space Token for TargetSE", res['Message'] ) return S_ERROR( "TargetSE does not support FTS transfers" ) # # check checksum types if self.__cksmTest: res = self.oTargetSE.getChecksumType() if not res["OK"]: self.log.error( "Unable to get checksum type for TargetSE", "%s: %s" % ( self.targetSE, res["Message"] ) ) cksmType = res["Value"] if cksmType in ( "NONE", "NULL" ): self.log.warn( "Checksum type set to %s at TargetSE %s, disabling checksum test" % ( cksmType, self.targetSE ) ) self.__cksmTest = False elif cksmType != self.__cksmType: self.log.warn( "Checksum type mismatch, disabling checksum test" ) self.__cksmTest = False self.targetToken = res['Value'] self.targetValid = True return S_OK() @staticmethod def __getSESpaceToken( oSE ): """ get space token from StorageElement instance :param self: self reference :param StorageElement oSE: StorageElement instance """ res = oSE.getStorageParameters( "SRM2" ) if not res['OK']: return res return S_OK( res['Value'].get( 'SpaceToken' ) ) #################################################################### # # Methods for setting/getting FTS request parameters # def setFTSGUID( self, guid ): """ FTS job GUID setter :param self: self reference :param str guid: string containg GUID """ if not checkGuid( guid ): return S_ERROR( "Incorrect GUID format" ) self.ftsGUID = guid return S_OK() def setFTSServer( self, server ): """ FTS server setter :param self: self reference :param str server: FTS server URL """ self.ftsServer = server return S_OK() def isRequestTerminal( self ): """ check if FTS job has terminated :param self: self reference """ if self.requestStatus in self.finalStates: self.isTerminal = True return S_OK( self.isTerminal ) def setCksmTest( self, cksmTest = False ): """ set cksm test :param self: self reference :param bool cksmTest: flag to enable/disable checksum test """ self.__cksmTest = bool( cksmTest ) return S_OK( self.__cksmTest ) #################################################################### # # Methods for setting/getting/checking files and their metadata # def setLFN( self, lfn ): """ add LFN :lfn: to :fileDict: :param self: self reference :param str lfn: LFN to add to """ self.fileDict.setdefault( lfn, {'Status':'Waiting'} ) return S_OK() def setSourceSURL( self, lfn, surl ): """ source SURL setter :param self: self reference :param str lfn: LFN :param str surl: source SURL """ target = self.fileDict[lfn].get( 'Target' ) if target == surl: return S_ERROR( "Source and target the same" ) return self.__setFileParameter( lfn, 'Source', surl ) def getSourceSURL( self, lfn ): """ get source SURL for LFN :lfn: :param self: self reference :param str lfn: LFN """ return self.__getFileParameter( lfn, 'Source' ) def setTargetSURL( self, lfn, surl ): """ set target SURL for LFN :lfn: :param self: self reference :param str lfn: LFN :param str surl: target SURL """ source = self.fileDict[lfn].get( 'Source' ) if source == surl: return S_ERROR( "Source and target the same" ) return self.__setFileParameter( lfn, 'Target', surl ) def getFailReason( self, lfn ): """ get fail reason for file :lfn: :param self: self reference :param str lfn: LFN """ return self.__getFileParameter( lfn, 'Reason' ) def getRetries( self, lfn ): """ get number of attepmts made to transfer file :lfn: :param self: self reference :param str lfn: LFN """ return self.__getFileParameter( lfn, 'Retries' ) def getTransferTime( self, lfn ): """ get duration of transfer for file :lfn: :param self: self reference :param str lfn: LFN """ return self.__getFileParameter( lfn, 'Duration' ) def getFailed( self ): """ get list of wrongly transferred LFNs :param self: self reference """ return S_OK( [ lfn for lfn in self.fileDict if self.fileDict[lfn].get( 'Status', '' ) in self.failedStates ] ) def getStaging( self ): """ get files set for prestaging """ return S_OK( [lfn for lfn in self.fileDict if self.fileDict[lfn].get( 'Status', '' ) == 'Staging'] ) def getDone( self ): """ get list of succesfully transferred LFNs :param self: self reference """ return S_OK( [ lfn for lfn in self.fileDict if self.fileDict[lfn].get( 'Status', '' ) in self.successfulStates ] ) def __setFileParameter( self, lfn, paramName, paramValue ): """ set :paramName: to :paramValue: for :lfn: file :param self: self reference :param str lfn: LFN :param str paramName: parameter name :param mixed paramValue: a new parameter value """ self.setLFN( lfn ) self.fileDict[lfn][paramName] = paramValue return S_OK() def __getFileParameter( self, lfn, paramName ): """ get value of :paramName: for file :lfn: :param self: self reference :param str lfn: LFN :param str paramName: parameter name """ if lfn not in self.fileDict: return S_ERROR( "Supplied file not set" ) if paramName not in self.fileDict[lfn]: return S_ERROR( "%s not set for file" % paramName ) return S_OK( self.fileDict[lfn][paramName] ) #################################################################### # # Methods for submission # def submit( self, monitor = False, printOutput = True ): """ submit FTS job :param self: self reference :param bool monitor: flag to monitor progress of FTS job :param bool printOutput: flag to print output of execution to stdout """ res = self.__prepareForSubmission() if not res['OK']: return res res = self.__submitFTSTransfer() if not res['OK']: return res resDict = { 'ftsGUID' : self.ftsGUID, 'ftsServer' : self.ftsServer, 'submittedFiles' : self.submittedFiles } if monitor or printOutput: gLogger.always( "Submitted %s@%s" % ( self.ftsGUID, self.ftsServer ) ) if monitor: self.monitor( untilTerminal = True, printOutput = printOutput, full = False ) return S_OK( resDict ) def __prepareForSubmission( self ): """ check validity of job before submission :param self: self reference """ if not self.fileDict: return S_ERROR( "No files set" ) if not self.sourceValid: return S_ERROR( "SourceSE not valid" ) if not self.targetValid: return S_ERROR( "TargetSE not valid" ) if not self.ftsServer: res = self.__resolveFTSServer() if not res['OK']: return S_ERROR( "FTSServer not valid" ) self.resolveSource() self.resolveTarget() res = self.__filesToSubmit() if not res['OK']: return S_ERROR( "No files to submit" ) return S_OK() def __getCatalogObject( self ): """ CatalogInterface instance facade :param self: self reference """ try: if not self.oCatalog: self.oCatalog = FileCatalog() return S_OK() except: return S_ERROR() def __updateReplicaCache( self, lfns = None, overwrite = False ): """ update replica cache for list of :lfns: :param self: self reference :param mixed lfns: list of LFNs :param bool overwrite: flag to trigger cache clearing and updating """ if not lfns: lfns = self.fileDict.keys() toUpdate = [ lfn for lfn in lfns if ( lfn not in self.catalogReplicas ) or overwrite ] if not toUpdate: return S_OK() res = self.__getCatalogObject() if not res['OK']: return res res = self.oCatalog.getReplicas( toUpdate ) if not res['OK']: return S_ERROR( "Failed to update replica cache: %s" % res['Message'] ) for lfn, error in res['Value']['Failed'].items(): self.__setFileParameter( lfn, 'Reason', error ) self.__setFileParameter( lfn, 'Status', 'Failed' ) for lfn, replicas in res['Value']['Successful'].items(): self.catalogReplicas[lfn] = replicas return S_OK() def __updateMetadataCache( self, lfns = None ): """ update metadata cache for list of LFNs :param self: self reference :param list lnfs: list of LFNs """ if not lfns: lfns = self.fileDict.keys() toUpdate = [ lfn for lfn in lfns if lfn not in self.catalogMetadata ] if not toUpdate: return S_OK() res = self.__getCatalogObject() if not res['OK']: return res res = self.oCatalog.getFileMetadata( toUpdate ) if not res['OK']: return S_ERROR( "Failed to get source catalog metadata: %s" % res['Message'] ) for lfn, error in res['Value']['Failed'].items(): self.__setFileParameter( lfn, 'Reason', error ) self.__setFileParameter( lfn, 'Status', 'Failed' ) for lfn, metadata in res['Value']['Successful'].items(): self.catalogMetadata[lfn] = metadata return S_OK() def resolveSource( self ): """ resolve source SE eligible for submission :param self: self reference """ # Avoid resolving sources twice if self.sourceResolved: return S_OK() # Only resolve files that need a transfer toResolve = [ lfn for lfn in self.fileDict if self.fileDict[lfn].get( "Status", "" ) != "Failed" ] if not toResolve: return S_OK() res = self.__updateMetadataCache( toResolve ) if not res['OK']: return res res = self.__updateReplicaCache( toResolve ) if not res['OK']: return res # Define the source URLs for lfn in toResolve: replicas = self.catalogReplicas.get( lfn, {} ) if self.sourceSE not in replicas: gLogger.warn( "resolveSource: skipping %s - not replicas at SourceSE %s" % ( lfn, self.sourceSE ) ) self.__setFileParameter( lfn, 'Reason', "No replica at SourceSE" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) continue res = returnSingleResult( self.oSourceSE.getURL( lfn, protocol = 'srm' ) ) if not res['OK']: gLogger.warn( "resolveSource: skipping %s - %s" % ( lfn, res["Message"] ) ) self.__setFileParameter( lfn, 'Reason', res['Message'] ) self.__setFileParameter( lfn, 'Status', 'Failed' ) continue res = self.setSourceSURL( lfn, res['Value'] ) if not res['OK']: gLogger.warn( "resolveSource: skipping %s - %s" % ( lfn, res["Message"] ) ) self.__setFileParameter( lfn, 'Reason', res['Message'] ) self.__setFileParameter( lfn, 'Status', 'Failed' ) continue toResolve = [] for lfn in self.fileDict: if "Source" in self.fileDict[lfn]: toResolve.append( lfn ) if not toResolve: return S_ERROR( "No eligible Source files" ) # Get metadata of the sources, to check for existance, availability and caching res = self.oSourceSE.getFileMetadata( toResolve ) if not res['OK']: return S_ERROR( "Failed to check source file metadata" ) for lfn, error in res['Value']['Failed'].items(): if re.search( 'File does not exist', error ): gLogger.warn( "resolveSource: skipping %s - source file does not exists" % lfn ) self.__setFileParameter( lfn, 'Reason', "Source file does not exist" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) else: gLogger.warn( "resolveSource: skipping %s - failed to get source metadata" % lfn ) self.__setFileParameter( lfn, 'Reason', "Failed to get Source metadata" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) toStage = [] nbStagedFiles = 0 for lfn, metadata in res['Value']['Successful'].items(): lfnStatus = self.fileDict.get( lfn, {} ).get( 'Status' ) if metadata['Unavailable']: gLogger.warn( "resolveSource: skipping %s - source file unavailable" % lfn ) self.__setFileParameter( lfn, 'Reason', "Source file Unavailable" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) elif metadata['Lost']: gLogger.warn( "resolveSource: skipping %s - source file lost" % lfn ) self.__setFileParameter( lfn, 'Reason', "Source file Lost" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) elif not metadata['Cached']: if lfnStatus != 'Staging': toStage.append( lfn ) elif metadata['Size'] != self.catalogMetadata[lfn]['Size']: gLogger.warn( "resolveSource: skipping %s - source file size mismatch" % lfn ) self.__setFileParameter( lfn, 'Reason', "Source size mismatch" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) elif self.catalogMetadata[lfn]['Checksum'] and metadata['Checksum'] and \ not compareAdler( metadata['Checksum'], self.catalogMetadata[lfn]['Checksum'] ): gLogger.warn( "resolveSource: skipping %s - source file checksum mismatch" % lfn ) self.__setFileParameter( lfn, 'Reason', "Source checksum mismatch" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) elif lfnStatus == 'Staging': # file that was staging is now cached self.__setFileParameter( lfn, 'Status', 'Waiting' ) nbStagedFiles += 1 # Some files were being staged if nbStagedFiles: self.log.info( 'resolveSource: %d files have been staged' % nbStagedFiles ) # Launching staging of files not in cache if toStage: gLogger.warn( "resolveSource: %s source files not cached, prestaging..." % len( toStage ) ) stage = self.oSourceSE.prestageFile( toStage ) if not stage["OK"]: gLogger.error( "resolveSource: error is prestaging", stage["Message"] ) for lfn in toStage: self.__setFileParameter( lfn, 'Reason', stage["Message"] ) self.__setFileParameter( lfn, 'Status', 'Failed' ) else: for lfn in toStage: if lfn in stage['Value']['Successful']: self.__setFileParameter( lfn, 'Status', 'Staging' ) elif lfn in stage['Value']['Failed']: self.__setFileParameter( lfn, 'Reason', stage['Value']['Failed'][lfn] ) self.__setFileParameter( lfn, 'Status', 'Failed' ) self.sourceResolved = True return S_OK() def resolveTarget( self ): """ find target SE eligible for submission :param self: self reference """ toResolve = [ lfn for lfn in self.fileDict if self.fileDict[lfn].get( 'Status' ) not in self.noSubmitStatus ] if not toResolve: return S_OK() res = self.__updateReplicaCache( toResolve ) if not res['OK']: return res for lfn in toResolve: res = returnSingleResult( self.oTargetSE.getURL( lfn, protocol = 'srm' ) ) if not res['OK']: reason = res.get( 'Message', res['Message'] ) gLogger.warn( "resolveTarget: skipping %s - %s" % ( lfn, reason ) ) self.__setFileParameter( lfn, 'Reason', reason ) self.__setFileParameter( lfn, 'Status', 'Failed' ) continue res = self.setTargetSURL( lfn, res['Value'] ) if not res['OK']: gLogger.warn( "resolveTarget: skipping %s - %s" % ( lfn, res["Message"] ) ) self.__setFileParameter( lfn, 'Reason', res['Message'] ) self.__setFileParameter( lfn, 'Status', 'Failed' ) continue toResolve = [] for lfn in self.fileDict: if "Target" in self.fileDict[lfn]: toResolve.append( lfn ) if not toResolve: return S_ERROR( "No eligible Target files" ) res = self.oTargetSE.exists( toResolve ) if not res['OK']: return S_ERROR( "Failed to check target existence" ) for lfn, error in res['Value']['Failed'].items(): self.__setFileParameter( lfn, 'Reason', error ) self.__setFileParameter( lfn, 'Status', 'Failed' ) toRemove = [] for lfn, exists in res['Value']['Successful'].items(): if exists: res = self.getSourceSURL( lfn ) if not res['OK']: gLogger.warn( "resolveTarget: skipping %s - target exists" % lfn ) self.__setFileParameter( lfn, 'Reason', "Target exists" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) elif res['Value'] == self.fileDict[lfn]['Target']: gLogger.warn( "resolveTarget: skipping %s - source and target pfns are the same" % lfn ) self.__setFileParameter( lfn, 'Reason', "Source and Target the same" ) self.__setFileParameter( lfn, 'Status', 'Failed' ) else: toRemove.append( lfn ) if toRemove: self.oTargetSE.removeFile( toRemove ) return S_OK() def __filesToSubmit( self ): """ check if there is at least one file to submit :return: S_OK if at least one file is present, S_ERROR otherwise """ for lfn in self.fileDict: lfnStatus = self.fileDict[lfn].get( 'Status' ) source = self.fileDict[lfn].get( 'Source' ) target = self.fileDict[lfn].get( 'Target' ) if lfnStatus not in self.noSubmitStatus and source and target: return S_OK() return S_ERROR() def __createFTSFiles( self ): """ create LFNs file for glite-transfer-submit command This file consists one line for each fiel to be transferred: sourceSURL targetSURL [CHECKSUMTYPE:CHECKSUM] :param self: self reference """ self.__updateMetadataCache() for lfn in self.fileDict: lfnStatus = self.fileDict[lfn].get( 'Status' ) if lfnStatus not in self.noSubmitStatus: cksmStr = "" # # add chsmType:cksm only if cksmType is specified, else let FTS decide by itself if self.__cksmTest and self.__cksmType: checkSum = self.catalogMetadata.get( lfn, {} ).get( 'Checksum' ) if checkSum: cksmStr = " %s:%s" % ( self.__cksmType, intAdlerToHex( hexAdlerToInt( checkSum ) ) ) ftsFile = FTSFile() ftsFile.LFN = lfn ftsFile.SourceSURL = self.fileDict[lfn].get( 'Source' ) ftsFile.TargetSURL = self.fileDict[lfn].get( 'Target' ) ftsFile.SourceSE = self.sourceSE ftsFile.TargetSE = self.targetSE ftsFile.Status = self.fileDict[lfn].get( 'Status' ) ftsFile.Checksum = cksmStr ftsFile.Size = self.catalogMetadata.get( lfn, {} ).get( 'Size' ) self.ftsFiles.append( ftsFile ) self.submittedFiles += 1 return S_OK() def __createFTSJob( self, guid = None ): self.__createFTSFiles() ftsJob = FTSJob() ftsJob.RequestID = 0 ftsJob.OperationID = 0 ftsJob.SourceSE = self.sourceSE ftsJob.TargetSE = self.targetSE ftsJob.SourceToken = self.sourceToken ftsJob.TargetToken = self.targetToken ftsJob.FTSServer = self.ftsServer if guid: ftsJob.FTSGUID = guid for ftsFile in self.ftsFiles: ftsFile.Attempt += 1 ftsFile.Error = "" ftsJob.addFile( ftsFile ) self.ftsJob = ftsJob def __submitFTSTransfer( self ): """ create and execute glite-transfer-submit CLI command :param self: self reference """ log = gLogger.getSubLogger( 'Submit' ) self.__createFTSJob() submit = self.ftsJob.submitFTS( self.ftsVersion, command = self.submitCommand ) if not submit["OK"]: log.error( "unable to submit FTSJob: %s" % submit["Message"] ) return submit log.info( "FTSJob '%s'@'%s' has been submitted" % ( self.ftsJob.FTSGUID, self.ftsJob.FTSServer ) ) # # update statuses for job files for ftsFile in self.ftsJob: ftsFile.FTSGUID = self.ftsJob.FTSGUID ftsFile.Status = "Submitted" ftsFile.Attempt += 1 log.info( "FTSJob '%s'@'%s' has been submitted" % ( self.ftsJob.FTSGUID, self.ftsJob.FTSServer ) ) self.ftsGUID = self.ftsJob.FTSGUID return S_OK() def __resolveFTSServer( self ): """ resolve FTS server to use, it should be the closest one from target SE :param self: self reference """ if self.ftsVersion.upper() == 'FTS2': from DIRAC.ConfigurationSystem.Client.Helpers.Resources import getFTS2ServersForSites if not self.targetSE: return S_ERROR( "Target SE not set" ) res = getSitesForSE( self.targetSE ) if not res['OK'] or not res['Value']: return S_ERROR( "Could not determine target site" ) targetSites = res['Value'] targetSite = '' for targetSite in targetSites: targetFTS = getFTS2ServersForSites( [targetSite] ) if targetFTS['OK']: ftsTarget = targetFTS['Value'][targetSite] if ftsTarget: self.ftsServer = ftsTarget return S_OK( self.ftsServer ) else: return targetFTS elif self.ftsVersion.upper() == 'FTS3': from DIRAC.ConfigurationSystem.Client.Helpers.Resources import getFTS3Servers res = getFTS3Servers() if not res['OK']: return res ftsServerList = res['Value'] if ftsServerList: # Here we take the first one, regardless of the policy... # Unclean but all this will disapear after refactoring the fts code self.ftsServer = ftsServerList[0] return S_OK( self.ftsServer ) else: return S_ERROR( 'Unknown FTS version %s' % self.ftsVersion ) return S_ERROR( 'No FTS server found for %s' % targetSite ) #################################################################### # # Methods for monitoring # def summary( self, untilTerminal = False, printOutput = False ): """ summary of FTS job :param self: self reference :param bool untilTerminal: flag to monitor FTS job to its final state :param bool printOutput: flag to print out monitoring information to the stdout """ res = self.__isSummaryValid() if not res['OK']: return res while not self.isTerminal: res = self.__parseOutput( full = True ) if not res['OK']: return res if untilTerminal: self.__print() self.isRequestTerminal() if res['Value'] or ( not untilTerminal ): break time.sleep( 1 ) if untilTerminal: print "" if printOutput and ( not untilTerminal ): return self.dumpSummary( printOutput = printOutput ) return S_OK() def monitor( self, untilTerminal = False, printOutput = False, full = True ): """ monitor FTS job :param self: self reference :param bool untilTerminal: flag to monitor FTS job to its final state :param bool printOutput: flag to print out monitoring information to the stdout """ if not self.ftsJob: self.resolveSource() self.__createFTSJob( self.ftsGUID ) res = self.__isSummaryValid() if not res['OK']: return res if untilTerminal: res = self.summary( untilTerminal = untilTerminal, printOutput = printOutput ) if not res['OK']: return res res = self.__parseOutput( full = full ) if not res['OK']: return res if untilTerminal: self.finalize() if printOutput: self.dump() return res def dumpSummary( self, printOutput = False ): """ get FTS job summary as str :param self: self reference :param bool printOutput: print summary to stdout """ outStr = '' for status in sorted( self.statusSummary ): if self.statusSummary[status]: outStr = '%s\t%-10s : %-10s\n' % ( outStr, status, str( self.statusSummary[status] ) ) outStr = outStr.rstrip( '\n' ) if printOutput: print outStr return S_OK( outStr ) def __print( self ): """ print progress bar of FTS job completeness to stdout :param self: self reference """ width = 100 bits = int( ( width * self.percentageComplete ) / 100 ) outStr = "|%s>%s| %.1f%s %s %s" % ( "="*bits, " "*( width - bits ), self.percentageComplete, "%", self.requestStatus, " "*10 ) sys.stdout.write( "%s\r" % ( outStr ) ) sys.stdout.flush() def dump( self ): """ print FTS job parameters and files to stdout :param self: self reference """ print "%-10s : %-10s" % ( "Status", self.requestStatus ) print "%-10s : %-10s" % ( "Source", self.sourceSE ) print "%-10s : %-10s" % ( "Target", self.targetSE ) print "%-10s : %-128s" % ( "Server", self.ftsServer ) print "%-10s : %-128s" % ( "GUID", self.ftsGUID ) for lfn in sorted( self.fileDict ): print "\n %-15s : %-128s" % ( 'LFN', lfn ) for key in ['Source', 'Target', 'Status', 'Reason', 'Duration']: print " %-15s : %-128s" % ( key, str( self.fileDict[lfn].get( key ) ) ) return S_OK() def __isSummaryValid( self ): """ check validity of FTS job summary report :param self: self reference """ if not self.ftsServer: return S_ERROR( "FTSServer not set" ) if not self.ftsGUID: return S_ERROR( "FTSGUID not set" ) return S_OK() def __parseOutput( self, full = False ): """ execute glite-transfer-status command and parse its output :param self: self reference :param bool full: glite-transfer-status verbosity level, when set, collect information of files as well """ monitor = self.ftsJob.monitorFTS( self.ftsVersion, command = self.monitorCommand, full = full ) if not monitor['OK']: return monitor self.percentageComplete = self.ftsJob.Completeness self.requestStatus = self.ftsJob.Status self.submitTime = self.ftsJob.SubmitTime statusSummary = monitor['Value'] if statusSummary: for state in statusSummary: self.statusSummary[state] = statusSummary[state] self.transferTime = 0 for ftsFile in self.ftsJob: lfn = ftsFile.LFN self.__setFileParameter( lfn, 'Status', ftsFile.Status ) self.__setFileParameter( lfn, 'Reason', ftsFile.Error ) self.__setFileParameter( lfn, 'Duration', ftsFile._duration ) targetURL = self.__getFileParameter( lfn, 'Target' ) if not targetURL['OK']: self.__setFileParameter( lfn, 'Target', ftsFile.TargetSURL ) sourceURL = self.__getFileParameter( lfn, 'Source' ) if not sourceURL['OK']: self.__setFileParameter( lfn, 'Source', ftsFile.SourceSURL ) self.transferTime += int( ftsFile._duration ) return S_OK() #################################################################### # # Methods for finalization # def finalize( self ): """ finalize FTS job :param self: self reference """ self.__updateMetadataCache() transEndTime = dateTime() regStartTime = time.time() res = self.getTransferStatistics() transDict = res['Value'] res = self.__registerSuccessful( transDict['transLFNs'] ) regSuc, regTotal = res['Value'] regTime = time.time() - regStartTime if self.sourceSE and self.targetSE: self.__sendAccounting( regSuc, regTotal, regTime, transEndTime, transDict ) return S_OK() def getTransferStatistics( self ): """ collect information of Transfers that can be used by Accounting :param self: self reference """ transDict = { 'transTotal': len( self.fileDict ), 'transLFNs': [], 'transOK': 0, 'transSize': 0 } for lfn in self.fileDict: if self.fileDict[lfn].get( 'Status' ) in self.successfulStates: if self.fileDict[lfn].get( 'Duration', 0 ): transDict['transLFNs'].append( lfn ) transDict['transOK'] += 1 if lfn in self.catalogMetadata: transDict['transSize'] += self.catalogMetadata[lfn].get( 'Size', 0 ) return S_OK( transDict ) def getFailedRegistrations( self ): """ get failed registrations dict :param self: self reference """ return S_OK( self.failedRegistrations ) def __registerSuccessful( self, transLFNs ): """ register successfully transferred files to the catalogs, fill failedRegistrations dict for files that failed to register :param self: self reference :param list transLFNs: LFNs in FTS job """ self.failedRegistrations = {} toRegister = {} for lfn in transLFNs: res = returnSingleResult( self.oTargetSE.getURL( self.fileDict[lfn].get( 'Target' ), protocol = 'srm' ) ) if not res['OK']: self.__setFileParameter( lfn, 'Reason', res['Message'] ) self.__setFileParameter( lfn, 'Status', 'Failed' ) else: toRegister[lfn] = { 'PFN' : res['Value'], 'SE' : self.targetSE } if not toRegister: return S_OK( ( 0, 0 ) ) res = self.__getCatalogObject() if not res['OK']: for lfn in toRegister: self.failedRegistrations = toRegister self.log.error( 'Failed to get Catalog Object', res['Message'] ) return S_OK( ( 0, len( toRegister ) ) ) res = self.oCatalog.addReplica( toRegister ) if not res['OK']: self.failedRegistrations = toRegister self.log.error( 'Failed to get Catalog Object', res['Message'] ) return S_OK( ( 0, len( toRegister ) ) ) for lfn, error in res['Value']['Failed'].items(): self.failedRegistrations[lfn] = toRegister[lfn] self.log.error( 'Registration of Replica failed', '%s : %s' % ( lfn, str( error ) ) ) return S_OK( ( len( res['Value']['Successful'] ), len( toRegister ) ) ) def __sendAccounting( self, regSuc, regTotal, regTime, transEndTime, transDict ): """ send accounting record :param self: self reference :param regSuc: number of files successfully registered :param regTotal: number of files attepted to register :param regTime: time stamp at the end of registration :param transEndTime: time stamp at the end of FTS job :param dict transDict: dict holding couters for files being transerred, their sizes and successfull transfers """ oAccounting = DataOperation() oAccounting.setEndTime( transEndTime ) oAccounting.setStartTime( self.submitTime ) accountingDict = {} accountingDict['OperationType'] = 'replicateAndRegister' result = getProxyInfo() if not result['OK']: userName = 'system' else: userName = result['Value'].get( 'username', 'unknown' ) accountingDict['User'] = userName accountingDict['Protocol'] = 'FTS' if 'fts3' not in self.ftsServer else 'FTS3' accountingDict['RegistrationTime'] = regTime accountingDict['RegistrationOK'] = regSuc accountingDict['RegistrationTotal'] = regTotal accountingDict['TransferOK'] = transDict['transOK'] accountingDict['TransferTotal'] = transDict['transTotal'] accountingDict['TransferSize'] = transDict['transSize'] accountingDict['FinalStatus'] = self.requestStatus accountingDict['Source'] = self.sourceSE accountingDict['Destination'] = self.targetSE accountingDict['TransferTime'] = self.transferTime oAccounting.setValuesFromDict( accountingDict ) self.log.verbose( "Attempting to commit accounting message..." ) oAccounting.commit() self.log.verbose( "...committed." ) return S_OK()
vmendez/DIRAC
DataManagementSystem/Client/FTSRequest.py
Python
gpl-3.0
37,935
[ "DIRAC" ]
a077a45e0f91428a10d39e39374321f902c34493a4dac2c69f8f2762cdd7f3dd
# Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Development script to test the algorithms of a given model coordination environments """ __author__ = "David Waroquiers" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "2.0" __maintainer__ = "David Waroquiers" __email__ = "[email protected]" __date__ = "Feb 20, 2016" from pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder import LocalGeometryFinder from pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder import AbstractGeometry from pymatgen.analysis.chemenv.coordination_environments.coordination_geometries import AllCoordinationGeometries from math import factorial import numpy as np import itertools from random import shuffle import time if __name__ == "__main__": allcg = AllCoordinationGeometries() while True: cg_symbol = input("Enter symbol of the geometry for which you want to get the explicit permutations : ") try: cg = allcg[cg_symbol] break except LookupError: print("Wrong geometry, try again ...") continue lgf = LocalGeometryFinder() lgf.setup_parameters(structure_refinement=lgf.STRUCTURE_REFINEMENT_NONE) myindices = range(cg.coordination_number) test = input( 'Enter if you want to test all possible permutations ("all" or "a") or a given number of random permutations (i.e. "25")' ) if test == "all" or test == "a": perms_iterator = itertools.permutations(myindices) nperms = factorial(cg.coordination_number) else: try: nperms = int(test) except Exception: raise ValueError(f"Could not turn {test} into integer ...") perms_iterator = [] for ii in range(nperms): shuffle(myindices) perms_iterator.append(list(myindices)) iperm = 1 t1 = time.clock() for indices_perm in perms_iterator: lgf.setup_test_perfect_environment(cg_symbol, indices=indices_perm) lgf.perfect_geometry = AbstractGeometry.from_cg(cg=cg) points_perfect = lgf.perfect_geometry.points_wocs_ctwocc() print(f"Perm # {iperm:d}/{nperms:d} : ", indices_perm) algos_results = [] for algo in cg.algorithms: print(algo) if algo.algorithm_type == "EXPLICIT_PERMUTATIONS": raise ValueError("Do something for the explicit ones ... (these should anyway be by far ok!)") results = lgf.coordination_geometry_symmetry_measures_separation_plane( coordination_geometry=cg, separation_plane_algo=algo, tested_permutations=False, points_perfect=points_perfect, ) print("Number of permutations tested : ", len(results[0])) algos_results.append(min(results[0])) if not np.isclose(min(results[0]), 0.0): print("Following is not 0.0 ...") input(results) print(" => ", algos_results) iperm += 1 t2 = time.clock() print( 'Time to test {:d} permutations for geometry "{}" (symbol "{}") : {:.2f} seconds'.format( nperms, cg.name, cg_symbol, t2 - t1 ) )
vorwerkc/pymatgen
dev_scripts/chemenv/test_algos.py
Python
mit
3,355
[ "pymatgen" ]
02023b34d0fa52490426841f56e3c138cfe3a23fb853632945f27367ab3dbd20
# -*- coding: utf-8 -*- """ Created on Fri Apr 15 10:10:15 2016 @author: Steven_Pellizzeri (spelliz[@]clemson.edu) """ import sys from ase.atoms import string2symbols from ase.thermochemistry import HarmonicThermo,IdealGasThermo from ase.io import write, read from glob import glob ## user input shape = str(sys.argv[1]) ## strucutre shape symnum = int(sys.argv[2]) ## symmetry number spin = int(sys.argv[3]) ## spin number temp = float(sys.argv[4]) ## temperature in K pres = float(sys.argv[5]) ## pressure in Pa RMFREQ_KbT = str(sys.argv[6]) ## Remove frequencies below KbT cutoff ## conversion factors HarttoeV = float(27.2114) CmtoeV = float(1.239842E-4) ## get log file name file_list = glob('*.log') log_file = file_list[0] ## get SCF energy from the log file Energy = [] infile = open(log_file) for line in infile: if "SCF Done:" in line: Energy.append(line) infile.close() final_energy = Energy[-1] scf_energy_hartree = float(final_energy.split(" ")[7]) scf_energy_eV = scf_energy_hartree * HarttoeV ## get the frequencies from the frequencies.dat file" Freq = [] freq_file = open("frequencies.dat") raw_freq = freq_file.read().replace('[', ' ').replace(']', ' ').split()[-1] for i in raw_freq.split(','): Freq.append(float(i)*CmtoeV) for i in Freq: if i <= 0: Freq.remove(i) freq_kbt_cutoff = float(8.6173324E-5 * temp) freq_remove = [] if RMFREQ_KbT == "True": for i in Freq: if i <= freq_kbt_cutoff: freq_remove.append(i) for i in freq_remove: if i in Freq: Freq.remove(i) ## get the strucuter from the output file struc = read(log_file,format='gaussian-out') ## get the ideal gas limit thermodynamic values thermo = IdealGasThermo(vib_energies=Freq, potentialenergy=scf_energy_eV, atoms=struc, geometry=shape, symmetrynumber=symnum, spin=spin) print "Ideal Gas Limit" ZPE = thermo.get_ZPE_correction() H = thermo.get_enthalpy(temperature=temp) S = thermo.get_entropy(temperature=temp,pressure=pres) G = thermo.get_gibbs_energy(temperature=temp,pressure=pres) print " " print "ZPE correction (ZPE) = ", ZPE, " eV" print "Ethalpy (H) = ", H, " eV" print "Entropy (S) = ", S, " eV/K" print "Gibbs Energy (G) = ", G, " eV" ## get the harmonic limit thermodynamic values thermo = HarmonicThermo(vib_energies=Freq, potentialenergy=scf_energy_eV) print print "Harmonic Approximation" ZPE = thermo.get_ZPE_correction() U = thermo.get_internal_energy(temperature=temp) S = thermo.get_entropy(temperature=temp) H = thermo.get_helmholtz_energy(temperature=temp) print " " print "ZPE correction (ZPE) = ", ZPE , " eV" print "Internal energy (U) = ", U, " eV" print "Entropy (S) = ", S, " eV/K" print "Helmholtz Energy (F) = ", F, " eV"
spelliz/Various-Bash-Commands
ase-thermo-gaussian-arg.py
Python
gpl-3.0
2,845
[ "ASE", "Gaussian" ]
087b62c571277c0d5781726eaf670d9e58088ebf39a808c366630a2e92d0f79f
############################################################################### # AST visualizer - generates a DOT file for Graphviz. # # # # To generate an image from the DOT file run $ dot -Tpng -o ast.png ast.dot # # # ############################################################################### import argparse import textwrap from interpreter.interpreter import Interpreter from interpreter.lexer import Lexer from interpreter.parser import Parser class ASTVisualizer(Interpreter): def __init__(self, parser): self.parser = parser self.ncount = 1 self.dot_header = [textwrap.dedent("""\ digraph astgraph { node [shape=circle, fontsize=12, fontname="Courier", height=.1]; ranksep=.3; edge [arrowsize=.5] """)] self.dot_body = [] self.dot_footer = ['}'] def visit_Program(self, node): s = ' node{} [label="Program"]\n'.format(self.ncount) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 self.visit(node.block) s = ' node{} -> node{}\n'.format(node._num, node.block._num) self.dot_body.append(s) def visit_Block(self, node): s = ' node{} [label="Block"]\n'.format(self.ncount) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 for declaration in node.declarations: self.visit(declaration) self.visit(node.compound_statement) for decl_node in node.declarations: s = ' node{} -> node{}\n'.format(node._num, decl_node._num) self.dot_body.append(s) s = ' node{} -> node{}\n'.format( node._num, node.compound_statement._num ) self.dot_body.append(s) def visit_VarDecl(self, node): s = ' node{} [label="VarDecl"]\n'.format(self.ncount) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 self.visit(node.var_node) s = ' node{} -> node{}\n'.format(node._num, node.var_node._num) self.dot_body.append(s) self.visit(node.type_node) s = ' node{} -> node{}\n'.format(node._num, node.type_node._num) self.dot_body.append(s) def visit_Type(self, node): s = ' node{} [label="{}"]\n'.format(self.ncount, node.token.value) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 def visit_Num(self, node): s = ' node{} [label="{}"]\n'.format(self.ncount, node.token.value) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 def visit_BinOp(self, node): s = ' node{} [label="{}"]\n'.format(self.ncount, node.op.value) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 self.visit(node.left) self.visit(node.right) for child_node in (node.left, node.right): s = ' node{} -> node{}\n'.format(node._num, child_node._num) self.dot_body.append(s) def visit_UnaryOp(self, node): s = ' node{} [label="unary {}"]\n'.format(self.ncount, node.op.value) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 self.visit(node.expr) s = ' node{} -> node{}\n'.format(node._num, node.expr._num) self.dot_body.append(s) def visit_Compound(self, node): s = ' node{} [label="Compound"]\n'.format(self.ncount) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 for child in node.children: self.visit(child) s = ' node{} -> node{}\n'.format(node._num, child._num) self.dot_body.append(s) def visit_Assign(self, node): s = ' node{} [label="{}"]\n'.format(self.ncount, node.op.value) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 self.visit(node.left) self.visit(node.right) for child_node in (node.left, node.right): s = ' node{} -> node{}\n'.format(node._num, child_node._num) self.dot_body.append(s) def visit_Var(self, node): s = ' node{} [label="{}"]\n'.format(self.ncount, node.value) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 def visit_NoOp(self, node): s = ' node{} [label="NoOp"]\n'.format(self.ncount) self.dot_body.append(s) node._num = self.ncount self.ncount += 1 def gendot(self): tree = self.parser.parse() self.visit(tree) return ''.join(self.dot_header + self.dot_body + self.dot_footer) def main(): argparser = argparse.ArgumentParser( description='Generate an AST DOT file.' ) argparser.add_argument( 'fname', help='Pascal source file' ) args = argparser.parse_args() fname = args.fname text = open(fname, 'r').read() lexer = Lexer(text) parser = Parser(lexer) viz = ASTVisualizer(parser) content = viz.gendot() print(content) if __name__ == '__main__': main()
LucasMagnum/simple-interpreter
scripts/genastdot.py
Python
mit
5,360
[ "VisIt" ]
a0ef06d4c91031aacb9d38f2b0ff7333b64b82ad5223840fc4f055fa67901fb3
data = ( 'ha', # 0x00 'hu', # 0x01 'hi', # 0x02 'haa', # 0x03 'hee', # 0x04 'he', # 0x05 'ho', # 0x06 None, # 0x07 'la', # 0x08 'lu', # 0x09 'li', # 0x0a 'laa', # 0x0b 'lee', # 0x0c 'le', # 0x0d 'lo', # 0x0e 'lwa', # 0x0f 'hha', # 0x10 'hhu', # 0x11 'hhi', # 0x12 'hhaa', # 0x13 'hhee', # 0x14 'hhe', # 0x15 'hho', # 0x16 'hhwa', # 0x17 'ma', # 0x18 'mu', # 0x19 'mi', # 0x1a 'maa', # 0x1b 'mee', # 0x1c 'me', # 0x1d 'mo', # 0x1e 'mwa', # 0x1f 'sza', # 0x20 'szu', # 0x21 'szi', # 0x22 'szaa', # 0x23 'szee', # 0x24 'sze', # 0x25 'szo', # 0x26 'szwa', # 0x27 'ra', # 0x28 'ru', # 0x29 'ri', # 0x2a 'raa', # 0x2b 'ree', # 0x2c 're', # 0x2d 'ro', # 0x2e 'rwa', # 0x2f 'sa', # 0x30 'su', # 0x31 'si', # 0x32 'saa', # 0x33 'see', # 0x34 'se', # 0x35 'so', # 0x36 'swa', # 0x37 'sha', # 0x38 'shu', # 0x39 'shi', # 0x3a 'shaa', # 0x3b 'shee', # 0x3c 'she', # 0x3d 'sho', # 0x3e 'shwa', # 0x3f 'qa', # 0x40 'qu', # 0x41 'qi', # 0x42 'qaa', # 0x43 'qee', # 0x44 'qe', # 0x45 'qo', # 0x46 None, # 0x47 'qwa', # 0x48 None, # 0x49 'qwi', # 0x4a 'qwaa', # 0x4b 'qwee', # 0x4c 'qwe', # 0x4d None, # 0x4e None, # 0x4f 'qha', # 0x50 'qhu', # 0x51 'qhi', # 0x52 'qhaa', # 0x53 'qhee', # 0x54 'qhe', # 0x55 'qho', # 0x56 None, # 0x57 'qhwa', # 0x58 None, # 0x59 'qhwi', # 0x5a 'qhwaa', # 0x5b 'qhwee', # 0x5c 'qhwe', # 0x5d None, # 0x5e None, # 0x5f 'ba', # 0x60 'bu', # 0x61 'bi', # 0x62 'baa', # 0x63 'bee', # 0x64 'be', # 0x65 'bo', # 0x66 'bwa', # 0x67 'va', # 0x68 'vu', # 0x69 'vi', # 0x6a 'vaa', # 0x6b 'vee', # 0x6c 've', # 0x6d 'vo', # 0x6e 'vwa', # 0x6f 'ta', # 0x70 'tu', # 0x71 'ti', # 0x72 'taa', # 0x73 'tee', # 0x74 'te', # 0x75 'to', # 0x76 'twa', # 0x77 'ca', # 0x78 'cu', # 0x79 'ci', # 0x7a 'caa', # 0x7b 'cee', # 0x7c 'ce', # 0x7d 'co', # 0x7e 'cwa', # 0x7f 'xa', # 0x80 'xu', # 0x81 'xi', # 0x82 'xaa', # 0x83 'xee', # 0x84 'xe', # 0x85 'xo', # 0x86 None, # 0x87 'xwa', # 0x88 None, # 0x89 'xwi', # 0x8a 'xwaa', # 0x8b 'xwee', # 0x8c 'xwe', # 0x8d None, # 0x8e None, # 0x8f 'na', # 0x90 'nu', # 0x91 'ni', # 0x92 'naa', # 0x93 'nee', # 0x94 'ne', # 0x95 'no', # 0x96 'nwa', # 0x97 'nya', # 0x98 'nyu', # 0x99 'nyi', # 0x9a 'nyaa', # 0x9b 'nyee', # 0x9c 'nye', # 0x9d 'nyo', # 0x9e 'nywa', # 0x9f '\'a', # 0xa0 '\'u', # 0xa1 None, # 0xa2 '\'aa', # 0xa3 '\'ee', # 0xa4 '\'e', # 0xa5 '\'o', # 0xa6 '\'wa', # 0xa7 'ka', # 0xa8 'ku', # 0xa9 'ki', # 0xaa 'kaa', # 0xab 'kee', # 0xac 'ke', # 0xad 'ko', # 0xae None, # 0xaf 'kwa', # 0xb0 None, # 0xb1 'kwi', # 0xb2 'kwaa', # 0xb3 'kwee', # 0xb4 'kwe', # 0xb5 None, # 0xb6 None, # 0xb7 'kxa', # 0xb8 'kxu', # 0xb9 'kxi', # 0xba 'kxaa', # 0xbb 'kxee', # 0xbc 'kxe', # 0xbd 'kxo', # 0xbe None, # 0xbf 'kxwa', # 0xc0 None, # 0xc1 'kxwi', # 0xc2 'kxwaa', # 0xc3 'kxwee', # 0xc4 'kxwe', # 0xc5 None, # 0xc6 None, # 0xc7 'wa', # 0xc8 'wu', # 0xc9 'wi', # 0xca 'waa', # 0xcb 'wee', # 0xcc 'we', # 0xcd 'wo', # 0xce None, # 0xcf '`a', # 0xd0 '`u', # 0xd1 '`i', # 0xd2 '`aa', # 0xd3 '`ee', # 0xd4 '`e', # 0xd5 '`o', # 0xd6 None, # 0xd7 'za', # 0xd8 'zu', # 0xd9 'zi', # 0xda 'zaa', # 0xdb 'zee', # 0xdc 'ze', # 0xdd 'zo', # 0xde 'zwa', # 0xdf 'zha', # 0xe0 'zhu', # 0xe1 'zhi', # 0xe2 'zhaa', # 0xe3 'zhee', # 0xe4 'zhe', # 0xe5 'zho', # 0xe6 'zhwa', # 0xe7 'ya', # 0xe8 'yu', # 0xe9 'yi', # 0xea 'yaa', # 0xeb 'yee', # 0xec 'ye', # 0xed 'yo', # 0xee None, # 0xef 'da', # 0xf0 'du', # 0xf1 'di', # 0xf2 'daa', # 0xf3 'dee', # 0xf4 'de', # 0xf5 'do', # 0xf6 'dwa', # 0xf7 'dda', # 0xf8 'ddu', # 0xf9 'ddi', # 0xfa 'ddaa', # 0xfb 'ddee', # 0xfc 'dde', # 0xfd 'ddo', # 0xfe 'ddwa', # 0xff )
avian2/unidecode
unidecode/x012.py
Python
gpl-2.0
4,293
[ "BWA" ]
5e889116f36d1d5dbd43be8a7293c14ab0b8b0b77a7da4f3e2d29910c210e393
# -*- coding: utf-8 -*- from Plugins.Extensions.MediaPortal.plugin import _ from Plugins.Extensions.MediaPortal.resources.imports import * from Plugins.Extensions.MediaPortal.resources.messageboxext import MessageBoxExt def openloadApi(self, data): if re.search('IP address not authorized', data): message = self.session.open(MessageBoxExt, _("IP address not authorized. Visit https://openload.co/pair"), MessageBoxExt.TYPE_ERROR) else: stream_url = re.findall('"url":"(.*?)"', data) if stream_url: self._callback(stream_url[0].replace('\\','')) else: self.stream_not_found()
schleichdi2/OpenNfr_E2_Gui-6.0
lib/python/Plugins/Extensions/MediaPortal/resources/hosters/openload.py
Python
gpl-2.0
595
[ "VisIt" ]
0f65000189d88f24e45d696e46b54c8fc2bcc84b1ac55b11972d0794e934e1bf
# -*- coding: utf-8 -*- """ Created on Thu Jun 5 15:15:09 2014 @author: drew """ from __future__ import division from matplotlib import use use('agg') import matplotlib.pyplot as plt from matplotlib import cm, _cm from matplotlib import patches import numpy as np import sunpy from sunpy.map import Map, GenericMap from sunpy.instr.aia import aiaprep from sunpy.net import vso from scipy.io.idl import readsav as read from sys import argv from os import path, system, makedirs import datetime as dt from sunpy.time.timerange import TimeRange as tr import glob from itertools import product from mpi4py import MPI from utils import gaussian, load_temp_responses from astropy.units import Unit try: from fits import calc_fits print 'Fortran extension imported successfully' except ImportError: print 'Current extension is broken, missing or incompatible.\n'\ +'Compiling Fortran extension.' system(path.expanduser('f2py -c -m fits ~/CoronaTemps/fitsmodule.f90')) from fits import calc_fits home = path.expanduser('~') comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() args = [] for a in argv[1:]: for f in [eval, sunpy.time.parse_time]: try: a = f(a) break except: continue args.append(a) date, n_params, data_dir, datfile, submap, verbose, force_temp_scan = args wlens = ['094', '131', '171', '193', '211', '335'] t0 = 5.6 thiswlen = None if rank == 0: if datfile: images = {} f = open(datfile) # Loop through wavelengths for line in f: if line[:3] in wlens: allwlenmaps = [] thiswlen = line[:3] print 'Loading {} files'.format(thiswlen) elif 'fits' in line: thismap = aiaprep(Map(line[:-1])) thismap.data /= thismap.exposure_time allwlenmaps.append(thismap) elif line.strip() in ['', '\n']: if thiswlen: wlenmap = allwlenmaps[-1] for thismap in allwlenmaps[:-1]: wlenmap.data += thismap.data wlenmap.data /= len(allwlenmaps) images[thiswlen] = wlenmap images = [images[w] for w in wlens] else: images = [] #imagefiles = [] for wl, wlen in enumerate(wlens): if date == 'model': fits_dir = path.join(data_dir, 'synthetic', wlen) images.append(Map(path.join(fits_dir, 'model.fits'))) continue else: fits_dir = path.join(data_dir, '{:%Y/*/*}/{}'.format(date, wlen)) if verbose: print 'Searching {} for AIA data'.format(fits_dir) timerange = tr(date - dt.timedelta(seconds=5), date + dt.timedelta(seconds=11)) ntimes = int(timerange.seconds()) times = [time.start() for time in timerange.split(ntimes)] for time in times: filename = path.join(fits_dir, #'aia*{0:%Y?%m?%d}?{0:%H?%M?%S}*lev1?fits'.format(time)) 'AIA{0:%Y%m%d_%H%M_*.fits}'.format(time)) if verbose: print filename filelist = glob.glob(filename) if verbose: print filelist if filelist != []: if verbose: print 'File found: ', filelist[0] #imagefiles.append(filelist[0]) temp_im = aiaprep(Map(filelist[0])) if submap: temp_im = temp_im.submap(*submap) temp_im.data /= temp_im.exposure_time # Can probably increase speed a bit by making this * (1.0/exp_time) images.append(temp_im) break else: pass if len(images) < wl+1: if verbose: print 'No data found for {}. Downloading...'.format(wlen) client = vso.VSOClient() qr = client.query(vso.attrs.Time(timerange.start(), timerange.end()), vso.attrs.Wave(wlen, wlen), vso.attrs.Instrument('aia'), vso.attrs.Provider('JSOC')) dwpath = path.join(fits_dir.replace('*/*', '{:%m/%d}'.format(date)), '{file}') res = client.get(qr, path=dwpath, site='NSO').wait() temp_im = aiaprep(Map(res)) if submap: temp_im = temp_im.submap(*submap) temp_im.data /= temp_im.exposure_time # Can probably increase speed a bit by making this * (1.0/exp_time) images.append(temp_im) # Normalise images to 171A if only using one parameter if n_params == 1: normim = images[2].data.copy() if verbose: print 'Normalising images' for i in range(len(wlens)): images[i].data /= normim header = images[2].meta.copy() images = np.array([im.data for im in images]) # Scatter image data to each process if rank == 0: #[images[..., (p/size)*images.shape[2]:((p+1)/size)*images.shape[2]] \ # for p in range(size)] temp = [] for p in range(size): mini = (p/size)*images.shape[2] maxi = ((p+1)/size)*images.shape[2] temp.append(images[..., mini:maxi]) if verbose: print p, mini, maxi, images[..., mini:maxi].shape images = temp if verbose: print len(images), images[0].shape else: images = None images = comm.scatter(images, root=0) # Get dimensions of image x, y = images[0].shape if verbose: print 'Image size, rank {}:'.format(rank), x, y print 'Image maxes, rank {}:'.format(rank), [im.max() for im in images] n_wlens = images.shape[0] temp = np.arange(t0, 7.01, 0.01) if n_params == 1: # Assume a width of the gaussian DEM distribution and normalise the height widths = [0.1] heights = [1.0] else: widths = np.arange(0.1, 0.8, 0.1) heights = 10.0 ** np.arange(20, 35.1, 0.1) # TODO: check if either of the above are sensible ranges of numbers parvals = np.array([i for i in product(temp, widths, heights)]) n_vals = len(temp) * len(widths) * len(heights) if verbose: print len(temp), len(widths), len(heights), n_vals, n_vals*6 if rank == 0: try: if force_temp_scan: raise IOError model = np.memmap(filename='synth_emiss_{}pars'.format(n_params), dtype='float32', mode='r', shape=(n_vals, n_wlens)) except IOError: if verbose: print 'No synthetic emission data found. Re-scanning temperature range.' resp = load_temp_responses() if n_params == 1: resp /= resp[2, :] resp[np.isnan(resp)] = 0 if verbose: print resp.min(axis=1), np.nanmin(resp, axis=1) print resp.max(axis=1), np.nanmax(resp, axis=1) logt = np.arange(0, 15.05, 0.05) delta_t = logt[1] - logt[0] model = np.memmap(filename='synth_emiss_{}pars'.format(n_params), dtype='float32', mode='w+', shape=(n_vals, n_wlens)) for p, params in enumerate(parvals): dem = gaussian(logt, *params) f = resp * dem model[p, :] = np.sum(f, axis=1) * delta_t if verbose: print model.max(axis=0) print model[np.isnan(model)].size if n_params == 1: normmod = model[:, 2].reshape((n_vals, 1)) model /= normmod model.flush() if verbose: print model.max(axis=0) else: model = None model = comm.bcast(model, root=0) if verbose: if rank == 0: print 'Calculating temperature values...' print rank, images.shape, model.shape, parvals.shape, n_vals, n_wlens, x, y, n_params print [im.max() for im in images] print model.max(axis=0) if n_params == 1: parvals = parvals[:, 0] temps = calc_fits(images, model, parvals, n_vals, n_wlens, x, y, n_params) # Convert EM values to log scale if there are any if temps.shape[2] > 2: temps[..., 2] = np.log10(temps[..., 2]) if verbose: print 'Done.' # Get data all back in one place and save it temps = comm.gather(temps, root=0) if rank == 0: if verbose: print len(temps), temps[0].shape temp = np.zeros(shape=(x, y*size, n_params+1)) for p in range(size): mini = (p/size)*temp.shape[1] maxi = ((p+1)/size)*temp.shape[1] temp[:, mini:maxi, :] = temps[p] if verbose: print p, mini, maxi, temp[:, mini:maxi, :].shape temps = temp if verbose: print 'End ct', temps.shape, temps[..., 0].mean(), temps[..., 1].mean() tempmap = GenericMap(temps, header) tempmap.save(path.expanduser('~/CoronaTemps/temporary.fits'))
drewleonard42/CoronaTemps
create_tempmap.py
Python
bsd-2-clause
8,857
[ "Gaussian" ]
3e083eb8ad40c18ce1c595b6f6583ac9ac4533a1fe88138696dabe1b81ae4a85
# Copyright (C) 2010-2018 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # Measuring the force on a single sphere immersed in a fluid with # fixed velocity boundary conditions created by two # walls at finite distance. # The force is compared to th analytical result F=6 pi eta r v # i.e. the stokes force on the particles. # We create a box of size box_width x box_width x box_length and # place an object in the center. We measure the drag force # in z direction. We create walls in the xz and yz plane at the box # boundaries, where the velocity is fixed to $v. # import espressomd from espressomd import lb, lbboundaries, shapes, has_features import unittest as ut import unittest_decorators as utx import numpy as np # Define the LB Parameters TIME_STEP = 0.4 AGRID = 0.6 KVISC = 6 DENS = 2.3 LB_PARAMS = {'agrid': AGRID, 'dens': DENS, 'visc': KVISC, 'tau': TIME_STEP} # System setup radius = 8 * AGRID box_width = 62 * AGRID real_width = box_width + 2 * AGRID box_length = 62 * AGRID c_s = np.sqrt(1. / 3. * AGRID**2 / TIME_STEP**2) v = [0, 0, 0.2 * c_s] # The boundary slip class Stokes: lbf = None system = espressomd.System(box_l=[real_width, real_width, box_length]) system.box_l = [real_width, real_width, box_length] system.time_step = TIME_STEP system.cell_system.skin = 0.01 def test_stokes(self): self.system.actors.clear() self.system.lbboundaries.clear() self.system.actors.add(self.lbf) self.system.thermostat.set_lb(LB_fluid=self.lbf, gamma=1.0) # Setup walls walls = [None] * 4 walls[0] = lbboundaries.LBBoundary(shape=shapes.Wall( normal=[-1, 0, 0], dist=-(1 + box_width)), velocity=v) walls[1] = lbboundaries.LBBoundary(shape=shapes.Wall( normal=[1, 0, 0], dist=1), velocity=v) walls[2] = lbboundaries.LBBoundary(shape=shapes.Wall( normal=[0, -1, 0], dist=-(1 + box_width)), velocity=v) walls[3] = lbboundaries.LBBoundary(shape=shapes.Wall( normal=[0, 1, 0], dist=1), velocity=v) for wall in walls: self.system.lbboundaries.add(wall) # setup sphere without slip in the middle sphere = lbboundaries.LBBoundary(shape=shapes.Sphere( radius=radius, center=[real_width / 2] * 2 + [box_length / 2], direction=1)) self.system.lbboundaries.add(sphere) def size(vector): tmp = 0 for k in vector: tmp += k * k return np.sqrt(tmp) last_force = -1000. stokes_force = 6 * np.pi * KVISC * radius * size(v) self.system.integrator.run(35) while True: self.system.integrator.run(10) force = np.linalg.norm(sphere.get_force()) if np.abs(last_force - force) < 0.01 * stokes_force: break last_force = force force = np.copy(sphere.get_force()) np.testing.assert_allclose( force, [0, 0, stokes_force], rtol=0.03, atol=stokes_force * 0.03) @utx.skipIfMissingGPU() @utx.skipIfMissingFeatures(['LB_BOUNDARIES_GPU', 'EXTERNAL_FORCES']) class LBGPUStokes(ut.TestCase, Stokes): def setUp(self): self.lbf = espressomd.lb.LBFluidGPU(**LB_PARAMS) @utx.skipIfMissingFeatures(['LB_BOUNDARIES', 'EXTERNAL_FORCES']) class LBCPUStokes(ut.TestCase, Stokes): def setUp(self): self.lbf = espressomd.lb.LBFluid(**LB_PARAMS) if __name__ == "__main__": ut.main()
mkuron/espresso
testsuite/python/lb_stokes_sphere.py
Python
gpl-3.0
4,213
[ "ESPResSo" ]
5607359f517c26aa2d8db11b2c135f73691d56f27785af03b4e15d321d3c9c2a
#!/usr/bin/env python """ Artificial Intelligence for Humans Volume 3: Deep Learning and Neural Networks Python Version http://www.aifh.org http://www.jeffheaton.com Code repository: https://github.com/jeffheaton/aifh Copyright 2015 by Jeff Heaton Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. For more information on Heaton Research copyrights, licenses and trademarks visit: http://www.heatonresearch.com/copyright """ import numpy as np import matplotlib.pyplot as plt from lib.aifh.util import * import types from sklearn import svm, datasets import sklearn import scipy.stats import numpy as np from lasagne.layers import DenseLayer from lasagne.layers import InputLayer from lasagne.nonlinearities import sigmoid from lasagne.nonlinearities import softmax from lasagne.nonlinearities import rectify from lasagne.updates import nesterov_momentum from nolearn.lasagne import NeuralNet # Compute a z-score with a mean and standard deviation different than the provided matrix. def zscore(x,mean,sdev): return (x-mean)/sdev def extract_weights(net): result = None weights = net.get_all_params_values() for key in weights: for a in weights[key]: for b in a: if result is None: result = b else: result = np.hstack( [result,b] ) return result # Define the structure of the neural network layers0 = [('input', InputLayer), ('dense0', DenseLayer), ('output', DenseLayer)] net0 = NeuralNet(layers=layers0, input_shape=(None, 4), dense0_num_units=50, dense0_nonlinearity = rectify, output_num_units=3, output_nonlinearity=softmax, update=nesterov_momentum, update_learning_rate=0.01, update_momentum=0.9, regression=False, eval_size=0.0, verbose=1, max_epochs=100000, on_epoch_finished=[ EarlyStopping(patience=20) ] ) # Get the iris dataset from scipy iris = datasets.load_iris() # Split the iris dataset into 25% validation, and 75% train. Also shuffle with a seed of 42. X_train, X_validate, y_train, y_validate = sklearn.cross_validation.train_test_split( iris.data,iris.target, test_size = 0.25, random_state = 42) # Calculate the mean and standard deviation vectors (all 4 measurements) for training data. train_mean = np.mean(X_train, axis=0) train_sdev = np.std(X_train, axis=0) # Compute the z-scores for both train and validation. However, use mean and standard deviation for training # on both. This is customary because we trained on this standard deviation and mean. Additionally, our # prediction set might too small to calculate a meaningful mean and standard deviation. X_train_z = zscore(X_train, train_mean, train_sdev) #scipy.stats.mstats.zscore(X_train) X_validate_z = zscore(X_validate, train_mean, train_sdev) #scipy.stats.mstats.zscore(X_validate) #These can be used to check my zscore calc to numpy #print(X_train_z) #print(scipy.stats.mstats.zscore(X_train)) # Provide our own validation set def my_split(self, X, y, eval_size): return X_train_z,X_validate_z,y_train,y_validate net0.train_test_split = types.MethodType(my_split, net0) # Train the network net0.initialize() d = extract_weights(net0) print("D:" + str(len(d))) #net0.fit(X_train_z,y_train) # Predict the validation set pred_y = net0.predict(X_validate_z) # Display predictions and count the number of incorrect predictions. species_names = ['setosa','versicolour','virginica'] count = 0 wrong = 0 for element in zip(X_validate,y_validate,pred_y): print("Input: sepal length: {}, sepal width: {}, petal length: {}, petal width: {}; Expected: {}; Actual: {}".format( element[0][0],element[0][1],element[0][2],element[0][3], species_names[element[1]], species_names[element[2]])) if element[1] != element[2]: wrong = wrong + 1 count = count + 1 print("Incorrect {}/{} ({}%)".format(wrong,count,(wrong/count)*100))
PeterLauris/aifh
vol3/vol3-python-examples/examples/example_iris_anneal.py
Python
apache-2.0
4,527
[ "VisIt" ]
1fafdce754f02432e6422c80bc691ee60877afbac1b5e35fc33cc81ee9812910
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import copy import os.path import warnings import inspect from contextlib import contextmanager from datetime import datetime import logging import numpy as np import scipy as sp from matplotlib import pyplot as plt import traits.api as t import numbers from hyperspy.axes import AxesManager from hyperspy import io from hyperspy.drawing import mpl_hie, mpl_hse, mpl_he from hyperspy.learn.mva import MVA, LearningResults import hyperspy.misc.utils from hyperspy.misc.utils import DictionaryTreeBrowser from hyperspy.drawing import signal as sigdraw from hyperspy.defaults_parser import preferences from hyperspy.misc.io.tools import ensure_directory from hyperspy.misc.utils import iterable_not_string from hyperspy.external.progressbar import progressbar from hyperspy.exceptions import SignalDimensionError, DataDimensionError from hyperspy.misc import rgb_tools from hyperspy.misc.utils import underline, isiterable from hyperspy.external.astroML.histtools import histogram from hyperspy.drawing.utils import animate_legend from hyperspy.drawing.marker import markers_metadata_dict_to_markers from hyperspy.misc.slicing import SpecialSlicers, FancySlicing from hyperspy.misc.utils import slugify from hyperspy.docstrings.signal import ( ONE_AXIS_PARAMETER, MANY_AXIS_PARAMETER, OUT_ARG, NAN_FUNC) from hyperspy.docstrings.plot import BASE_PLOT_DOCSTRING, KWARGS_DOCSTRING from hyperspy.events import Events, Event from hyperspy.interactive import interactive from hyperspy.misc.signal_tools import (are_signals_aligned, broadcast_signals) from hyperspy.exceptions import VisibleDeprecationWarning _logger = logging.getLogger(__name__) class ModelManager(object): """Container for models """ class ModelStub(object): def __init__(self, mm, name): self._name = name self._mm = mm self.restore = lambda: mm.restore(self._name) self.remove = lambda: mm.remove(self._name) self.pop = lambda: mm.pop(self._name) self.restore.__doc__ = "Returns the stored model" self.remove.__doc__ = "Removes the stored model" self.pop.__doc__ = \ "Returns the stored model and removes it from storage" def __repr__(self): return repr(self._mm._models[self._name]) def __init__(self, signal, dictionary=None): self._signal = signal self._models = DictionaryTreeBrowser() self._add_dictionary(dictionary) def _add_dictionary(self, dictionary=None): if dictionary is not None: for k, v in dictionary.items(): if k.startswith('_') or k in ['restore', 'remove']: raise KeyError("Can't add dictionary with key '%s'" % k) k = slugify(k, True) self._models.set_item(k, v) setattr(self, k, self.ModelStub(self, k)) def _set_nice_description(self, node, names): ans = {'date': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'dimensions': self._signal.axes_manager._get_dimension_str(), } node.add_dictionary(ans) for n in names: node.add_node('components.' + n) def _save(self, name, dictionary): from itertools import product _abc = 'abcdefghijklmnopqrstuvwxyz' def get_letter(models): howmany = len(models) if not howmany: return 'a' order = int(np.log(howmany) / np.log(26)) + 1 letters = [_abc, ] * order for comb in product(*letters): guess = "".join(comb) if guess not in models.keys(): return guess if name is None: name = get_letter(self._models) else: name = self._check_name(name) if name in self._models: self.remove(name) self._models.add_node(name) node = self._models.get_item(name) names = [c['name'] for c in dictionary['components']] self._set_nice_description(node, names) node.set_item('_dict', dictionary) setattr(self, name, self.ModelStub(self, name)) def store(self, model, name=None): """If the given model was created from this signal, stores it Parameters ---------- model : model the model to store in the signal name : {string, None} the name for the model to be stored with See Also -------- remove restore pop """ if model.signal is self._signal: self._save(name, model.as_dictionary()) else: raise ValueError("The model is created from a different signal, " "you should store it there") def _check_name(self, name, existing=False): if not isinstance(name, str): raise KeyError('Name has to be a string') if name.startswith('_'): raise KeyError('Name cannot start with "_" symbol') if '.' in name: raise KeyError('Name cannot contain dots (".")') name = slugify(name, True) if existing: if name not in self._models: raise KeyError( "Model named '%s' is not currently stored" % name) return name def remove(self, name): """Removes the given model Parameters ---------- name : string the name of the model to remove See Also -------- restore store pop """ name = self._check_name(name, True) delattr(self, name) self._models.__delattr__(name) def pop(self, name): """Returns the restored model and removes it from storage Parameters ---------- name : string the name of the model to restore and remove See Also -------- restore store remove """ name = self._check_name(name, True) model = self.restore(name) self.remove(name) return model def restore(self, name): """Returns the restored model Parameters ---------- name : string the name of the model to restore See Also -------- remove store pop """ name = self._check_name(name, True) d = self._models.get_item(name + '._dict').as_dictionary() return self._signal.create_model(dictionary=copy.deepcopy(d)) def __repr__(self): return repr(self._models) def __len__(self): return len(self._models) def __getitem__(self, name): name = self._check_name(name, True) return getattr(self, name) class MVATools(object): # TODO: All of the plotting methods here should move to drawing def _plot_factors_or_pchars(self, factors, comp_ids=None, calibrate=True, avg_char=False, same_window=True, comp_label='PC', img_data=None, plot_shifts=True, plot_char=4, cmap=plt.cm.gray, quiver_color='white', vector_scale=1, per_row=3, ax=None): """Plot components from PCA or ICA, or peak characteristics Parameters ---------- comp_ids : None, int, or list of ints if None, returns maps of all components. if int, returns maps of components with ids from 0 to given int. if list of ints, returns maps of components with ids in given list. calibrate : bool if True, plots are calibrated according to the data in the axes manager. same_window : bool if True, plots each factor to the same window. They are not scaled. Default True. comp_label : string Title of the plot cmap : a matplotlib colormap The colormap used for factor images or any peak characteristic scatter map overlay. Parameters only valid for peak characteristics (or pk char factors): -------------------------------------------------------------------- img_data - 2D numpy array, The array to overlay peak characteristics onto. If None, defaults to the average image of your stack. plot_shifts - bool, default is True If true, plots a quiver (arrow) plot showing the shifts for each peak present in the component being plotted. plot_char - None or int If int, the id of the characteristic to plot as the colored scatter plot. Possible components are: 4: peak height 5: peak orientation 6: peak eccentricity quiver_color : any color recognized by matplotlib Determines the color of vectors drawn for plotting peak shifts. vector_scale : integer or None Scales the quiver plot arrows. The vector is defined as one data unit along the X axis. If shifts are small, set vector_scale so that when they are multiplied by vector_scale, they are on the scale of the image plot. If None, uses matplotlib's autoscaling. """ if same_window is None: same_window = True if comp_ids is None: comp_ids = range(factors.shape[1]) elif not hasattr(comp_ids, '__iter__'): comp_ids = range(comp_ids) n = len(comp_ids) if same_window: rows = int(np.ceil(n / float(per_row))) fig_list = [] if n < per_row: per_row = n if same_window and self.axes_manager.signal_dimension == 2: f = plt.figure(figsize=(4 * per_row, 3 * rows)) else: f = plt.figure() for i in range(len(comp_ids)): if self.axes_manager.signal_dimension == 1: if same_window: ax = plt.gca() else: if i > 0: f = plt.figure() plt.title('%s' % comp_label) ax = f.add_subplot(111) ax = sigdraw._plot_1D_component( factors=factors, idx=comp_ids[i], axes_manager=self.axes_manager, ax=ax, calibrate=calibrate, comp_label=comp_label, same_window=same_window) if same_window: plt.legend(ncol=factors.shape[1] // 2, loc='best') elif self.axes_manager.signal_dimension == 2: if same_window: ax = f.add_subplot(rows, per_row, i + 1) else: if i > 0: f = plt.figure() plt.title('%s' % comp_label) ax = f.add_subplot(111) sigdraw._plot_2D_component(factors=factors, idx=comp_ids[i], axes_manager=self.axes_manager, calibrate=calibrate, ax=ax, cmap=cmap, comp_label=comp_label) if not same_window: fig_list.append(f) if same_window: # Main title for same window title = '%s' % comp_label if self.axes_manager.signal_dimension == 1: plt.title(title) else: plt.suptitle(title) animate_legend(f) try: plt.tight_layout() except: pass if not same_window: return fig_list else: return f def _plot_loadings(self, loadings, comp_ids, calibrate=True, same_window=True, comp_label=None, with_factors=False, factors=None, cmap=plt.cm.gray, no_nans=False, per_row=3, axes_decor='all'): if same_window is None: same_window = True if comp_ids is None: comp_ids = range(loadings.shape[0]) elif not hasattr(comp_ids, '__iter__'): comp_ids = range(comp_ids) n = len(comp_ids) if same_window: rows = int(np.ceil(n / float(per_row))) fig_list = [] if n < per_row: per_row = n if same_window and self.axes_manager.signal_dimension == 2: f = plt.figure(figsize=(4 * per_row, 3 * rows)) else: f = plt.figure() for i in range(n): if self.axes_manager.navigation_dimension == 1: if same_window: ax = plt.gca() else: if i > 0: f = plt.figure() plt.title('%s' % comp_label) ax = f.add_subplot(111) elif self.axes_manager.navigation_dimension == 2: if same_window: ax = f.add_subplot(rows, per_row, i + 1) else: if i > 0: f = plt.figure() plt.title('%s' % comp_label) ax = f.add_subplot(111) sigdraw._plot_loading( loadings, idx=comp_ids[i], axes_manager=self.axes_manager, no_nans=no_nans, calibrate=calibrate, cmap=cmap, comp_label=comp_label, ax=ax, same_window=same_window, axes_decor=axes_decor) if not same_window: fig_list.append(f) if same_window: # Main title for same window title = '%s' % comp_label if self.axes_manager.navigation_dimension == 1: plt.title(title) else: plt.suptitle(title) try: plt.tight_layout() except: pass if not same_window: if with_factors: return fig_list, self._plot_factors_or_pchars( factors, comp_ids=comp_ids, calibrate=calibrate, same_window=same_window, comp_label=comp_label, per_row=per_row) else: return fig_list else: if self.axes_manager.navigation_dimension == 1: plt.legend(ncol=loadings.shape[0] // 2, loc='best') animate_legend(f) if with_factors: return f, self._plot_factors_or_pchars(factors, comp_ids=comp_ids, calibrate=calibrate, same_window=same_window, comp_label=comp_label, per_row=per_row) else: return f def _export_factors(self, factors, folder=None, comp_ids=None, multiple_files=True, save_figures=False, save_figures_format='png', factor_prefix=None, factor_format=None, comp_label=None, cmap=plt.cm.gray, plot_shifts=True, plot_char=4, img_data=None, same_window=False, calibrate=True, quiver_color='white', vector_scale=1, no_nans=True, per_row=3): from hyperspy._signals.signal2d import Signal2D from hyperspy._signals.signal1d import Signal1D if multiple_files is None: multiple_files = True if factor_format is None: factor_format = 'hspy' # Select the desired factors if comp_ids is None: comp_ids = range(factors.shape[1]) elif not hasattr(comp_ids, '__iter__'): comp_ids = range(comp_ids) mask = np.zeros(factors.shape[1], dtype=np.bool) for idx in comp_ids: mask[idx] = 1 factors = factors[:, mask] if save_figures is True: plt.ioff() fac_plots = self._plot_factors_or_pchars(factors, comp_ids=comp_ids, same_window=same_window, comp_label=comp_label, img_data=img_data, plot_shifts=plot_shifts, plot_char=plot_char, cmap=cmap, per_row=per_row, quiver_color=quiver_color, vector_scale=vector_scale) for idx in range(len(comp_ids)): filename = '%s_%02i.%s' % (factor_prefix, comp_ids[idx], save_figures_format) if folder is not None: filename = os.path.join(folder, filename) ensure_directory(filename) _args = {'dpi': 600, 'format': save_figures_format} fac_plots[idx].savefig(filename, **_args) plt.ion() elif multiple_files is False: if self.axes_manager.signal_dimension == 2: # factor images axes_dicts = [] axes = self.axes_manager.signal_axes[::-1] shape = (axes[1].size, axes[0].size) factor_data = np.rollaxis( factors.reshape((shape[0], shape[1], -1)), 2) axes_dicts.append(axes[0].get_axis_dictionary()) axes_dicts.append(axes[1].get_axis_dictionary()) axes_dicts.append({'name': 'factor_index', 'scale': 1., 'offset': 0., 'size': int(factors.shape[1]), 'units': 'factor', 'index_in_array': 0, }) s = Signal2D(factor_data, axes=axes_dicts, metadata={ 'General': {'title': '%s from %s' % ( factor_prefix, self.metadata.General.title), }}) elif self.axes_manager.signal_dimension == 1: axes = [self.axes_manager.signal_axes[0].get_axis_dictionary(), {'name': 'factor_index', 'scale': 1., 'offset': 0., 'size': int(factors.shape[1]), 'units': 'factor', 'index_in_array': 0, }] axes[0]['index_in_array'] = 1 s = Signal1D( factors.T, axes=axes, metadata={ "General": { 'title': '%s from %s' % (factor_prefix, self.metadata.General.title), }}) filename = '%ss.%s' % (factor_prefix, factor_format) if folder is not None: filename = os.path.join(folder, filename) s.save(filename) else: # Separate files if self.axes_manager.signal_dimension == 1: axis_dict = self.axes_manager.signal_axes[0].\ get_axis_dictionary() axis_dict['index_in_array'] = 0 for dim, index in zip(comp_ids, range(len(comp_ids))): s = Signal1D(factors[:, index], axes=[axis_dict, ], metadata={ "General": {'title': '%s from %s' % ( factor_prefix, self.metadata.General.title), }}) filename = '%s-%i.%s' % (factor_prefix, dim, factor_format) if folder is not None: filename = os.path.join(folder, filename) s.save(filename) if self.axes_manager.signal_dimension == 2: axes = self.axes_manager.signal_axes axes_dicts = [axes[0].get_axis_dictionary(), axes[1].get_axis_dictionary()] axes_dicts[0]['index_in_array'] = 0 axes_dicts[1]['index_in_array'] = 1 factor_data = factors.reshape( self.axes_manager._signal_shape_in_array + [-1, ]) for dim, index in zip(comp_ids, range(len(comp_ids))): im = Signal2D(factor_data[..., index], axes=axes_dicts, metadata={ "General": {'title': '%s from %s' % ( factor_prefix, self.metadata.General.title), }}) filename = '%s-%i.%s' % (factor_prefix, dim, factor_format) if folder is not None: filename = os.path.join(folder, filename) im.save(filename) def _export_loadings(self, loadings, folder=None, comp_ids=None, multiple_files=True, loading_prefix=None, loading_format="hspy", save_figures_format='png', comp_label=None, cmap=plt.cm.gray, save_figures=False, same_window=False, calibrate=True, no_nans=True, per_row=3): from hyperspy._signals.signal2d import Signal2D from hyperspy._signals.signal1d import Signal1D if multiple_files is None: multiple_files = True if loading_format is None: loading_format = 'hspy' if comp_ids is None: comp_ids = range(loadings.shape[0]) elif not hasattr(comp_ids, '__iter__'): comp_ids = range(comp_ids) mask = np.zeros(loadings.shape[0], dtype=np.bool) for idx in comp_ids: mask[idx] = 1 loadings = loadings[mask] if save_figures is True: plt.ioff() sc_plots = self._plot_loadings(loadings, comp_ids=comp_ids, calibrate=calibrate, same_window=same_window, comp_label=comp_label, cmap=cmap, no_nans=no_nans, per_row=per_row) for idx in range(len(comp_ids)): filename = '%s_%02i.%s' % (loading_prefix, comp_ids[idx], save_figures_format) if folder is not None: filename = os.path.join(folder, filename) ensure_directory(filename) _args = {'dpi': 600, 'format': save_figures_format} sc_plots[idx].savefig(filename, **_args) plt.ion() elif multiple_files is False: if self.axes_manager.navigation_dimension == 2: axes_dicts = [] axes = self.axes_manager.navigation_axes[::-1] shape = (axes[1].size, axes[0].size) loading_data = loadings.reshape((-1, shape[0], shape[1])) axes_dicts.append(axes[0].get_axis_dictionary()) axes_dicts[0]['index_in_array'] = 1 axes_dicts.append(axes[1].get_axis_dictionary()) axes_dicts[1]['index_in_array'] = 2 axes_dicts.append({'name': 'loading_index', 'scale': 1., 'offset': 0., 'size': int(loadings.shape[0]), 'units': 'factor', 'index_in_array': 0, }) s = Signal2D(loading_data, axes=axes_dicts, metadata={ "General": {'title': '%s from %s' % ( loading_prefix, self.metadata.General.title), }}) elif self.axes_manager.navigation_dimension == 1: cal_axis = self.axes_manager.navigation_axes[0].\ get_axis_dictionary() cal_axis['index_in_array'] = 1 axes = [{'name': 'loading_index', 'scale': 1., 'offset': 0., 'size': int(loadings.shape[0]), 'units': 'comp_id', 'index_in_array': 0, }, cal_axis] s = Signal2D(loadings, axes=axes, metadata={ "General": {'title': '%s from %s' % ( loading_prefix, self.metadata.General.title), }}) filename = '%ss.%s' % (loading_prefix, loading_format) if folder is not None: filename = os.path.join(folder, filename) s.save(filename) else: # Separate files if self.axes_manager.navigation_dimension == 1: axis_dict = self.axes_manager.navigation_axes[0].\ get_axis_dictionary() axis_dict['index_in_array'] = 0 for dim, index in zip(comp_ids, range(len(comp_ids))): s = Signal1D(loadings[index], axes=[axis_dict, ]) filename = '%s-%i.%s' % (loading_prefix, dim, loading_format) if folder is not None: filename = os.path.join(folder, filename) s.save(filename) elif self.axes_manager.navigation_dimension == 2: axes_dicts = [] axes = self.axes_manager.navigation_axes[::-1] shape = (axes[0].size, axes[1].size) loading_data = loadings.reshape((-1, shape[0], shape[1])) axes_dicts.append(axes[0].get_axis_dictionary()) axes_dicts[0]['index_in_array'] = 0 axes_dicts.append(axes[1].get_axis_dictionary()) axes_dicts[1]['index_in_array'] = 1 for dim, index in zip(comp_ids, range(len(comp_ids))): s = Signal2D(loading_data[index, ...], axes=axes_dicts, metadata={ "General": {'title': '%s from %s' % ( loading_prefix, self.metadata.General.title), }}) filename = '%s-%i.%s' % (loading_prefix, dim, loading_format) if folder is not None: filename = os.path.join(folder, filename) s.save(filename) def plot_decomposition_factors(self, comp_ids=None, calibrate=True, same_window=True, comp_label=None, cmap=plt.cm.gray, per_row=3, title=None): """Plot factors from a decomposition. In case of 1D signal axis, each factors line can be toggled on and off by clicking on their corresponding line in the legend. Parameters ---------- comp_ids : None, int, or list of ints if None (default), returns maps of all components if the output_dimension was defined when executing ``decomposition``. Otherwise it raises a ValueError. if int, returns maps of components with ids from 0 to given int. if list of ints, returns maps of components with ids in given list. calibrate : bool if True, calibrates plots where calibration is available from the axes_manager. If False, plots are in pixels/channels. same_window : bool if True, plots each factor to the same window. They are not scaled. Default is True. title : string Title of the plot. cmap : The colormap used for the factor image, or for peak characteristics, the colormap used for the scatter plot of some peak characteristic. per_row : int, the number of plots in each row, when the same_window parameter is True. See Also -------- plot_decomposition_loadings, plot_decomposition_results. """ if self.axes_manager.signal_dimension > 2: raise NotImplementedError("This method cannot plot factors of " "signals of dimension higher than 2." "You can use " "`plot_decomposition_results` instead.") if same_window is None: same_window = True factors = self.learning_results.factors if comp_ids is None: if self.learning_results.output_dimension: comp_ids = self.learning_results.output_dimension else: raise ValueError( "Please provide the number of components to plot via the " "``comp_ids`` argument") title = _change_API_comp_label(title, comp_label) if title is None: title = self._get_plot_title('Decomposition factors of', same_window) return self._plot_factors_or_pchars(factors, comp_ids=comp_ids, calibrate=calibrate, same_window=same_window, comp_label=title, cmap=cmap, per_row=per_row) def plot_bss_factors(self, comp_ids=None, calibrate=True, same_window=True, comp_label=None, per_row=3, title=None): """Plot factors from blind source separation results. In case of 1D signal axis, each factors line can be toggled on and off by clicking on their corresponding line in the legend. Parameters ---------- comp_ids : None, int, or list of ints if None, returns maps of all components. if int, returns maps of components with ids from 0 to given int. if list of ints, returns maps of components with ids in given list. calibrate : bool if True, calibrates plots where calibration is available from the axes_manager. If False, plots are in pixels/channels. same_window : bool if True, plots each factor to the same window. They are not scaled. Default is True. title : string Title of the plot. cmap : The colormap used for the factor image, or for peak characteristics, the colormap used for the scatter plot of some peak characteristic. per_row : int, the number of plots in each row, when the same_window parameter is True. See Also -------- plot_bss_loadings, plot_bss_results. """ if self.axes_manager.signal_dimension > 2: raise NotImplementedError("This method cannot plot factors of " "signals of dimension higher than 2." "You can use " "`plot_decomposition_results` instead.") if same_window is None: same_window = True factors = self.learning_results.bss_factors title = _change_API_comp_label(title, comp_label) if title is None: title = self._get_plot_title('BSS factors of', same_window) return self._plot_factors_or_pchars(factors, comp_ids=comp_ids, calibrate=calibrate, same_window=same_window, comp_label=title, per_row=per_row) def plot_decomposition_loadings(self, comp_ids=None, calibrate=True, same_window=True, comp_label=None, with_factors=False, cmap=plt.cm.gray, no_nans=False, per_row=3, axes_decor='all', title=None): """Plot loadings from a decomposition. In case of 1D navigation axis, each loading line can be toggled on and off by clicking on the legended line. Parameters ---------- comp_ids : None, int, or list of ints if None (default), returns maps of all components if the output_dimension was defined when executing ``decomposition``. Otherwise it raises a ValueError. if int, returns maps of components with ids from 0 to given int. if list of ints, returns maps of components with ids in given list. calibrate : bool if True, calibrates plots where calibration is available from the axes_manager. If False, plots are in pixels/channels. same_window : bool if True, plots each factor to the same window. They are not scaled. Default is True. title : string Title of the plot. with_factors : bool If True, also returns figure(s) with the factors for the given comp_ids. cmap : matplotlib colormap The colormap used for the factor image, or for peak characteristics, the colormap used for the scatter plot of some peak characteristic. no_nans : bool If True, removes NaN's from the loading plots. per_row : int the number of plots in each row, when the same_window parameter is True. axes_decor : {'all', 'ticks', 'off', None}, optional Controls how the axes are displayed on each image; default is 'all' If 'all', both ticks and axis labels will be shown If 'ticks', no axis labels will be shown, but ticks/labels will If 'off', all decorations and frame will be disabled If None, no axis decorations will be shown, but ticks/frame will See Also -------- plot_decomposition_factors, plot_decomposition_results. """ if self.axes_manager.navigation_dimension > 2: raise NotImplementedError("This method cannot plot loadings of " "dimension higher than 2." "You can use " "`plot_decomposition_results` instead.") if same_window is None: same_window = True loadings = self.learning_results.loadings.T if with_factors: factors = self.learning_results.factors else: factors = None if comp_ids is None: if self.learning_results.output_dimension: comp_ids = self.learning_results.output_dimension else: raise ValueError( "Please provide the number of components to plot via the " "``comp_ids`` argument") title = _change_API_comp_label(title, comp_label) if title is None: title = self._get_plot_title('Decomposition loadings of', same_window) return self._plot_loadings( loadings, comp_ids=comp_ids, with_factors=with_factors, factors=factors, same_window=same_window, comp_label=title, cmap=cmap, no_nans=no_nans, per_row=per_row, axes_decor=axes_decor) def plot_bss_loadings(self, comp_ids=None, calibrate=True, same_window=True, comp_label=None, with_factors=False, cmap=plt.cm.gray, no_nans=False, per_row=3, axes_decor='all', title=None): """Plot loadings from blind source separation results. In case of 1D navigation axis, each loading line can be toggled on and off by clicking on their corresponding line in the legend. Parameters ---------- comp_ids : None, int, or list of ints if None, returns maps of all components. if int, returns maps of components with ids from 0 to given int. if list of ints, returns maps of components with ids in given list. calibrate : bool if True, calibrates plots where calibration is available from the axes_manager. If False, plots are in pixels/channels. same_window : bool if True, plots each factor to the same window. They are not scaled. Default is True. title : string Title of the plot. with_factors : bool If True, also returns figure(s) with the factors for the given comp_ids. cmap : matplotlib colormap The colormap used for the factor image, or for peak characteristics, the colormap used for the scatter plot of some peak characteristic. no_nans : bool If True, removes NaN's from the loading plots. per_row : int the number of plots in each row, when the same_window parameter is True. axes_decor : {'all', 'ticks', 'off', None}, optional Controls how the axes are displayed on each image; default is 'all' If 'all', both ticks and axis labels will be shown If 'ticks', no axis labels will be shown, but ticks / labels will If 'off', all decorations and frame will be disabled If None, no axis decorations will be shown, but ticks/frame will See Also -------- plot_bss_factors, plot_bss_results. """ if self.axes_manager.navigation_dimension > 2: raise NotImplementedError("This method cannot plot loadings of " "dimension higher than 2." "You can use " "`plot_bss_results` instead.") if same_window is None: same_window = True title = _change_API_comp_label(title, comp_label) if title is None: title = self._get_plot_title('BSS loadings of', same_window) loadings = self.learning_results.bss_loadings.T if with_factors: factors = self.learning_results.bss_factors else: factors = None return self._plot_loadings( loadings, comp_ids=comp_ids, with_factors=with_factors, factors=factors, same_window=same_window, comp_label=title, cmap=cmap, no_nans=no_nans, per_row=per_row, axes_decor=axes_decor) def _get_plot_title(self, base_title='Loadings', same_window=True): title_md = self.metadata.General.title title = "%s %s" % (base_title, title_md) if title_md == '': # remove the 'of' if 'title' is a empty string title = title.replace(' of ', '') if not same_window: title = title.replace('loadings', 'loading') return title def export_decomposition_results(self, comp_ids=None, folder=None, calibrate=True, factor_prefix='factor', factor_format="hspy", loading_prefix='loading', loading_format="hspy", comp_label=None, cmap=plt.cm.gray, same_window=False, multiple_files=True, no_nans=True, per_row=3, save_figures=False, save_figures_format='png'): """Export results from a decomposition to any of the supported formats. Parameters ---------- comp_ids : None, int, or list of ints if None, returns all components/loadings. if int, returns components/loadings with ids from 0 to given int. if list of ints, returns components/loadings with ids in given list. folder : str or None The path to the folder where the file will be saved. If `None` the current folder is used by default. factor_prefix : string The prefix that any exported filenames for factors/components begin with factor_format : string The extension of the format that you wish to save to. Default is "hspy". See `loading format` for more details. loading_prefix : string The prefix that any exported filenames for factors/components begin with loading_format : string The extension of the format that you wish to save to. default is "hspy". The format determines the kind of output. - For image formats (tif, png, jpg, etc.), plots are created using the plotting flags as below, and saved at 600 dpi. One plot per loading is saved. - For multidimensional formats ("rpl", "hspy"), arrays are saved in single files. All loadings are contained in the one file. - For spectral formats (msa), each loading is saved to a separate file. multiple_files : bool If True, on exporting a file per factor and per loading will be created. Otherwise only two files will be created, one for the factors and another for the loadings. The default value can be chosen in the preferences. save_figures : bool If True the same figures that are obtained when using the plot methods will be saved with 600 dpi resolution Plotting options (for save_figures = True ONLY) ---------------------------------------------- calibrate : bool if True, calibrates plots where calibration is available from the axes_manager. If False, plots are in pixels/channels. same_window : bool if True, plots each factor to the same window. comp_label : string, the label that is either the plot title (if plotting in separate windows) or the label in the legend (if plotting in the same window) cmap : The colormap used for the factor image, or for peak characteristics, the colormap used for the scatter plot of some peak characteristic. per_row : int, the number of plots in each row, when the same_window parameter is True. save_figures_format : str The image format extension. See Also -------- get_decomposition_factors, get_decomposition_loadings. """ factors = self.learning_results.factors loadings = self.learning_results.loadings.T self._export_factors( factors, folder=folder, comp_ids=comp_ids, calibrate=calibrate, multiple_files=multiple_files, factor_prefix=factor_prefix, factor_format=factor_format, comp_label=comp_label, save_figures=save_figures, cmap=cmap, no_nans=no_nans, same_window=same_window, per_row=per_row, save_figures_format=save_figures_format) self._export_loadings( loadings, comp_ids=comp_ids, folder=folder, calibrate=calibrate, multiple_files=multiple_files, loading_prefix=loading_prefix, loading_format=loading_format, comp_label=comp_label, cmap=cmap, save_figures=save_figures, same_window=same_window, no_nans=no_nans, per_row=per_row) def export_bss_results(self, comp_ids=None, folder=None, calibrate=True, multiple_files=True, save_figures=False, factor_prefix='bss_factor', factor_format="hspy", loading_prefix='bss_loading', loading_format="hspy", comp_label=None, cmap=plt.cm.gray, same_window=False, no_nans=True, per_row=3, save_figures_format='png'): """Export results from ICA to any of the supported formats. Parameters ---------- comp_ids : None, int, or list of ints if None, returns all components/loadings. if int, returns components/loadings with ids from 0 to given int. if list of ints, returns components/loadings with ids in iven list. folder : str or None The path to the folder where the file will be saved. If `None` the current folder is used by default. factor_prefix : string The prefix that any exported filenames for factors/components begin with factor_format : string The extension of the format that you wish to save to. Default is "hspy". See `loading format` for more details. loading_prefix : string The prefix that any exported filenames for factors/components begin with loading_format : string The extension of the format that you wish to save to. default is "hspy". The format determines the kind of output. - For image formats (tif, png, jpg, etc.), plots are created using the plotting flags as below, and saved at 600 dpi. One plot per loading is saved. - For multidimensional formats ("rpl", "hspy"), arrays are saved in single files. All loadings are contained in the one file. - For spectral formats (msa), each loading is saved to a separate file. multiple_files : Bool If True, on exporting a file per factor and per loading will be created. Otherwise only two files will be created, one for the factors and another for the loadings. Default is True. save_figures : Bool If True the same figures that are obtained when using the plot methods will be saved with 600 dpi resolution Plotting options (for save_figures = True ONLY) ---------------------------------------------- calibrate : bool if True, calibrates plots where calibration is available from the axes_manager. If False, plots are in pixels/channels. same_window : bool if True, plots each factor to the same window. comp_label : string the label that is either the plot title (if plotting in separate windows) or the label in the legend (if plotting in the same window) cmap : The colormap used for the factor image, or for peak characteristics, the colormap used for the scatter plot of some peak characteristic. per_row : int, the number of plots in each row, when the same_window parameter is True. save_figures_format : str The image format extension. See Also -------- get_bss_factors, get_bss_loadings. """ factors = self.learning_results.bss_factors loadings = self.learning_results.bss_loadings.T self._export_factors(factors, folder=folder, comp_ids=comp_ids, calibrate=calibrate, multiple_files=multiple_files, factor_prefix=factor_prefix, factor_format=factor_format, comp_label=comp_label, save_figures=save_figures, cmap=cmap, no_nans=no_nans, same_window=same_window, per_row=per_row, save_figures_format=save_figures_format) self._export_loadings(loadings, comp_ids=comp_ids, folder=folder, calibrate=calibrate, multiple_files=multiple_files, loading_prefix=loading_prefix, loading_format=loading_format, comp_label=comp_label, cmap=cmap, save_figures=save_figures, same_window=same_window, no_nans=no_nans, per_row=per_row, save_figures_format=save_figures_format) def _get_loadings(self, loadings): from hyperspy.api import signals data = loadings.T.reshape( (-1,) + self.axes_manager.navigation_shape[::-1]) signal = signals.BaseSignal( data, axes=( [{"size": data.shape[0], "navigate": True}] + self.axes_manager._get_navigation_axes_dicts())) for axis in signal.axes_manager._axes[1:]: axis.navigate = False return signal def _get_factors(self, factors): signal = self.__class__( factors.T.reshape((-1,) + self.axes_manager.signal_shape[::-1]), axes=[{"size": factors.shape[-1], "navigate": True}] + self.axes_manager._get_signal_axes_dicts()) signal.set_signal_type(self.metadata.Signal.signal_type) for axis in signal.axes_manager._axes[1:]: axis.navigate = False return signal def get_decomposition_loadings(self): """Return the decomposition loadings as a Signal. See Also ------- get_decomposition_factors, export_decomposition_results. """ signal = self._get_loadings(self.learning_results.loadings) signal.axes_manager._axes[0].name = "Decomposition component index" signal.metadata.General.title = "Decomposition loadings of " + \ self.metadata.General.title return signal def get_decomposition_factors(self): """Return the decomposition factors as a Signal. See Also ------- get_decomposition_loadings, export_decomposition_results. """ signal = self._get_factors(self.learning_results.factors) signal.axes_manager._axes[0].name = "Decomposition component index" signal.metadata.General.title = ("Decomposition factors of " + self.metadata.General.title) return signal def get_bss_loadings(self): """Return the blind source separtion loadings as a Signal. See Also ------- get_bss_factors, export_bss_results. """ signal = self._get_loadings( self.learning_results.bss_loadings) signal.axes_manager[0].name = "BSS component index" signal.metadata.General.title = ("BSS loadings of " + self.metadata.General.title) return signal def get_bss_factors(self): """Return the blind source separtion factors as a Signal. See Also ------- get_bss_loadings, export_bss_results. """ signal = self._get_factors(self.learning_results.bss_factors) signal.axes_manager[0].name = "BSS component index" signal.metadata.General.title = ("BSS factors of " + self.metadata.General.title) return signal def plot_bss_results(self, factors_navigator="smart_auto", loadings_navigator="smart_auto", factors_dim=2, loadings_dim=2,): """Plot the blind source separation factors and loadings. Unlike `plot_bss_factors` and `plot_bss_loadings`, this method displays one component at a time. Therefore it provides a more compact visualization than then other two methods. The loadings and factors are displayed in different windows and each has its own navigator/sliders to navigate them if they are multidimensional. The component index axis is syncronize between the two. Parameters ---------- factors_navigator, loadings_navigator : {"smart_auto", "auto", None, "spectrum", Signal} "smart_auto" (default) displays sliders if the navigation dimension is less than 3. For a description of the other options see `plot` documentation for details. factors_dim, loadings_dim: int Currently HyperSpy cannot plot signals of dimension higher than two. Therefore, to visualize the BSS results when the factors or the loadings have signal dimension greater than 2 we can view the data as spectra(images) by setting this parameter to 1(2). (Default 2) See Also -------- plot_bss_factors, plot_bss_loadings, plot_decomposition_results. """ factors = self.get_bss_factors() loadings = self.get_bss_loadings() _plot_x_results(factors=factors, loadings=loadings, factors_navigator=factors_navigator, loadings_navigator=loadings_navigator, factors_dim=factors_dim, loadings_dim=loadings_dim) def plot_decomposition_results(self, factors_navigator="smart_auto", loadings_navigator="smart_auto", factors_dim=2, loadings_dim=2): """Plot the decompostion factors and loadings. Unlike `plot_factors` and `plot_loadings`, this method displays one component at a time. Therefore it provides a more compact visualization than then other two methods. The loadings and factors are displayed in different windows and each has its own navigator/sliders to navigate them if they are multidimensional. The component index axis is syncronize between the two. Parameters ---------- factors_navigator, loadings_navigator : {"smart_auto", "auto", None, "spectrum", Signal} "smart_auto" (default) displays sliders if the navigation dimension is less than 3. For a description of the other options see `plot` documentation for details. factors_dim, loadings_dim : int Currently HyperSpy cannot plot signals of dimension higher than two. Therefore, to visualize the BSS results when the factors or the loadings have signal dimension greater than 2 we can view the data as spectra(images) by setting this parameter to 1(2). (Default 2) See Also -------- plot_factors, plot_loadings, plot_bss_results. """ factors = self.get_decomposition_factors() loadings = self.get_decomposition_loadings() _plot_x_results(factors=factors, loadings=loadings, factors_navigator=factors_navigator, loadings_navigator=loadings_navigator, factors_dim=factors_dim, loadings_dim=loadings_dim) def _plot_x_results(factors, loadings, factors_navigator, loadings_navigator, factors_dim, loadings_dim): factors.axes_manager._axes[0] = loadings.axes_manager._axes[0] if loadings.axes_manager.signal_dimension > 2: loadings.axes_manager.set_signal_dimension(loadings_dim) if factors.axes_manager.signal_dimension > 2: factors.axes_manager.set_signal_dimension(factors_dim) if (loadings_navigator == "smart_auto" and loadings.axes_manager.navigation_dimension < 3): loadings_navigator = "slider" else: loadings_navigator = "auto" if (factors_navigator == "smart_auto" and (factors.axes_manager.navigation_dimension < 3 or loadings_navigator is not None)): factors_navigator = None else: factors_navigator = "auto" loadings.plot(navigator=loadings_navigator) factors.plot(navigator=factors_navigator) def _change_API_comp_label(title, comp_label): if comp_label is not None: if title is None: title = comp_label warnings.warn("The 'comp_label' argument will be deprecated " "in 2.0, please use 'title' instead", VisibleDeprecationWarning) else: warnings.warn("The 'comp_label' argument will be deprecated " "in 2.0, Since you are already using the 'title'", "argument, 'comp_label' is ignored.", VisibleDeprecationWarning) return title class SpecialSlicersSignal(SpecialSlicers): def __setitem__(self, i, j): """x.__setitem__(i, y) <==> x[i]=y """ if isinstance(j, BaseSignal): j = j.data array_slices = self.obj._get_array_slices(i, self.isNavigation) self.obj.data[array_slices] = j def __len__(self): return self.obj.axes_manager.signal_shape[0] class BaseSetMetadataItems(t.HasTraits): def __init__(self, signal): for key, value in self.mapping.items(): if signal.metadata.has_item(key): setattr(self, value, signal.metadata.get_item(key)) self.signal = signal def store(self, *args, **kwargs): for key, value in self.mapping.items(): if getattr(self, value) != t.Undefined: self.signal.metadata.set_item(key, getattr(self, value)) class BaseSignal(FancySlicing, MVA, MVATools,): _dtype = "real" _signal_dimension = -1 _signal_type = "" _lazy = False _alias_signal_types = [] _additional_slicing_targets = [ "metadata.Signal.Noise_properties.variance", ] def __init__(self, data, **kwds): """Create a Signal from a numpy array. Parameters ---------- data : numpy array The signal data. It can be an array of any dimensions. axes : dictionary (optional) Dictionary to define the axes (see the documentation of the AxesManager class for more details). attributes : dictionary (optional) A dictionary whose items are stored as attributes. metadata : dictionary (optional) A dictionary containing a set of parameters that will to stores in the `metadata` attribute. Some parameters might be mandatory in some cases. original_metadata : dictionary (optional) A dictionary containing a set of parameters that will to stores in the `original_metadata` attribute. It typically contains all the parameters that has been imported from the original data file. """ self._create_metadata() self.models = ModelManager(self) self.learning_results = LearningResults() kwds['data'] = data self._load_dictionary(kwds) self._plot = None self.inav = SpecialSlicersSignal(self, True) self.isig = SpecialSlicersSignal(self, False) self.events = Events() self.events.data_changed = Event(""" Event that triggers when the data has changed The event trigger when the data is ready for consumption by any process that depend on it as input. Plotted signals automatically connect this Event to its `BaseSignal.plot()`. Note: The event only fires at certain specific times, not everytime that the `BaseSignal.data` array changes values. Arguments: obj: The signal that owns the data. """, arguments=['obj']) def _create_metadata(self): self.metadata = DictionaryTreeBrowser() mp = self.metadata mp.add_node("_HyperSpy") mp.add_node("General") mp.add_node("Signal") mp._HyperSpy.add_node("Folding") folding = mp._HyperSpy.Folding folding.unfolded = False folding.signal_unfolded = False folding.original_shape = None folding.original_axes_manager = None mp.Signal.binned = False self.original_metadata = DictionaryTreeBrowser() self.tmp_parameters = DictionaryTreeBrowser() def __repr__(self): if self.metadata._HyperSpy.Folding.unfolded: unfolded = "unfolded " else: unfolded = "" string = '<' string += self.__class__.__name__ string += ", title: %s" % self.metadata.General.title string += ", %sdimensions: %s" % ( unfolded, self.axes_manager._get_dimension_str()) string += '>' return string def _binary_operator_ruler(self, other, op_name): exception_message = ( "Invalid dimensions for this operation") if isinstance(other, BaseSignal): # Both objects are signals oam = other.axes_manager sam = self.axes_manager if sam.navigation_shape == oam.navigation_shape and \ sam.signal_shape == oam.signal_shape: # They have the same signal shape. # The signal axes are aligned but there is # no guarantee that data axes area aligned so we make sure that # they are aligned for the operation. sdata = self._data_aligned_with_axes odata = other._data_aligned_with_axes if op_name in INPLACE_OPERATORS: self.data = getattr(sdata, op_name)(odata) self.axes_manager._sort_axes() return self else: ns = self._deepcopy_with_new_data( getattr(sdata, op_name)(odata)) ns.axes_manager._sort_axes() return ns else: # Different navigation and/or signal shapes if not are_signals_aligned(self, other): raise ValueError(exception_message) else: # They are broadcastable but have different number of axes ns, no = broadcast_signals(self, other) sdata = ns.data odata = no.data if op_name in INPLACE_OPERATORS: # This should raise a ValueError if the operation # changes the shape of the object on the left. self.data = getattr(sdata, op_name)(odata) self.axes_manager._sort_axes() return self else: ns.data = getattr(sdata, op_name)(odata) return ns else: # Second object is not a Signal if op_name in INPLACE_OPERATORS: getattr(self.data, op_name)(other) return self else: return self._deepcopy_with_new_data( getattr(self.data, op_name)(other)) def _unary_operator_ruler(self, op_name): return self._deepcopy_with_new_data(getattr(self.data, op_name)()) def _check_signal_dimension_equals_one(self): if self.axes_manager.signal_dimension != 1: raise SignalDimensionError(self.axes_manager.signal_dimension, 1) def _check_signal_dimension_equals_two(self): if self.axes_manager.signal_dimension != 2: raise SignalDimensionError(self.axes_manager.signal_dimension, 2) def _deepcopy_with_new_data(self, data=None, copy_variance=False): """Returns a deepcopy of itself replacing the data. This method has the advantage over deepcopy that it does not copy the data what can save precious memory Parameters --------- data : {None | np.array} Returns ------- ns : Signal """ old_np = None try: old_data = self.data self.data = None old_plot = self._plot self._plot = None old_models = self.models._models if not copy_variance and "Noise_properties" in self.metadata.Signal: old_np = self.metadata.Signal.Noise_properties del self.metadata.Signal.Noise_properties self.models._models = DictionaryTreeBrowser() ns = self.deepcopy() ns.data = data return ns finally: self.data = old_data self._plot = old_plot self.models._models = old_models if old_np is not None: self.metadata.Signal.Noise_properties = old_np def as_lazy(self, copy_variance=True): res = self._deepcopy_with_new_data(self.data, copy_variance=copy_variance) res._lazy = True res._assign_subclass() return res def _summary(self): string = "\n\tTitle: " string += self.metadata.General.title if self.metadata.has_item("Signal.signal_type"): string += "\n\tSignal type: " string += self.metadata.Signal.signal_type string += "\n\tData dimensions: " string += str(self.axes_manager.shape) string += "\n\tData type: " string += str(self.data.dtype) return string def _print_summary(self): print(self._summary()) @property def data(self): return self._data @data.setter def data(self, value): from dask.array import Array if isinstance(value, Array): if not value.ndim: value = value.reshape((1,)) self._data = value else: self._data = np.atleast_1d(np.asanyarray(value)) def _load_dictionary(self, file_data_dict): """Load data from dictionary. Parameters ---------- file_data_dict : dictionary A dictionary containing at least a 'data' keyword with an array of arbitrary dimensions. Additionally the dictionary can contain the following items: data : numpy array The signal data. It can be an array of any dimensions. axes : dictionary (optional) Dictionary to define the axes (see the documentation of the AxesManager class for more details). attributes : dictionary (optional) A dictionary whose items are stored as attributes. metadata : dictionary (optional) A dictionary containing a set of parameters that will to stores in the `metadata` attribute. Some parameters might be mandatory in some cases. original_metadata : dictionary (optional) A dictionary containing a set of parameters that will to stores in the `original_metadata` attribute. It typically contains all the parameters that has been imported from the original data file. """ self.data = file_data_dict['data'] oldlazy = self._lazy if 'models' in file_data_dict: self.models._add_dictionary(file_data_dict['models']) if 'axes' not in file_data_dict: file_data_dict['axes'] = self._get_undefined_axes_list() self.axes_manager = AxesManager( file_data_dict['axes']) if 'metadata' not in file_data_dict: file_data_dict['metadata'] = {} if 'original_metadata' not in file_data_dict: file_data_dict['original_metadata'] = {} if 'attributes' in file_data_dict: for key, value in file_data_dict['attributes'].items(): if hasattr(self, key): if isinstance(value, dict): for k, v in value.items(): setattr(getattr(self, key), k, v) else: setattr(self, key, value) self.original_metadata.add_dictionary( file_data_dict['original_metadata']) self.metadata.add_dictionary( file_data_dict['metadata']) if "title" not in self.metadata.General: self.metadata.General.title = '' if (self._signal_type or not self.metadata.has_item("Signal.signal_type")): self.metadata.Signal.signal_type = self._signal_type if "learning_results" in file_data_dict: self.learning_results.__dict__.update( file_data_dict["learning_results"]) if self._lazy is not oldlazy: self._assign_subclass() # TODO: try to find a way to use dask ufuncs when called with lazy data (e.g. # np.log(s) -> da.log(s.data) wrapped. def __array__(self, dtype=None): if dtype: return self.data.astype(dtype) else: return self.data def __array_wrap__(self, array, context=None): signal = self._deepcopy_with_new_data(array) if context is not None: # ufunc, argument of the ufunc, domain of the ufunc # In ufuncs with multiple outputs, domain indicates which output # is currently being prepared (eg. see modf). # In ufuncs with a single output, domain is 0 uf, objs, huh = context def get_title(signal, i=0): g = signal.metadata.General if g.title: return g.title else: return "Untitled Signal %s" % (i + 1) title_strs = [] i = 0 for obj in objs: if isinstance(obj, BaseSignal): title_strs.append(get_title(obj, i)) i += 1 else: title_strs.append(str(obj)) signal.metadata.General.title = "%s(%s)" % ( uf.__name__, ", ".join(title_strs)) return signal def squeeze(self): """Remove single-dimensional entries from the shape of an array and the axes. """ # We deepcopy everything but data self = self._deepcopy_with_new_data(self.data) for axis in self.axes_manager._axes: if axis.size == 1: self._remove_axis(axis.index_in_axes_manager) self.data = self.data.squeeze() return self def _to_dictionary(self, add_learning_results=True, add_models=False): """Returns a dictionary that can be used to recreate the signal. All items but `data` are copies. Parameters ---------- add_learning_results : bool Returns ------- dic : dictionary """ dic = {'data': self.data, 'axes': self.axes_manager._get_axes_dicts(), 'metadata': self.metadata.deepcopy().as_dictionary(), 'original_metadata': self.original_metadata.deepcopy().as_dictionary(), 'tmp_parameters': self.tmp_parameters.deepcopy().as_dictionary(), 'attributes': {'_lazy': self._lazy}, } if add_learning_results and hasattr(self, 'learning_results'): dic['learning_results'] = copy.deepcopy( self.learning_results.__dict__) if add_models: dic['models'] = self.models._models.as_dictionary() return dic def _get_undefined_axes_list(self): axes = [] for s in self.data.shape: axes.append({'size': int(s), }) return axes def __call__(self, axes_manager=None): if axes_manager is None: axes_manager = self.axes_manager return np.atleast_1d( self.data.__getitem__(axes_manager._getitem_tuple)) def plot(self, navigator="auto", axes_manager=None, plot_markers=True, **kwargs): """%s %s """ if self._plot is not None: try: self._plot.close() except: # If it was already closed it will raise an exception, # but we want to carry on... pass if axes_manager is None: axes_manager = self.axes_manager if self.is_rgbx is True: if axes_manager.navigation_size < 2: navigator = None else: navigator = "slider" if axes_manager.signal_dimension == 0: self._plot = mpl_he.MPL_HyperExplorer() elif axes_manager.signal_dimension == 1: # Hyperspectrum self._plot = mpl_hse.MPL_HyperSignal1D_Explorer() elif axes_manager.signal_dimension == 2: self._plot = mpl_hie.MPL_HyperImage_Explorer() else: raise ValueError( "Plotting is not supported for this view. " "Try e.g. 's.transpose(signal_axes=1).plot()' for " "plotting as a 1D signal, or " "'s.transpose(signal_axes=(1,2)).plot()' " "for plotting as a 2D signal.") self._plot.axes_manager = axes_manager self._plot.signal_data_function = self.__call__ if self.metadata.General.title: self._plot.signal_title = self.metadata.General.title elif self.tmp_parameters.has_item('filename'): self._plot.signal_title = self.tmp_parameters.filename if self.metadata.has_item("Signal.quantity"): self._plot.quantity_label = self.metadata.Signal.quantity def get_static_explorer_wrapper(*args, **kwargs): return navigator() def get_1D_sum_explorer_wrapper(*args, **kwargs): navigator = self # Sum over all but the first navigation axis. am = navigator.axes_manager navigator = navigator.sum(am.signal_axes + am.navigation_axes[1:]) return np.nan_to_num(navigator.data).squeeze() def get_dynamic_explorer_wrapper(*args, **kwargs): navigator.axes_manager.indices = self.axes_manager.indices[ navigator.axes_manager.signal_dimension:] navigator.axes_manager._update_attributes() if np.issubdtype(navigator().dtype, complex): return np.abs(navigator()) else: return navigator() if not isinstance(navigator, BaseSignal) and navigator == "auto": if (self.axes_manager.navigation_dimension == 1 and self.axes_manager.signal_dimension == 1): navigator = "data" elif self.axes_manager.navigation_dimension > 0: if self.axes_manager.signal_dimension == 0: navigator = self.deepcopy() else: navigator = interactive( self.sum, self.events.data_changed, self.axes_manager.events.any_axis_changed, self.axes_manager.signal_axes) if navigator.axes_manager.navigation_dimension == 1: navigator = interactive( navigator.as_signal1D, navigator.events.data_changed, navigator.axes_manager.events.any_axis_changed, 0) else: navigator = interactive( navigator.as_signal2D, navigator.events.data_changed, navigator.axes_manager.events.any_axis_changed, (0, 1)) else: navigator = None # Navigator properties if axes_manager.navigation_axes: if navigator is "slider": self._plot.navigator_data_function = "slider" elif navigator is None: self._plot.navigator_data_function = None elif isinstance(navigator, BaseSignal): # Dynamic navigator if (axes_manager.navigation_shape == navigator.axes_manager.signal_shape + navigator.axes_manager.navigation_shape): self._plot.navigator_data_function = get_dynamic_explorer_wrapper elif (axes_manager.navigation_shape == navigator.axes_manager.signal_shape or axes_manager.navigation_shape[:2] == navigator.axes_manager.signal_shape or (axes_manager.navigation_shape[0],) == navigator.axes_manager.signal_shape): self._plot.navigator_data_function = get_static_explorer_wrapper else: raise ValueError( "The navigator dimensions are not compatible with " "those of self.") elif navigator == "data": if np.issubdtype(self.data.dtype, complex): self._plot.navigator_data_function = lambda axes_manager=None: np.abs( self.data) else: self._plot.navigator_data_function = lambda axes_manager=None: self.data elif navigator == "spectrum": self._plot.navigator_data_function = get_1D_sum_explorer_wrapper else: raise ValueError( "navigator must be one of \"spectrum\",\"auto\"," " \"slider\", None, a Signal instance") self._plot.plot(**kwargs) self.events.data_changed.connect(self.update_plot, []) if self._plot.signal_plot: self._plot.signal_plot.events.closed.connect( lambda: self.events.data_changed.disconnect(self.update_plot), []) if plot_markers: if self.metadata.has_item('Markers'): self._plot_permanent_markers() plot.__doc__ %= BASE_PLOT_DOCSTRING, KWARGS_DOCSTRING def save(self, filename=None, overwrite=None, extension=None, **kwds): """Saves the signal in the specified format. The function gets the format from the extension.: - hspy for HyperSpy's HDF5 specification - rpl for Ripple (useful to export to Digital Micrograph) - msa for EMSA/MSA single spectrum saving. - unf for SEMPER unf binary format. - blo for Blockfile diffraction stack saving. - Many image formats such as png, tiff, jpeg... If no extension is provided the default file format as defined in the `preferences` is used. Please note that not all the formats supports saving datasets of arbitrary dimensions, e.g. msa only supports 1D data, and blockfiles only support image stacks with a navigation dimension < 2. Each format accepts a different set of parameters. For details see the specific format documentation. Parameters ---------- filename : str or None If None (default) and tmp_parameters.filename and `tmp_paramters.folder` are defined, the filename and path will be taken from there. A valid extension can be provided e.g. "my_file.rpl", see `extension`. overwrite : None, bool If None, if the file exists it will query the user. If True(False) it (does not) overwrites the file if it exists. extension : {None, 'hspy', 'hdf5', 'rpl', 'msa', 'unf', 'blo', 'emd', common image extensions e.g. 'tiff', 'png'} The extension of the file that defines the file format. 'hspy' and 'hdf5' are equivalent. Use 'hdf5' if compatibility with HyperSpy versions older than 1.2 is required. If None, the extension is determined from the following list in this order: i) the filename ii) `Signal.tmp_parameters.extension` iii) `hspy` (the default extension) """ if filename is None: if (self.tmp_parameters.has_item('filename') and self.tmp_parameters.has_item('folder')): filename = os.path.join( self.tmp_parameters.folder, self.tmp_parameters.filename) extension = (self.tmp_parameters.extension if not extension else extension) elif self.metadata.has_item('General.original_filename'): filename = self.metadata.General.original_filename else: raise ValueError('File name not defined') if extension is not None: basename, ext = os.path.splitext(filename) filename = basename + '.' + extension io.save(filename, self, overwrite=overwrite, **kwds) def _replot(self): if self._plot is not None: if self._plot.is_active() is True: self.plot() def update_plot(self): if self._plot is not None: if self._plot.is_active() is True: if self._plot.signal_plot is not None: self._plot.signal_plot.update() if self._plot.navigator_plot is not None: self._plot.navigator_plot.update() def get_dimensions_from_data(self): """Get the dimension parameters from the data_cube. Useful when the data_cube was externally modified, or when the SI was not loaded from a file """ dc = self.data for axis in self.axes_manager._axes: axis.size = int(dc.shape[axis.index_in_array]) def crop(self, axis, start=None, end=None): """Crops the data in a given axis. The range is given in pixels Parameters ---------- axis : {int | string} Specify the data axis in which to perform the cropping operation. The axis can be specified using the index of the axis in `axes_manager` or the axis name. start, end : {int | float | None} The beginning and end of the cropping interval. If int the value is taken as the axis index. If float the index is calculated using the axis calibration. If start/end is None crop from/to the low/high end of the axis. """ axis = self.axes_manager[axis] i1, i2 = axis._get_index(start), axis._get_index(end) if i1 is not None: new_offset = axis.axis[i1] # We take a copy to guarantee the continuity of the data self.data = self.data[ (slice(None),) * axis.index_in_array + (slice(i1, i2), Ellipsis)] if i1 is not None: axis.offset = new_offset self.get_dimensions_from_data() self.squeeze() self.events.data_changed.trigger(obj=self) def swap_axes(self, axis1, axis2): """Swaps the axes. Parameters ---------- axis1, axis2 %s Returns ------- s : a copy of the object with the axes swapped. """ axis1 = self.axes_manager[axis1].index_in_array axis2 = self.axes_manager[axis2].index_in_array s = self._deepcopy_with_new_data(self.data.swapaxes(axis1, axis2)) am = s.axes_manager am._update_trait_handlers(remove=True) c1 = am._axes[axis1] c2 = am._axes[axis2] c1.slice, c2.slice = c2.slice, c1.slice c1.navigate, c2.navigate = c2.navigate, c1.navigate am._axes[axis1] = c2 am._axes[axis2] = c1 am._update_attributes() am._update_trait_handlers(remove=False) s._make_sure_data_is_contiguous() return s swap_axes.__doc__ %= ONE_AXIS_PARAMETER def rollaxis(self, axis, to_axis): """Roll the specified axis backwards, until it lies in a given position. Parameters ---------- axis %s The axis to roll backwards. The positions of the other axes do not change relative to one another. to_axis %s The axis is rolled until it lies before this other axis. Returns ------- s : Signal or subclass Output signal. See Also -------- roll : swap_axes Examples -------- >>> s = hs.signals.Signal1D(np.ones((5,4,3,6))) >>> s <Signal1D, title: , dimensions: (3, 4, 5, 6)> >>> s.rollaxis(3, 1) <Signal1D, title: , dimensions: (3, 4, 5, 6)> >>> s.rollaxis(2,0) <Signal1D, title: , dimensions: (5, 3, 4, 6)> """ axis = self.axes_manager[axis].index_in_array to_index = self.axes_manager[to_axis].index_in_array if axis == to_index: return self.deepcopy() new_axes_indices = hyperspy.misc.utils.rollelem( [axis_.index_in_array for axis_ in self.axes_manager._axes], index=axis, to_index=to_index) s = self._deepcopy_with_new_data(self.data.transpose(new_axes_indices)) s.axes_manager._axes = hyperspy.misc.utils.rollelem( s.axes_manager._axes, index=axis, to_index=to_index) s.axes_manager._update_attributes() s._make_sure_data_is_contiguous() return s rollaxis.__doc__ %= (ONE_AXIS_PARAMETER, ONE_AXIS_PARAMETER) @property def _data_aligned_with_axes(self): """Returns a view of `data` with is axes aligned with the Signal axes. """ if self.axes_manager.axes_are_aligned_with_data: return self.data else: am = self.axes_manager nav_iia_r = am.navigation_indices_in_array[::-1] sig_iia_r = am.signal_indices_in_array[::-1] # nav_sort = np.argsort(nav_iia_r) # sig_sort = np.argsort(sig_iia_r) + len(nav_sort) data = self.data.transpose(nav_iia_r + sig_iia_r) return data def _validate_rebin_args_and_get_factors(self, new_shape=None, scale=None): if new_shape is None and scale is None: raise ValueError("One of new_shape, or scale must be specified") elif new_shape is None and scale is None: raise ValueError( "Only one out of new_shape or scale should be specified. " "Not both.") elif new_shape: if len(new_shape) != len(self.data.shape): raise ValueError("Wrong new_shape size") new_shape_in_array = np.array([new_shape[axis.index_in_axes_manager] for axis in self.axes_manager._axes]) factors = np.array(self.data.shape) / new_shape_in_array else: if len(scale) != len(self.data.shape): raise ValueError("Wrong scale size") factors = np.array([scale[axis.index_in_axes_manager] for axis in self.axes_manager._axes]) return factors # Factors are in array order def rebin(self, new_shape=None, scale=None, crop=True, out=None): """ Rebin array. Rebin the signal into a smaller or larger shape, based on linear interpolation. Specify **either** new_shape or scale. Parameters ---------- new_shape : a list of floats or integer, default None For each dimension specify the new_shape. This will then be converted into a scale. scale : a list of floats or integer, default None For each dimension specify the new:old pixel ratio, e.g. a ratio of 1 is no binning and a ratio of 2 means that each pixel in the new spectrum is twice the size of the pixels in the old spectrum. The length of the list should match the dimension of the numpy array. ***Note : Only one of scale or new_shape should be specified otherwise the function will not run*** crop: bool, default True When binning by a non-integer number of pixels it is likely that the final row in each dimension contains less than the full quota to fill one pixel. e.g. 5*5 array binned by 2.1 will produce two rows containing 2.1 pixels and one row containing only 0.8 pixels worth. Selection of crop='True' or crop='False' determines whether or not this 'black' line is cropped from the final binned array or not. *Please note that if crop=False is used, the final row in each dimension may appear black, if a fractional number of pixels are left over. It can be removed but has been left to preserve total counts before and after binning.* %s Returns ------- s : Signal subclass Examples -------- >>> spectrum = hs.signals.EDSTEMSpectrum(np.ones([4, 4, 10])) >>> spectrum.data[1, 2, 9] = 5 >>> print(spectrum) <EDXTEMSpectrum, title: dimensions: (4, 4|10)> >>> print ('Sum = ', sum(sum(sum(spectrum.data)))) Sum = 164.0 >>> scale = [2, 2, 5] >>> test = spectrum.rebin(scale) >>> print(test) <EDSTEMSpectrum, title: dimensions (2, 2|2)> >>> print('Sum = ', sum(sum(sum(test.data)))) Sum = 164.0 """ factors = self._validate_rebin_args_and_get_factors( new_shape=new_shape, scale=scale,) s = out or self._deepcopy_with_new_data(None, copy_variance=True) data = hyperspy.misc.array_tools.rebin( self.data, scale=factors, crop=crop) if out: if out._lazy: out.data = data else: out.data[:] = data else: s.data = data s.get_dimensions_from_data() for axis, axis_src in zip(s.axes_manager._axes, self.axes_manager._axes): axis.scale = axis_src.scale * factors[axis.index_in_array] if s.metadata.has_item('Signal.Noise_properties.variance'): if isinstance(s.metadata.Signal.Noise_properties.variance, BaseSignal): var = s.metadata.Signal.Noise_properties.variance s.metadata.Signal.Noise_properties.variance = var.rebin( new_shape=new_shape, scale=scale, crop=crop, out=out) if out is None: return s else: out.events.data_changed.trigger(obj=out) rebin.__doc__ %= (OUT_ARG) def split(self, axis='auto', number_of_parts='auto', step_sizes='auto'): """Splits the data into several signals. The split can be defined by giving the number_of_parts, a homogeneous step size or a list of customized step sizes. By default ('auto'), the function is the reverse of utils.stack(). Parameters ---------- axis : {'auto' | int | string} Specify the data axis in which to perform the splitting operation. The axis can be specified using the index of the axis in `axes_manager` or the axis name. - If 'auto' and if the object has been created with utils.stack, split will return the former list of signals (options stored in 'metadata._HyperSpy.Stacking_history' else the last navigation axis will be used. number_of_parts : {'auto' | int} Number of parts in which the SI will be splitted. The splitting is homegenous. When the axis size is not divisible by the number_of_parts the reminder data is lost without warning. If number_of_parts and step_sizes is 'auto', number_of_parts equals the length of the axis, step_sizes equals one and the axis is suppressed from each sub_spectra. step_sizes : {'auto' | list of ints | int} Size of the splitted parts. If 'auto', the step_sizes equals one. If int, the splitting is homogenous. Examples -------- >>> s = hs.signals.Signal1D(random.random([4,3,2])) >>> s <Signal1D, title: , dimensions: (3, 4|2)> >>> s.split() [<Signal1D, title: , dimensions: (3 |2)>, <Signal1D, title: , dimensions: (3 |2)>, <Signal1D, title: , dimensions: (3 |2)>, <Signal1D, title: , dimensions: (3 |2)>] >>> s.split(step_sizes=2) [<Signal1D, title: , dimensions: (3, 2|2)>, <Signal1D, title: , dimensions: (3, 2|2)>] >>> s.split(step_sizes=[1,2]) [<Signal1D, title: , dimensions: (3, 1|2)>, <Signal1D, title: , dimensions: (3, 2|2)>] Returns ------- list of the splitted signals """ shape = self.data.shape signal_dict = self._to_dictionary(add_learning_results=False) if axis == 'auto': mode = 'auto' if hasattr(self.metadata._HyperSpy, 'Stacking_history'): stack_history = self.metadata._HyperSpy.Stacking_history axis_in_manager = stack_history.axis step_sizes = stack_history.step_sizes else: axis_in_manager = self.axes_manager[-1 + 1j].index_in_axes_manager else: mode = 'manual' axis_in_manager = self.axes_manager[axis].index_in_axes_manager axis = self.axes_manager[axis_in_manager].index_in_array len_axis = self.axes_manager[axis_in_manager].size if number_of_parts is 'auto' and step_sizes is 'auto': step_sizes = 1 number_of_parts = len_axis elif number_of_parts is not 'auto' and step_sizes is not 'auto': raise ValueError( "You can define step_sizes or number_of_parts " "but not both.") elif step_sizes is 'auto': if number_of_parts > shape[axis]: raise ValueError( "The number of parts is greater than " "the axis size.") else: step_sizes = ([shape[axis] // number_of_parts, ] * number_of_parts) if isinstance(step_sizes, numbers.Integral): step_sizes = [step_sizes] * int(len_axis / step_sizes) splitted = [] cut_index = np.array([0] + step_sizes).cumsum() axes_dict = signal_dict['axes'] for i in range(len(cut_index) - 1): axes_dict[axis]['offset'] = self.axes_manager._axes[ axis].index2value(cut_index[i]) axes_dict[axis]['size'] = cut_index[i + 1] - cut_index[i] data = self.data[ (slice(None), ) * axis + (slice(cut_index[i], cut_index[i + 1]), Ellipsis)] signal_dict['data'] = data splitted += self.__class__(**signal_dict), if number_of_parts == len_axis \ or step_sizes == [1] * len_axis: for i, signal1D in enumerate(splitted): signal1D.data = signal1D.data[ signal1D.axes_manager._get_data_slice([(axis, 0)])] signal1D._remove_axis(axis_in_manager) if mode == 'auto' and hasattr( self.original_metadata, 'stack_elements'): for i, spectrum in enumerate(splitted): se = self.original_metadata.stack_elements['element' + str(i)] spectrum.metadata = copy.deepcopy( se['metadata']) spectrum.original_metadata = copy.deepcopy( se['original_metadata']) spectrum.metadata.General.title = se.metadata.General.title return splitted def _unfold(self, steady_axes, unfolded_axis): """Modify the shape of the data by specifying the axes whose dimension do not change and the axis over which the remaining axes will be unfolded Parameters ---------- steady_axes : list The indices of the axes which dimensions do not change unfolded_axis : int The index of the axis over which all the rest of the axes (except the steady axes) will be unfolded See also -------- fold Notes ----- WARNING: this private function does not modify the signal subclass and it is intended for internal use only. To unfold use the public `unfold`, `unfold_navigation_space` or `unfold_signal_space` instead. It doesn't make sense unfolding when dim < 2 """ if self.data.squeeze().ndim < 2: return # We need to store the original shape and coordinates to be used # by # the fold function only if it has not been already stored by a # previous unfold folding = self.metadata._HyperSpy.Folding if folding.unfolded is False: folding.original_shape = self.data.shape folding.original_axes_manager = self.axes_manager folding.unfolded = True new_shape = [1] * len(self.data.shape) for index in steady_axes: new_shape[index] = self.data.shape[index] new_shape[unfolded_axis] = -1 self.data = self.data.reshape(new_shape) self.axes_manager = self.axes_manager.deepcopy() uname = '' uunits = '' to_remove = [] for axis, dim in zip(self.axes_manager._axes, new_shape): if dim == 1: uname += ',' + str(axis) uunits = ',' + str(axis.units) to_remove.append(axis) ua = self.axes_manager._axes[unfolded_axis] ua.name = str(ua) + uname ua.units = str(ua.units) + uunits ua.size = self.data.shape[unfolded_axis] for axis in to_remove: self.axes_manager.remove(axis.index_in_axes_manager) self.data = self.data.squeeze() self._assign_subclass() def unfold(self, unfold_navigation=True, unfold_signal=True): """Modifies the shape of the data by unfolding the signal and navigation dimensions separately Returns ------- needed_unfolding : bool """ unfolded = False if unfold_navigation: if self.unfold_navigation_space(): unfolded = True if unfold_signal: if self.unfold_signal_space(): unfolded = True return unfolded @contextmanager def unfolded(self, unfold_navigation=True, unfold_signal=True): """Use this function together with a `with` statement to have the signal be unfolded for the scope of the `with` block, before automatically refolding when passing out of scope. See also -------- unfold, fold Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> with s.unfolded(): # Do whatever needs doing while unfolded here pass """ unfolded = self.unfold(unfold_navigation, unfold_signal) try: yield unfolded finally: if unfolded is not False: self.fold() def unfold_navigation_space(self): """Modify the shape of the data to obtain a navigation space of dimension 1 Returns ------- needed_unfolding : bool """ if self.axes_manager.navigation_dimension < 2: needed_unfolding = False else: needed_unfolding = True steady_axes = [ axis.index_in_array for axis in self.axes_manager.signal_axes] unfolded_axis = ( self.axes_manager.navigation_axes[0].index_in_array) self._unfold(steady_axes, unfolded_axis) if self.metadata.has_item('Signal.Noise_properties.variance'): variance = self.metadata.Signal.Noise_properties.variance if isinstance(variance, BaseSignal): variance.unfold_navigation_space() return needed_unfolding def unfold_signal_space(self): """Modify the shape of the data to obtain a signal space of dimension 1 Returns ------- needed_unfolding : bool """ if self.axes_manager.signal_dimension < 2: needed_unfolding = False else: needed_unfolding = True steady_axes = [ axis.index_in_array for axis in self.axes_manager.navigation_axes] unfolded_axis = self.axes_manager.signal_axes[0].index_in_array self._unfold(steady_axes, unfolded_axis) self.metadata._HyperSpy.Folding.signal_unfolded = True if self.metadata.has_item('Signal.Noise_properties.variance'): variance = self.metadata.Signal.Noise_properties.variance if isinstance(variance, BaseSignal): variance.unfold_signal_space() return needed_unfolding def fold(self): """If the signal was previously unfolded, folds it back""" folding = self.metadata._HyperSpy.Folding # Note that == must be used instead of is True because # if the value was loaded from a file its type can be np.bool_ if folding.unfolded is True: self.data = self.data.reshape(folding.original_shape) self.axes_manager = folding.original_axes_manager folding.original_shape = None folding.original_axes_manager = None folding.unfolded = False folding.signal_unfolded = False self._assign_subclass() if self.metadata.has_item('Signal.Noise_properties.variance'): variance = self.metadata.Signal.Noise_properties.variance if isinstance(variance, BaseSignal): variance.fold() def _make_sure_data_is_contiguous(self, log=False): if self.data.flags['C_CONTIGUOUS'] is False: if log: _warn_string = "{0!r} data is replaced by its optimized copy".format( self) _logger.warning(_warn_string) self.data = np.ascontiguousarray(self.data) def _iterate_signal(self): """Iterates over the signal data. It is faster than using the signal iterator. """ if self.axes_manager.navigation_size < 2: yield self() return self._make_sure_data_is_contiguous() axes = [axis.index_in_array for axis in self.axes_manager.signal_axes] if axes: unfolded_axis = ( self.axes_manager.navigation_axes[0].index_in_array) new_shape = [1] * len(self.data.shape) for axis in axes: new_shape[axis] = self.data.shape[axis] new_shape[unfolded_axis] = -1 else: # signal_dimension == 0 new_shape = (-1, 1) axes = [1] unfolded_axis = 0 # Warning! if the data is not contigous it will make a copy!! data = self.data.reshape(new_shape) getitem = [0] * len(data.shape) for axis in axes: getitem[axis] = slice(None) for i in range(data.shape[unfolded_axis]): getitem[unfolded_axis] = i yield(data[tuple(getitem)]) def _remove_axis(self, axes): am = self.axes_manager axes = am[axes] if not np.iterable(axes): axes = (axes,) if am.navigation_dimension + am.signal_dimension > len(axes): old_signal_dimension = am.signal_dimension am.remove(axes) if old_signal_dimension != am.signal_dimension: self._assign_subclass() else: # Create a "Scalar" axis because the axis is the last one left and # HyperSpy does not # support 0 dimensions from hyperspy.misc.utils import add_scalar_axis add_scalar_axis(self) def _ma_workaround(self, s, function, axes, ar_axes, out): # TODO: Remove if and when numpy.ma accepts tuple `axis` # Basically perform unfolding, but only on data. We don't care about # the axes since the function will consume it/them. if not np.iterable(ar_axes): ar_axes = (ar_axes,) ar_axes = sorted(ar_axes) new_shape = list(self.data.shape) for index in ar_axes[1:]: new_shape[index] = 1 new_shape[ar_axes[0]] = -1 data = self.data.reshape(new_shape).squeeze() if out: data = np.atleast_1d(function(data, axis=ar_axes[0],)) if data.shape == out.data.shape: out.data[:] = data out.events.data_changed.trigger(obj=out) else: raise ValueError( "The output shape %s does not match the shape of " "`out` %s" % (data.shape, out.data.shape)) else: s.data = function(data, axis=ar_axes[0],) s._remove_axis([ax.index_in_axes_manager for ax in axes]) return s def _apply_function_on_data_and_remove_axis(self, function, axes, out=None): axes = self.axes_manager[axes] if not np.iterable(axes): axes = (axes,) # Use out argument in numpy function when available for operations that # do not return scalars in numpy. np_out = not len(self.axes_manager._axes) == len(axes) ar_axes = tuple(ax.index_in_array for ax in axes) if len(ar_axes) == 1: ar_axes = ar_axes[0] s = out or self._deepcopy_with_new_data(None) if np.ma.is_masked(self.data): return self._ma_workaround(s=s, function=function, axes=axes, ar_axes=ar_axes, out=out) if out: if np_out: function(self.data, axis=ar_axes, out=out.data,) else: data = np.atleast_1d(function(self.data, axis=ar_axes,)) if data.shape == out.data.shape: out.data[:] = data else: raise ValueError( "The output shape %s does not match the shape of " "`out` %s" % (data.shape, out.data.shape)) out.events.data_changed.trigger(obj=out) else: s.data = np.atleast_1d( function(self.data, axis=ar_axes,)) s._remove_axis([ax.index_in_axes_manager for ax in axes]) return s def sum(self, axis=None, out=None): """Sum the data over the given axes. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, mean, std, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.sum(-1).data.shape (64,64) """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.sum, axis, out=out) sum.__doc__ %= (MANY_AXIS_PARAMETER, OUT_ARG) def max(self, axis=None, out=None): """Returns a signal with the maximum of the signal along at least one axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- min, sum, mean, std, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.max(-1).data.shape (64,64) """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.max, axis, out=out) max.__doc__ %= (MANY_AXIS_PARAMETER, OUT_ARG) def min(self, axis=None, out=None): """Returns a signal with the minimum of the signal along at least one axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, sum, mean, std, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.min(-1).data.shape (64,64) """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.min, axis, out=out) min.__doc__ %= (MANY_AXIS_PARAMETER, OUT_ARG) def mean(self, axis=None, out=None): """Returns a signal with the average of the signal along at least one axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, sum, std, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.mean(-1).data.shape (64,64) """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.mean, axis, out=out) mean.__doc__ %= (MANY_AXIS_PARAMETER, OUT_ARG) def std(self, axis=None, out=None): """Returns a signal with the standard deviation of the signal along at least one axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, sum, mean, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.std(-1).data.shape (64,64) """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.std, axis, out=out) std.__doc__ %= (MANY_AXIS_PARAMETER, OUT_ARG) def var(self, axis=None, out=None): """Returns a signal with the variances of the signal along at least one axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, sum, mean, std, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.var(-1).data.shape (64,64) """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.var, axis, out=out) var.__doc__ %= (MANY_AXIS_PARAMETER, OUT_ARG) def nansum(self, axis=None, out=None): """%s """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.nansum, axis, out=out) nansum.__doc__ %= (NAN_FUNC.format('sum', sum.__doc__)) def nanmax(self, axis=None, out=None): """%s """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.nanmax, axis, out=out) nanmax.__doc__ %= (NAN_FUNC.format('max', max.__doc__)) def nanmin(self, axis=None, out=None): """%s""" if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.nanmin, axis, out=out) nanmin.__doc__ %= (NAN_FUNC.format('min', min.__doc__)) def nanmean(self, axis=None, out=None): """%s """ if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.nanmean, axis, out=out) nanmean.__doc__ %= (NAN_FUNC.format('mean', mean.__doc__)) def nanstd(self, axis=None, out=None): """%s""" if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.nanstd, axis, out=out) nanstd.__doc__ %= (NAN_FUNC.format('std', std.__doc__)) def nanvar(self, axis=None, out=None): """%s""" if axis is None: axis = self.axes_manager.navigation_axes return self._apply_function_on_data_and_remove_axis(np.nanvar, axis, out=out) nanvar.__doc__ %= (NAN_FUNC.format('var', var.__doc__)) def diff(self, axis, order=1, out=None): """Returns a signal with the n-th order discrete difference along given axis. Parameters ---------- axis %s order : int the order of the derivative %s See also -------- max, min, sum, mean, std, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.diff(-1).data.shape (64,64,1023) """ s = out or self._deepcopy_with_new_data(None) data = np.diff(self.data, n=order, axis=self.axes_manager[axis].index_in_array) if out is not None: out.data[:] = data else: s.data = data axis2 = s.axes_manager[axis] new_offset = self.axes_manager[axis].offset + (order * axis2.scale / 2) axis2.offset = new_offset s.get_dimensions_from_data() if out is None: return s else: out.events.data_changed.trigger(obj=out) diff.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def derivative(self, axis, order=1, out=None): """Numerical derivative along the given axis. Currently only the first order finite difference method is implemented. Parameters ---------- axis %s order: int The order of the derivative. (Note that this is the order of the derivative i.e. `order=2` does not use second order finite differences method.) %s Returns ------- der : Signal Note that the size of the data on the given `axis` decreases by the given `order` i.e. if `axis` is "x" and `order` is 2 the x dimension is N, der's x dimension is N - 2. See also -------- diff """ der = self.diff(order=order, axis=axis, out=out) der = out or der axis = self.axes_manager[axis] der.data /= axis.scale ** order if out is None: return der else: out.events.data_changed.trigger(obj=out) derivative.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def integrate_simpson(self, axis, out=None): """Returns a signal with the result of calculating the integral of the signal along an axis using Simpson's rule. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, sum, mean, std, var, indexmax, valuemax, amax Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.var(-1).data.shape (64,64) """ axis = self.axes_manager[axis] s = out or self._deepcopy_with_new_data(None) data = sp.integrate.simps(y=self.data, x=axis.axis, axis=axis.index_in_array) if out is not None: out.data[:] = data out.events.data_changed.trigger(obj=out) else: s.data = data s._remove_axis(axis.index_in_axes_manager) return s integrate_simpson.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def integrate1D(self, axis, out=None): """Integrate the signal over the given axis. The integration is performed using Simpson's rule if `metadata.Signal.binned` is False and summation over the given axis if True. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- integrate_simpson, diff, derivative Examples -------- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.var(-1).data.shape (64,64) """ if self.metadata.Signal.binned is False: return self.integrate_simpson(axis=axis, out=out) else: return self.sum(axis=axis, out=out) integrate1D.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def indexmin(self, axis, out=None): """Returns a signal with the index of the minimum along an axis. Parameters ---------- axis %s %s Returns ------- s : Signal The data dtype is always int. See also -------- max, min, sum, mean, std, var, valuemax, amax Usage ----- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.indexmax(-1).data.shape (64,64) """ return self._apply_function_on_data_and_remove_axis(np.argmin, axis, out=out) def indexmax(self, axis, out=None): """Returns a signal with the index of the maximum along an axis. Parameters ---------- axis %s %s Returns ------- s : Signal The data dtype is always int. See also -------- max, min, sum, mean, std, var, valuemax, amax Usage ----- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.indexmax(-1).data.shape (64,64) """ return self._apply_function_on_data_and_remove_axis(np.argmax, axis, out=out) indexmax.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def valuemax(self, axis, out=None): """Returns a signal with the value of coordinates of the maximum along an axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, sum, mean, std, var, indexmax, amax Usage ----- >>> import numpy as np >>> s = BaseSignal(np.random.random((64,64,1024))) >>> s.data.shape (64,64,1024) >>> s.valuemax(-1).data.shape (64,64) """ idx = self.indexmax(axis) data = self.axes_manager[axis].index2value(idx.data) if out is None: idx.data = data return idx else: out.data[:] = data out.events.data_changed.trigger(obj=out) valuemax.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def valuemin(self, axis, out=None): """Returns a signal with the value of coordinates of the minimum along an axis. Parameters ---------- axis %s %s Returns ------- s : Signal See also -------- max, min, sum, mean, std, var, indexmax, amax """ idx = self.indexmin(axis) data = self.axes_manager[axis].index2value(idx.data) if out is None: idx.data = data return idx else: out.data[:] = data out.events.data_changed.trigger(obj=out) valuemin.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def get_histogram(self, bins='freedman', range_bins=None, out=None, **kwargs): """Return a histogram of the signal data. More sophisticated algorithms for determining bins can be used. Aside from the `bins` argument allowing a string specified how bins are computed, the parameters are the same as numpy.histogram(). Parameters ---------- bins : int or list or str, optional If bins is a string, then it must be one of: 'knuth' : use Knuth's rule to determine bins 'scotts' : use Scott's rule to determine bins 'freedman' : use the Freedman-diaconis rule to determine bins 'blocks' : use bayesian blocks for dynamic bin widths range_bins : tuple or None, optional the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max()) %s **kwargs other keyword arguments (weight and density) are described in np.histogram(). Returns ------- hist_spec : An 1D spectrum instance containing the histogram. See Also -------- print_summary_statistics astroML.density_estimation.histogram, numpy.histogram : these are the functions that hyperspy uses to compute the histogram. Notes ----- The lazy version of the algorithm does not support 'knuth' and 'blocks' bins arguments. The number of bins estimators are taken from AstroML. Read their documentation for more info. Examples -------- >>> s = hs.signals.Signal1D(np.random.normal(size=(10, 100))) Plot the data histogram >>> s.get_histogram().plot() Plot the histogram of the signal at the current coordinates >>> s.get_current_signal().get_histogram().plot() """ from hyperspy import signals data = self.data[~np.isnan(self.data)].flatten() hist, bin_edges = histogram(data, bins=bins, range=range_bins, **kwargs) if out is None: hist_spec = signals.Signal1D(hist) else: hist_spec = out if hist_spec.data.shape == hist.shape: hist_spec.data[:] = hist else: hist_spec.data = hist if bins == 'blocks': hist_spec.axes_manager.signal_axes[0].axis = bin_edges[:-1] warnings.warn( "The options `bins = 'blocks'` is not fully supported in this " "versions of hyperspy. It should be used for plotting purpose" "only.") else: hist_spec.axes_manager[0].scale = bin_edges[1] - bin_edges[0] hist_spec.axes_manager[0].offset = bin_edges[0] hist_spec.axes_manager[0].size = hist.shape[-1] hist_spec.axes_manager[0].name = 'value' hist_spec.metadata.General.title = (self.metadata.General.title + " histogram") hist_spec.metadata.Signal.binned = True if out is None: return hist_spec else: out.events.data_changed.trigger(obj=out) get_histogram.__doc__ %= OUT_ARG def map(self, function, show_progressbar=None, parallel=None, inplace=True, ragged=None, **kwargs): """Apply a function to the signal data at all the coordinates. The function must operate on numpy arrays. It is applied to the data at each navigation coordinate pixel-py-pixel. Any extra keyword argument is passed to the function. The keywords can take different values at different coordinates. If the function takes an `axis` or `axes` argument, the function is assumed to be vectorial and the signal axes are assigned to `axis` or `axes`. Otherwise, the signal is iterated over the navigation axes and a progress bar is displayed to monitor the progress. In general, only navigation axes (order, calibration and number) is guaranteed to be preserved. Parameters ---------- function : function A function that can be applied to the signal. show_progressbar : None or bool If True, display a progress bar. If None the default is set in `preferences`. parallel : {None,bool,int} if True, the mapping will be performed in a threaded (parallel) manner. inplace : bool if True (default), the data is replaced by the result. Otherwise a new signal with the results is returned. ragged : {None, bool} Indicates if results for each navigation pixel are of identical shape (and/or numpy arrays to begin with). If None, appropriate choice is made while processing. None is not allowed for Lazy signals! keyword arguments : any valid keyword argument All extra keyword arguments are passed to the Notes ----- If the function results do not have identical shapes, the result is an array of navigation shape, where each element corresponds to the result of the function (of arbitraty object type), called "ragged array". As such, most functions are not able to operate on the result and the data should be used directly. This method is similar to Python's :func:`map` that can also be utilize with a :class:`Signal` instance for similar purposes. However, this method has the advantage of being faster because it iterates the numpy array instead of the :class:`Signal`. Examples -------- Apply a gaussian filter to all the images in the dataset. The sigma parameter is constant. >>> import scipy.ndimage >>> im = hs.signals.Signal2D(np.random.random((10, 64, 64))) >>> im.map(scipy.ndimage.gaussian_filter, sigma=2.5) Apply a gaussian filter to all the images in the dataset. The sigmal parameter is variable. >>> im = hs.signals.Signal2D(np.random.random((10, 64, 64))) >>> sigmas = hs.signals.BaseSignal(np.linspace(2,5,10)).T >>> im.map(scipy.ndimage.gaussian_filter, sigma=sigmas) """ # Sepate ndkwargs ndkwargs = () for key, value in kwargs.items(): if isinstance(value, BaseSignal): ndkwargs += ((key, value),) # Check if the signal axes have inhomogenous scales and/or units and # display in warning if yes. scale = set() units = set() for i in range(len(self.axes_manager.signal_axes)): scale.add(self.axes_manager.signal_axes[i].scale) units.add(self.axes_manager.signal_axes[i].units) if len(units) != 1 or len(scale) != 1: _logger.warning( "The function you applied does not take into " "account the difference of units and of scales in-between" " axes.") # If the function has an axis argument and the signal dimension is 1, # we suppose that it can operate on the full array and we don't # iterate over the coordinates. try: fargs = inspect.signature(function).parameters.keys() except TypeError: # This is probably a Cython function that is not supported by # inspect. fargs = [] if not ndkwargs and (self.axes_manager.signal_dimension == 1 and "axis" in fargs): kwargs['axis'] = self.axes_manager.signal_axes[-1].index_in_array res = self._map_all(function, inplace=inplace, **kwargs) # If the function has an axes argument # we suppose that it can operate on the full array and we don't # iterate over the coordinates. elif not ndkwargs and "axes" in fargs and not parallel: kwargs['axes'] = tuple([axis.index_in_array for axis in self.axes_manager.signal_axes]) res = self._map_all(function, inplace=inplace, **kwargs) else: # Iteration over coordinates. res = self._map_iterate(function, iterating_kwargs=ndkwargs, show_progressbar=show_progressbar, parallel=parallel, inplace=inplace, ragged=ragged, **kwargs) if inplace: self.events.data_changed.trigger(obj=self) return res def _map_all(self, function, inplace=True, **kwargs): """The function has to have either 'axis' or 'axes' keyword argument, and hence support operating on the full dataset efficiently. Replaced for lazy signals""" newdata = function(self.data, **kwargs) if inplace: self.data = newdata return None return self._deepcopy_with_new_data(newdata) def _map_iterate(self, function, iterating_kwargs=(), show_progressbar=None, parallel=None, ragged=None, inplace=True, **kwargs): """Iterates the signal navigation space applying the function. Paratemers ---------- function : callable the function to apply iterating_kwargs : tuple of tuples a tuple with structure (('key1', value1), ('key2', value2), ..) where the key-value pairs will be passed as kwargs for the callable, and the values will be iterated together with the signal navigation. parallel : {None, bool} if True, the mapping will be performed in a threaded (parallel) manner. If None the default from `preferences` is used. inplace : bool if True (default), the data is replaced by the result. Otherwise a new signal with the results is returned. ragged : {None, bool} Indicates if results for each navigation pixel are of identical shape (and/or numpy arrays to begin with). If None, appropriate choice is made while processing. None is not allowed for Lazy signals! show_progressbar : None or bool If True, display a progress bar. If None the default is set in `preferences`. **kwargs passed to the function as constant kwargs Notes ----- This method is replaced for lazy signals. Examples -------- Pass a larger array of different shape >>> s = hs.signals.Signal1D(np.arange(20.).reshape((20,1))) >>> def func(data, value=0): ... return data + value >>> # pay attention that it's a tuple of tuples - need commas >>> s._map_iterate(func, ... iterating_kwargs=(('value', ... np.random.rand(5,400).flat),)) >>> s.data.T array([[ 0.82869603, 1.04961735, 2.21513949, 3.61329091, 4.2481755 , 5.81184375, 6.47696867, 7.07682618, 8.16850697, 9.37771809, 10.42794054, 11.24362699, 12.11434077, 13.98654036, 14.72864184, 15.30855499, 16.96854373, 17.65077064, 18.64925703, 19.16901297]]) Storing function result to other signal (e.g. calculated shifts) >>> s = hs.signals.Signal1D(np.arange(20.).reshape((5,4))) >>> def func(data): # the original function ... return data.sum() >>> result = s._get_navigation_signal().T >>> def wrapped(*args, data=None): ... return func(data) >>> result._map_iterate(wrapped, ... iterating_kwargs=(('data', s),)) >>> result.data array([ 6., 22., 38., 54., 70.]) """ if parallel is None: parallel = preferences.General.parallel if parallel is True: from os import cpu_count parallel = cpu_count() or 1 # Because by default it's assumed to be I/O bound, and cpu_count*5 is # used. For us this is not the case. if show_progressbar is None: show_progressbar = preferences.General.show_progressbar size = max(1, self.axes_manager.navigation_size) from hyperspy.misc.utils import (create_map_objects, map_result_construction) func, iterators = create_map_objects(function, size, iterating_kwargs, **kwargs) iterators = (self._iterate_signal(),) + iterators res_shape = self.axes_manager._navigation_shape_in_array # no navigation if not len(res_shape): res_shape = (1,) # pre-allocate some space res_data = np.empty(res_shape, dtype='O') shapes = set() # parallel or sequential maps if parallel: from concurrent.futures import ThreadPoolExecutor executor = ThreadPoolExecutor(max_workers=parallel) thismap = executor.map else: from builtins import map as thismap pbar = progressbar(total=size, leave=True, disable=not show_progressbar) for ind, res in zip(range(res_data.size), thismap(func, zip(*iterators))): res_data.flat[ind] = res if ragged is False: # to be able to break quickly and not waste time / resources shapes.add(res.shape) if len(shapes) != 1: raise ValueError('The result shapes are not identical, but' 'ragged=False') else: try: shapes.add(res.shape) except AttributeError: shapes.add(None) pbar.update(1) if parallel: executor.shutdown() # Combine data if required shapes = list(shapes) suitable_shapes = len(shapes) == 1 and shapes[0] is not None ragged = ragged or not suitable_shapes sig_shape = None if not ragged: sig_shape = () if shapes[0] == (1,) else shapes[0] res_data = np.stack(res_data.flat).reshape( self.axes_manager._navigation_shape_in_array + sig_shape) res = map_result_construction(self, inplace, res_data, ragged, sig_shape) return res def copy(self): try: backup_plot = self._plot self._plot = None return copy.copy(self) finally: self._plot = backup_plot def __deepcopy__(self, memo): dc = type(self)(**self._to_dictionary()) if isinstance(dc.data, np.ndarray): dc.data = dc.data.copy() # uncomment if we want to deepcopy models as well: # dc.models._add_dictionary( # copy.deepcopy( # self.models._models.as_dictionary())) # The Signal subclasses might change the view on init # The following code just copies the original view for oaxis, caxis in zip(self.axes_manager._axes, dc.axes_manager._axes): caxis.navigate = oaxis.navigate if dc.metadata.has_item('Markers'): temp_marker_dict = dc.metadata.Markers.as_dictionary() markers_dict = markers_metadata_dict_to_markers( temp_marker_dict, dc.axes_manager) dc.metadata.Markers = markers_dict return dc def deepcopy(self): return copy.deepcopy(self) def change_dtype(self, dtype): """Change the data type. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. In addition to all standard numpy dtypes HyperSpy supports four extra dtypes for RGB images: "rgb8", "rgba8", "rgb16" and "rgba16". Changing from and to any rgbx dtype is more constrained than most other dtype conversions. To change to a rgbx dtype the signal dimension must be 1, its size 3(4) for rgb(rgba) dtypes, the dtype uint8(uint16) for rgbx8(rgbx16) and the navigation dimension at least 2. After conversion the signal dimension becomes 2. The dtype of images of dtype rgbx8(rgbx16) can only be changed to uint8(uint16) and the signal dimension becomes 1. Examples -------- >>> s = hs.signals.Signal1D([1,2,3,4,5]) >>> s.data array([1, 2, 3, 4, 5]) >>> s.change_dtype('float') >>> s.data array([ 1., 2., 3., 4., 5.]) """ if not isinstance(dtype, np.dtype): if dtype in rgb_tools.rgb_dtypes: if self.axes_manager.signal_dimension != 1: raise AttributeError( "Only 1D signals can be converted " "to RGB images.") if "8" in dtype and self.data.dtype.name != "uint8": raise AttributeError( "Only signals with dtype uint8 can be converted to " "rgb8 images") elif "16" in dtype and self.data.dtype.name != "uint16": raise AttributeError( "Only signals with dtype uint16 can be converted to " "rgb16 images") self.data = rgb_tools.regular_array2rgbx(self.data) self.axes_manager.remove(-1) self.axes_manager.set_signal_dimension(2) self._assign_subclass() return else: dtype = np.dtype(dtype) if rgb_tools.is_rgbx(self.data) is True: ddtype = self.data.dtype.fields["B"][0] if ddtype != dtype: raise ValueError( "It is only possibile to change to %s." % ddtype) self.data = rgb_tools.rgbx2regular_array(self.data) self.axes_manager._append_axis( size=self.data.shape[-1], scale=1, offset=0, name="RGB index", navigate=False,) self.axes_manager.set_signal_dimension(1) self._assign_subclass() return else: self.data = self.data.astype(dtype) self._assign_subclass() def estimate_poissonian_noise_variance(self, expected_value=None, gain_factor=None, gain_offset=None, correlation_factor=None): """Estimate the poissonian noise variance of the signal. The variance is stored in the ``metadata.Signal.Noise_properties.variance`` attribute. A poissonian noise variance is equal to the expected value. With the default arguments, this method simply sets the variance attribute to the given `expected_value`. However, more generally (although then noise is not strictly poissonian), the variance may be proportional to the expected value. Moreover, when the noise is a mixture of white (gaussian) and poissonian noise, the variance is described by the following linear model: .. math:: \mathrm{Var}[X] = (a * \mathrm{E}[X] + b) * c Where `a` is the `gain_factor`, `b` is the `gain_offset` (the gaussian noise variance) and `c` the `correlation_factor`. The correlation factor accounts for correlation of adjacent signal elements that can be modeled as a convolution with a gaussian point spread function. Parameters ---------- expected_value : None or Signal instance. If None, the signal data is taken as the expected value. Note that this may be inaccurate where `data` is small. gain_factor, gain_offset, correlation_factor: None or float. All three must be positive. If None, take the values from ``metadata.Signal.Noise_properties.Variance_linear_model`` if defined. Otherwise suppose poissonian noise i.e. ``gain_factor=1``, ``gain_offset=0``, ``correlation_factor=1``. If not None, the values are stored in ``metadata.Signal.Noise_properties.Variance_linear_model``. """ if expected_value is None: expected_value = self dc = expected_value.data if expected_value._lazy else expected_value.data.copy() if self.metadata.has_item( "Signal.Noise_properties.Variance_linear_model"): vlm = self.metadata.Signal.Noise_properties.Variance_linear_model else: self.metadata.add_node( "Signal.Noise_properties.Variance_linear_model") vlm = self.metadata.Signal.Noise_properties.Variance_linear_model if gain_factor is None: if not vlm.has_item("gain_factor"): vlm.gain_factor = 1 gain_factor = vlm.gain_factor if gain_offset is None: if not vlm.has_item("gain_offset"): vlm.gain_offset = 0 gain_offset = vlm.gain_offset if correlation_factor is None: if not vlm.has_item("correlation_factor"): vlm.correlation_factor = 1 correlation_factor = vlm.correlation_factor if gain_offset < 0: raise ValueError("`gain_offset` must be positive.") if gain_factor < 0: raise ValueError("`gain_factor` must be positive.") if correlation_factor < 0: raise ValueError("`correlation_factor` must be positive.") variance = self._estimate_poissonian_noise_variance(dc, gain_factor, gain_offset, correlation_factor) variance = BaseSignal(variance, attributes={'_lazy': self._lazy}) variance.axes_manager = self.axes_manager variance.metadata.General.title = ("Variance of " + self.metadata.General.title) self.metadata.set_item( "Signal.Noise_properties.variance", variance) @staticmethod def _estimate_poissonian_noise_variance(dc, gain_factor, gain_offset, correlation_factor): variance = (dc * gain_factor + gain_offset) * correlation_factor variance = np.clip(variance, gain_offset * correlation_factor, np.inf) return variance def get_current_signal(self, auto_title=True, auto_filename=True): """Returns the data at the current coordinates as a Signal subclass. The signal subclass is the same as that of the current object. All the axes navigation attribute are set to False. Parameters ---------- auto_title : bool If True an space followed by the current indices in parenthesis are appended to the title. auto_filename : bool If True and `tmp_parameters.filename` is defined (what is always the case when the Signal has been read from a file), the filename is modified by appending an underscore and a parenthesis containing the current indices. Returns ------- cs : Signal subclass instance. Examples -------- >>> im = hs.signals.Signal2D(np.zeros((2,3, 32,32))) >>> im <Signal2D, title: , dimensions: (3, 2, 32, 32)> >>> im.axes_manager.indices = 2,1 >>> im.get_current_signal() <Signal2D, title: (2, 1), dimensions: (32, 32)> """ cs = self.__class__( self(), axes=self.axes_manager._get_signal_axes_dicts(), metadata=self.metadata.as_dictionary(), attributes={'_lazy': False}) if auto_filename is True and self.tmp_parameters.has_item('filename'): cs.tmp_parameters.filename = (self.tmp_parameters.filename + '_' + str(self.axes_manager.indices)) cs.tmp_parameters.extension = self.tmp_parameters.extension cs.tmp_parameters.folder = self.tmp_parameters.folder if auto_title is True: cs.metadata.General.title = (cs.metadata.General.title + ' ' + str(self.axes_manager.indices)) cs.axes_manager._set_axis_attribute_values("navigate", False) return cs def _get_navigation_signal(self, data=None, dtype=None): """Return a signal with the same axes as the navigation space. Parameters ---------- data : {None, numpy array}, optional If None the `Signal` data is an array of the same dtype as the current one filled with zeros. If a numpy array, the array must have the correct dimensions. dtype : data-type, optional The desired data-type for the data array when `data` is None, e.g., `numpy.int8`. Default is the data type of the current signal data. """ from dask.array import Array if data is not None: ref_shape = (self.axes_manager._navigation_shape_in_array if self.axes_manager.navigation_dimension != 0 else (1,)) if data.shape != ref_shape: raise ValueError( ("data.shape %s is not equal to the current navigation " "shape in array which is %s") % (str(data.shape), str(ref_shape))) else: if dtype is None: dtype = self.data.dtype if self.axes_manager.navigation_dimension == 0: data = np.array([0, ], dtype=dtype) else: data = np.zeros( self.axes_manager._navigation_shape_in_array, dtype=dtype) if self.axes_manager.navigation_dimension == 0: s = BaseSignal(data) elif self.axes_manager.navigation_dimension == 1: from hyperspy._signals.signal1d import Signal1D s = Signal1D(data, axes=self.axes_manager._get_navigation_axes_dicts()) elif self.axes_manager.navigation_dimension == 2: from hyperspy._signals.signal2d import Signal2D s = Signal2D(data, axes=self.axes_manager._get_navigation_axes_dicts()) else: s = BaseSignal( data, axes=self.axes_manager._get_navigation_axes_dicts()) s.axes_manager.set_signal_dimension( self.axes_manager.navigation_dimension) if isinstance(data, Array): s = s.as_lazy() return s def _get_signal_signal(self, data=None, dtype=None): """Return a signal with the same axes as the signal space. Parameters ---------- data : {None, numpy array}, optional If None the `Signal` data is an array of the same dtype as the current one filled with zeros. If a numpy array, the array must have the correct dimensions. dtype : data-type, optional The desired data-type for the data array when `data` is None, e.g., `numpy.int8`. Default is the data type of the current signal data. """ from dask.array import Array if data is not None: ref_shape = (self.axes_manager._signal_shape_in_array if self.axes_manager.signal_dimension != 0 else (1,)) if data.shape != ref_shape: raise ValueError( "data.shape %s is not equal to the current signal shape in" " array which is %s" % (str(data.shape), str(ref_shape))) else: if dtype is None: dtype = self.data.dtype if self.axes_manager.signal_dimension == 0: data = np.array([0, ], dtype=dtype) else: data = np.zeros( self.axes_manager._signal_shape_in_array, dtype=dtype) if self.axes_manager.signal_dimension == 0: s = BaseSignal(data) s.set_signal_type(self.metadata.Signal.signal_type) else: s = self.__class__(data, axes=self.axes_manager._get_signal_axes_dicts()) if isinstance(data, Array): s = s.as_lazy() return s def __iter__(self): # Reset AxesManager iteration index self.axes_manager.__iter__() return self def __next__(self): next(self.axes_manager) return self.get_current_signal() def __len__(self): nitem = int(self.axes_manager.navigation_size) nitem = nitem if nitem > 0 else 1 return nitem def as_signal1D(self, spectral_axis, out=None): """Return the Signal as a spectrum. The chosen spectral axis is moved to the last index in the array and the data is made contiguous for effecient iteration over spectra. Parameters ---------- spectral_axis %s %s See Also -------- as_signal2D, transpose, hs.transpose Examples -------- >>> img = hs.signals.Signal2D(np.ones((3,4,5,6))) >>> img <Signal2D, title: , dimensions: (4, 3, 6, 5)> >>> img.to_spectrum(-1+1j) <Signal1D, title: , dimensions: (6, 5, 4, 3)> >>> img.to_spectrum(0) <Signal1D, title: , dimensions: (6, 5, 3, 4)> """ sp = self.transpose(signal_axes=[spectral_axis], optimize=True) if out is None: return sp else: if out._lazy: out.data = sp.data else: out.data[:] = sp.data out.events.data_changed.trigger(obj=out) as_signal1D.__doc__ %= (ONE_AXIS_PARAMETER, OUT_ARG) def as_signal2D(self, image_axes, out=None): """Convert signal to image. The chosen image axes are moved to the last indices in the array and the data is made contiguous for effecient iteration over images. Parameters ---------- image_axes : tuple of {int | str | axis} Select the image axes. Note that the order of the axes matters and it is given in the "natural" i.e. X, Y, Z... order. %s Raises ------ DataDimensionError : when data.ndim < 2 See Also -------- as_signal1D, transpose, hs.transpose Examples -------- >>> s = hs.signals.Signal1D(np.ones((2,3,4,5))) >>> s <Signal1D, title: , dimensions: (4, 3, 2, 5)> >>> s.as_signal2D((0,1)) <Signal2D, title: , dimensions: (5, 2, 4, 3)> >>> s.to_signal2D((1,2)) <Signal2D, title: , dimensions: (4, 5, 3, 2)> """ if self.data.ndim < 2: raise DataDimensionError( "A Signal dimension must be >= 2 to be converted to a Signal2D") im = self.transpose(signal_axes=image_axes, optimize=True) if out is None: return im else: if out._lazy: out.data = im.data else: out.data[:] = im.data out.events.data_changed.trigger(obj=out) as_signal2D.__doc__ %= OUT_ARG def _assign_subclass(self): mp = self.metadata self.__class__ = hyperspy.io.assign_signal_subclass( dtype=self.data.dtype, signal_dimension=self.axes_manager.signal_dimension, signal_type=mp.Signal.signal_type if "Signal.signal_type" in mp else self._signal_type, lazy=self._lazy) if self._alias_signal_types: # In case legacy types exist: mp.Signal.signal_type = self._signal_type # set to default! self.__init__(**self._to_dictionary(add_models=True)) if self._lazy: self._make_lazy() def set_signal_type(self, signal_type): """Set the signal type and change the current class accordingly if pertinent. The signal_type attribute specifies the kind of data that the signal containts e.g. "EELS" for electron energy-loss spectroscopy, "PES" for photoemission spectroscopy. There are some methods that are only available for certain kind of signals, so setting this parameter can enable/disable features. Parameters ---------- signal_type : {"EELS", "EDS_TEM", "EDS_SEM", "DielectricFunction"} Currently there are special features for "EELS" (electron energy-loss spectroscopy), "EDS_TEM" (energy dispersive X-rays of thin samples, normally obtained in a transmission electron microscope), "EDS_SEM" (energy dispersive X-rays of thick samples, normally obtained in a scanning electron microscope) and "DielectricFuction". Setting the signal_type to the correct acronym is highly advisable when analyzing any signal for which HyperSpy provides extra features. Even if HyperSpy does not provide extra features for the signal that you are analyzing, it is good practice to set signal_type to a value that best describes the data signal type. """ self.metadata.Signal.signal_type = signal_type self._assign_subclass() def set_signal_origin(self, origin): """Set the `signal_origin` metadata value. The signal_origin attribute specifies if the data was obtained through experiment or simulation. Parameters ---------- origin : string Typically 'experiment' or 'simulation'. """ self.metadata.Signal.signal_origin = origin def print_summary_statistics(self, formatter="%.3f"): """Prints the five-number summary statistics of the data, the mean and the standard deviation. Prints the mean, standandard deviation (std), maximum (max), minimum (min), first quartile (Q1), median and third quartile. nans are removed from the calculations. Parameters ---------- formatter : bool Number formatter. See Also -------- get_histogram """ _mean, _std, _min, _q1, _q2, _q3, _max = self._calculate_summary_statistics() print(underline("Summary statistics")) print("mean:\t" + formatter % _mean) print("std:\t" + formatter % _std) print() print("min:\t" + formatter % _min) print("Q1:\t" + formatter % _q1) print("median:\t" + formatter % _q2) print("Q3:\t" + formatter % _q3) print("max:\t" + formatter % _max) def _calculate_summary_statistics(self): data = self.data data = data[~np.isnan(data)] _mean = np.nanmean(data) _std = np.nanstd(data) _min = np.nanmin(data) _q1 = np.percentile(data, 25) _q2 = np.percentile(data, 50) _q3 = np.percentile(data, 75) _max = np.nanmax(data) return _mean, _std, _min, _q1, _q2, _q3, _max @property def is_rgba(self): return rgb_tools.is_rgba(self.data) @property def is_rgb(self): return rgb_tools.is_rgb(self.data) @property def is_rgbx(self): return rgb_tools.is_rgbx(self.data) def add_marker( self, marker, plot_on_signal=True, plot_marker=True, permanent=False, plot_signal=True): """ Add a marker to the signal or navigator plot. Plot the signal, if not yet plotted Parameters ---------- marker : marker object or iterable of marker objects The marker or iterable (list, tuple, ...) of markers to add. See `plot.markers`. If you want to add a large number of markers, add them as an iterable, since this will be much faster. plot_on_signal : bool, default True If True, add the marker to the signal If False, add the marker to the navigator plot_marker : bool, default True If True, plot the marker. permanent : bool, default False If False, the marker will only appear in the current plot. If True, the marker will be added to the metadata.Markers list, and be plotted with plot(plot_markers=True). If the signal is saved as a HyperSpy HDF5 file, the markers will be stored in the HDF5 signal and be restored when the file is loaded. Examples -------- >>> import scipy.misc >>> im = hs.signals.Signal2D(scipy.misc.ascent()) >>> m = hs.markers.rectangle(x1=150, y1=100, x2=400, >>> y2=400, color='red') >>> im.add_marker(m) Adding to a 1D signal, where the point will change when the navigation index is changed >>> s = hs.signals.Signal1D(np.random.random((3, 100))) >>> marker = hs.markers.point((19, 10, 60), (0.2, 0.5, 0.9)) >>> s.add_marker(marker, permanent=True, plot_marker=True) >>> s.plot(plot_markers=True) #doctest: +SKIP Add permanent marker >>> s = hs.signals.Signal2D(np.random.random((100, 100))) >>> marker = hs.markers.point(50, 60) >>> s.add_marker(marker, permanent=True, plot_marker=True) >>> s.plot(plot_markers=True) #doctest: +SKIP Add permanent marker which changes with navigation position, and do not add it to a current plot >>> s = hs.signals.Signal2D(np.random.randint(10, size=(3, 100, 100))) >>> marker = hs.markers.point((10, 30, 50), (30, 50, 60), color='red') >>> s.add_marker(marker, permanent=True, plot_marker=False) >>> s.plot(plot_markers=True) #doctest: +SKIP Removing a permanent marker >>> s = hs.signals.Signal2D(np.random.randint(10, size=(100, 100))) >>> marker = hs.markers.point(10, 60, color='red') >>> marker.name = "point_marker" >>> s.add_marker(marker, permanent=True) >>> del s.metadata.Markers.point_marker Adding many markers as a list >>> from numpy.random import random >>> s = hs.signals.Signal2D(np.random.randint(10, size=(100, 100))) >>> marker_list = [] >>> for i in range(100): >>> marker = hs.markers.point(random()*100, random()*100, color='red') >>> marker_list.append(marker) >>> s.add_marker(marker_list, permanent=True) """ if isiterable(marker): marker_list = marker else: marker_list = [marker] markers_dict = {} if permanent: if not self.metadata.has_item('Markers'): self.metadata.add_node('Markers') marker_object_list = [] for marker_tuple in list(self.metadata.Markers): marker_object_list.append(marker_tuple[1]) name_list = self.metadata.Markers.keys() marker_name_suffix = 1 for m in marker_list: marker_data_shape = m._get_data_shape() if (not (len(marker_data_shape) == 0)) and ( marker_data_shape != self.axes_manager.navigation_shape): raise ValueError( "Navigation shape of the marker must be 0 or the " "same navigation shape as this signal.") if (m.signal is not None) and (m.signal is not self): raise ValueError("Markers can not be added to several signals") m._plot_on_signal = plot_on_signal if plot_marker: if self._plot is None: self.plot() if m._plot_on_signal: self._plot.signal_plot.add_marker(m) else: if self._plot.navigator_plot is None: self.plot() self._plot.navigator_plot.add_marker(m) m.plot(update_plot=False) if permanent: for marker_object in marker_object_list: if m is marker_object: raise ValueError("Marker already added to signal") name = m.name temp_name = name while temp_name in name_list: temp_name = name + str(marker_name_suffix) marker_name_suffix += 1 m.name = temp_name markers_dict[m.name] = m m.signal = self marker_object_list.append(m) name_list.append(m.name) if not plot_marker and not permanent: _logger.warning( "plot_marker=False and permanent=False does nothing") if permanent: self.metadata.Markers = markers_dict if plot_marker: if self._plot.signal_plot: self._plot.signal_plot.ax.hspy_fig._draw_animated() if self._plot.navigator_plot: self._plot.navigator_plot.ax.hspy_fig._draw_animated() def _plot_permanent_markers(self): marker_name_list = self.metadata.Markers.keys() markers_dict = self.metadata.Markers.__dict__ for marker_name in marker_name_list: marker = markers_dict[marker_name]['_dtb_value_'] if marker.plot_marker: if marker._plot_on_signal: self._plot.signal_plot.add_marker(marker) else: self._plot.navigator_plot.add_marker(marker) marker.plot(update_plot=False) if self._plot.signal_plot: self._plot.signal_plot.ax.hspy_fig._draw_animated() if self._plot.navigator_plot: self._plot.navigator_plot.ax.hspy_fig._draw_animated() def add_poissonian_noise(self, **kwargs): """Add Poissonian noise to the data""" original_type = self.data.dtype self.data = np.random.poisson(self.data, **kwargs).astype( original_type) self.events.data_changed.trigger(obj=self) def add_gaussian_noise(self, std): """Add Gaussian noise to the data Parameters ---------- std : float """ noise = np.random.normal(0, std, self.data.shape) original_dtype = self.data.dtype self.data = ( self.data.astype( noise.dtype) + noise).astype(original_dtype) self.events.data_changed.trigger(obj=self) def transpose(self, signal_axes=None, navigation_axes=None, optimize=False): """Transposes the signal to have the required signal and navigation axes. Parameters ---------- signal_axes, navigation_axes : {None, int, iterable} With the exception of both parameters getting iterables, generally one has to be None (i.e. "floating"). The other one specifies either the required number or explicitly the axes to move to the corresponding space. If both are iterables, full control is given as long as all axes are assigned to one space only. optimize : bool [False] If the data should be re-ordered in memory, most likely making a copy. Ensures the fastest available iteration at the expense of memory. See also -------- T, as_signal2D, as_signal1D, hs.transpose Examples -------- >>> # just create a signal with many distinct dimensions >>> s = hs.signals.BaseSignal(np.random.rand(1,2,3,4,5,6,7,8,9)) >>> s <BaseSignal, title: , dimensions: (|9, 8, 7, 6, 5, 4, 3, 2, 1)> >>> s.transpose() # swap signal and navigation spaces <BaseSignal, title: , dimensions: (9, 8, 7, 6, 5, 4, 3, 2, 1|)> >>> s.T # a shortcut for no arguments <BaseSignal, title: , dimensions: (9, 8, 7, 6, 5, 4, 3, 2, 1|)> # roll to leave 5 axes in navigation space >>> s.transpose(signal_axes=5) <BaseSignal, title: , dimensions: (4, 3, 2, 1|9, 8, 7, 6, 5)> # roll leave 3 axes in navigation space >>> s.transpose(navigation_axes=3) <BaseSignal, title: , dimensions: (3, 2, 1|9, 8, 7, 6, 5, 4)> >>> # 3 explicitly defined axes in signal space >>> s.transpose(signal_axes=[0, 2, 6]) <BaseSignal, title: , dimensions: (8, 6, 5, 4, 2, 1|9, 7, 3)> >>> # A mix of two lists, but specifying all axes explicitly >>> # The order of axes is preserved in both lists >>> s.transpose(navigation_axes=[1, 2, 3, 4, 5, 8], signal_axes=[0, 6, 7]) <BaseSignal, title: , dimensions: (8, 7, 6, 5, 4, 1|9, 3, 2)> """ am = self.axes_manager ns = self.axes_manager.navigation_axes + self.axes_manager.signal_axes ax_list = am._axes if isinstance(signal_axes, int): if navigation_axes is not None: raise ValueError("The navigation_axes are not None, even " "though just a number was given for " "signal_axes") if len(ax_list) < signal_axes: raise ValueError("Too many signal axes requested") if signal_axes < 0: raise ValueError("Can't have negative number of signal axes") elif signal_axes == 0: signal_axes = () navigation_axes = ax_list[::-1] else: navigation_axes = ax_list[:-signal_axes][::-1] signal_axes = ax_list[-signal_axes:][::-1] elif iterable_not_string(signal_axes): signal_axes = tuple(am[ax] for ax in signal_axes) if navigation_axes is None: navigation_axes = tuple(ax for ax in ax_list if ax not in signal_axes)[::-1] elif iterable_not_string(navigation_axes): # want to keep the order navigation_axes = tuple(am[ax] for ax in navigation_axes) intersection = set(signal_axes).intersection(navigation_axes) if len(intersection): raise ValueError("At least one axis found in both spaces:" " {}".format(intersection)) if len(am._axes) != (len(signal_axes) + len(navigation_axes)): raise ValueError("Not all current axes were assigned to a " "space") else: raise ValueError("navigation_axes has to be None or an iterable" " when signal_axes is iterable") elif signal_axes is None: if isinstance(navigation_axes, int): if len(ax_list) < navigation_axes: raise ValueError("Too many navigation axes requested") if navigation_axes < 0: raise ValueError( "Can't have negative number of navigation axes") elif navigation_axes == 0: navigation_axes = () signal_axes = ax_list[::-1] else: signal_axes = ax_list[navigation_axes:][::-1] navigation_axes = ax_list[:navigation_axes][::-1] elif iterable_not_string(navigation_axes): navigation_axes = tuple(am[ax] for ax in navigation_axes) signal_axes = tuple(ax for ax in ax_list if ax not in navigation_axes)[::-1] elif navigation_axes is None: signal_axes = am.navigation_axes navigation_axes = am.signal_axes else: raise ValueError( "The passed navigation_axes argument is not valid") else: raise ValueError("The passed signal_axes argument is not valid") # translate to axes idx from actual objects for variance idx_sig = [ax.index_in_axes_manager for ax in signal_axes] idx_nav = [ax.index_in_axes_manager for ax in navigation_axes] # From now on we operate with axes in array order signal_axes = signal_axes[::-1] navigation_axes = navigation_axes[::-1] # get data view array_order = tuple( ax.index_in_array for ax in navigation_axes) array_order += tuple(ax.index_in_array for ax in signal_axes) newdata = self.data.transpose(array_order) res = self._deepcopy_with_new_data(newdata, copy_variance=True) # reconfigure the axes of the axesmanager: ram = res.axes_manager ram._update_trait_handlers(remove=True) # _axes are ordered in array order ram._axes = [ram._axes[i] for i in array_order] for i, ax in enumerate(ram._axes): if i < len(navigation_axes): ax.navigate = True else: ax.navigate = False ram._update_attributes() ram._update_trait_handlers(remove=False) res._assign_subclass() if res.metadata.has_item("Signal.Noise_properties.variance"): var = res.metadata.Signal.Noise_properties.variance if isinstance(var, BaseSignal): var = var.transpose(signal_axes=idx_sig, navigation_axes=idx_nav, optimize=optimize) res.metadata.set_item('Signal.Noise_properties.variance', var) if optimize: res._make_sure_data_is_contiguous(log=True) if res.metadata.has_item('Markers'): # The markers might fail if the navigation dimensions are changed # so the safest is simply to not carry them over from the # previous signal. del res.metadata.Markers return res @property def T(self): """The transpose of the signal, with signal and navigation spaces swapped. """ return self.transpose() ARITHMETIC_OPERATORS = ( "__add__", "__sub__", "__mul__", "__floordiv__", "__mod__", "__divmod__", "__pow__", "__lshift__", "__rshift__", "__and__", "__xor__", "__or__", "__mod__", "__truediv__", ) INPLACE_OPERATORS = ( "__iadd__", "__isub__", "__imul__", "__itruediv__", "__ifloordiv__", "__imod__", "__ipow__", "__ilshift__", "__irshift__", "__iand__", "__ixor__", "__ior__", ) COMPARISON_OPERATORS = ( "__lt__", "__le__", "__eq__", "__ne__", "__ge__", "__gt__", ) UNARY_OPERATORS = ( "__neg__", "__pos__", "__abs__", "__invert__", ) for name in ARITHMETIC_OPERATORS + INPLACE_OPERATORS + COMPARISON_OPERATORS: exec( ("def %s(self, other):\n" % name) + (" return self._binary_operator_ruler(other, \'%s\')\n" % name)) exec("%s.__doc__ = np.ndarray.%s.__doc__" % (name, name)) exec("setattr(BaseSignal, \'%s\', %s)" % (name, name)) # The following commented line enables the operators with swapped # operands. They should be defined only for commutative operators # but for simplicity we don't support this at all atm. # exec("setattr(BaseSignal, \'%s\', %s)" % (name[:2] + "r" + name[2:], # name)) # Implement unary arithmetic operations for name in UNARY_OPERATORS: exec( ("def %s(self):" % name) + (" return self._unary_operator_ruler(\'%s\')" % name)) exec("%s.__doc__ = int.%s.__doc__" % (name, name)) exec("setattr(BaseSignal, \'%s\', %s)" % (name, name))
CodeMonkeyJan/hyperspy
hyperspy/signal.py
Python
gpl-3.0
180,567
[ "Gaussian" ]
9396948d60350cdbb390b5f5cad774a531050f2660d77ee8df02cf91a9220ecb
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from lxml import etree from nova.api.openstack import xmlutil from nova import test class SelectorTest(test.TestCase): obj_for_test = { 'test': { 'name': 'test', 'values': [1, 2, 3], 'attrs': { 'foo': 1, 'bar': 2, 'baz': 3, }, }, } def test_empty_selector(self): sel = xmlutil.Selector() self.assertEqual(len(sel.chain), 0) self.assertEqual(sel(self.obj_for_test), self.obj_for_test) def test_dict_selector(self): sel = xmlutil.Selector('test') self.assertEqual(len(sel.chain), 1) self.assertEqual(sel.chain[0], 'test') self.assertEqual(sel(self.obj_for_test), self.obj_for_test['test']) def test_datum_selector(self): sel = xmlutil.Selector('test', 'name') self.assertEqual(len(sel.chain), 2) self.assertEqual(sel.chain[0], 'test') self.assertEqual(sel.chain[1], 'name') self.assertEqual(sel(self.obj_for_test), 'test') def test_list_selector(self): sel = xmlutil.Selector('test', 'values', 0) self.assertEqual(len(sel.chain), 3) self.assertEqual(sel.chain[0], 'test') self.assertEqual(sel.chain[1], 'values') self.assertEqual(sel.chain[2], 0) self.assertEqual(sel(self.obj_for_test), 1) def test_items_selector(self): sel = xmlutil.Selector('test', 'attrs', xmlutil.get_items) self.assertEqual(len(sel.chain), 3) self.assertEqual(sel.chain[2], xmlutil.get_items) for key, val in sel(self.obj_for_test): self.assertEqual(self.obj_for_test['test']['attrs'][key], val) def test_missing_key_selector(self): sel = xmlutil.Selector('test2', 'attrs') self.assertEqual(sel(self.obj_for_test), None) self.assertRaises(KeyError, sel, self.obj_for_test, True) def test_constant_selector(self): sel = xmlutil.ConstantSelector('Foobar') self.assertEqual(sel.value, 'Foobar') self.assertEqual(sel(self.obj_for_test), 'Foobar') class TemplateElementTest(test.TestCase): def test_element_initial_attributes(self): # Create a template element with some attributes elem = xmlutil.TemplateElement('test', attrib=dict(a=1, b=2, c=3), c=4, d=5, e=6) # Verify all the attributes are as expected expected = dict(a=1, b=2, c=4, d=5, e=6) for k, v in expected.items(): self.assertEqual(elem.attrib[k].chain[0], v) def test_element_get_attributes(self): expected = dict(a=1, b=2, c=3) # Create a template element with some attributes elem = xmlutil.TemplateElement('test', attrib=expected) # Verify that get() retrieves the attributes for k, v in expected.items(): self.assertEqual(elem.get(k).chain[0], v) def test_element_set_attributes(self): attrs = dict(a=None, b='foo', c=xmlutil.Selector('foo', 'bar')) # Create a bare template element with no attributes elem = xmlutil.TemplateElement('test') # Set the attribute values for k, v in attrs.items(): elem.set(k, v) # Now verify what got set self.assertEqual(len(elem.attrib['a'].chain), 1) self.assertEqual(elem.attrib['a'].chain[0], 'a') self.assertEqual(len(elem.attrib['b'].chain), 1) self.assertEqual(elem.attrib['b'].chain[0], 'foo') self.assertEqual(elem.attrib['c'], attrs['c']) def test_element_attribute_keys(self): attrs = dict(a=1, b=2, c=3, d=4) expected = set(attrs.keys()) # Create a template element with some attributes elem = xmlutil.TemplateElement('test', attrib=attrs) # Now verify keys self.assertEqual(set(elem.keys()), expected) def test_element_attribute_items(self): expected = dict(a=xmlutil.Selector(1), b=xmlutil.Selector(2), c=xmlutil.Selector(3)) keys = set(expected.keys()) # Create a template element with some attributes elem = xmlutil.TemplateElement('test', attrib=expected) # Now verify items for k, v in elem.items(): self.assertEqual(expected[k], v) keys.remove(k) # Did we visit all keys? self.assertEqual(len(keys), 0) def test_element_selector_none(self): # Create a template element with no selector elem = xmlutil.TemplateElement('test') self.assertEqual(len(elem.selector.chain), 0) def test_element_selector_string(self): # Create a template element with a string selector elem = xmlutil.TemplateElement('test', selector='test') self.assertEqual(len(elem.selector.chain), 1) self.assertEqual(elem.selector.chain[0], 'test') def test_element_selector(self): sel = xmlutil.Selector('a', 'b') # Create a template element with an explicit selector elem = xmlutil.TemplateElement('test', selector=sel) self.assertEqual(elem.selector, sel) def test_element_subselector_none(self): # Create a template element with no subselector elem = xmlutil.TemplateElement('test') self.assertEqual(elem.subselector, None) def test_element_subselector_string(self): # Create a template element with a string subselector elem = xmlutil.TemplateElement('test', subselector='test') self.assertEqual(len(elem.subselector.chain), 1) self.assertEqual(elem.subselector.chain[0], 'test') def test_element_subselector(self): sel = xmlutil.Selector('a', 'b') # Create a template element with an explicit subselector elem = xmlutil.TemplateElement('test', subselector=sel) self.assertEqual(elem.subselector, sel) def test_element_append_child(self): # Create an element elem = xmlutil.TemplateElement('test') # Make sure the element starts off empty self.assertEqual(len(elem), 0) # Create a child element child = xmlutil.TemplateElement('child') # Append the child to the parent elem.append(child) # Verify that the child was added self.assertEqual(len(elem), 1) self.assertEqual(elem[0], child) self.assertEqual('child' in elem, True) self.assertEqual(elem['child'], child) # Ensure that multiple children of the same name are rejected child2 = xmlutil.TemplateElement('child') self.assertRaises(KeyError, elem.append, child2) def test_element_extend_children(self): # Create an element elem = xmlutil.TemplateElement('test') # Make sure the element starts off empty self.assertEqual(len(elem), 0) # Create a few children children = [ xmlutil.TemplateElement('child1'), xmlutil.TemplateElement('child2'), xmlutil.TemplateElement('child3'), ] # Extend the parent by those children elem.extend(children) # Verify that the children were added self.assertEqual(len(elem), 3) for idx in range(len(elem)): self.assertEqual(children[idx], elem[idx]) self.assertEqual(children[idx].tag in elem, True) self.assertEqual(elem[children[idx].tag], children[idx]) # Ensure that multiple children of the same name are rejected children2 = [ xmlutil.TemplateElement('child4'), xmlutil.TemplateElement('child1'), ] self.assertRaises(KeyError, elem.extend, children2) # Also ensure that child4 was not added self.assertEqual(len(elem), 3) self.assertEqual(elem[-1].tag, 'child3') def test_element_insert_child(self): # Create an element elem = xmlutil.TemplateElement('test') # Make sure the element starts off empty self.assertEqual(len(elem), 0) # Create a few children children = [ xmlutil.TemplateElement('child1'), xmlutil.TemplateElement('child2'), xmlutil.TemplateElement('child3'), ] # Extend the parent by those children elem.extend(children) # Create a child to insert child = xmlutil.TemplateElement('child4') # Insert it elem.insert(1, child) # Ensure the child was inserted in the right place self.assertEqual(len(elem), 4) children.insert(1, child) for idx in range(len(elem)): self.assertEqual(children[idx], elem[idx]) self.assertEqual(children[idx].tag in elem, True) self.assertEqual(elem[children[idx].tag], children[idx]) # Ensure that multiple children of the same name are rejected child2 = xmlutil.TemplateElement('child2') self.assertRaises(KeyError, elem.insert, 2, child2) def test_element_remove_child(self): # Create an element elem = xmlutil.TemplateElement('test') # Make sure the element starts off empty self.assertEqual(len(elem), 0) # Create a few children children = [ xmlutil.TemplateElement('child1'), xmlutil.TemplateElement('child2'), xmlutil.TemplateElement('child3'), ] # Extend the parent by those children elem.extend(children) # Create a test child to remove child = xmlutil.TemplateElement('child2') # Try to remove it self.assertRaises(ValueError, elem.remove, child) # Ensure that no child was removed self.assertEqual(len(elem), 3) # Now remove a legitimate child elem.remove(children[1]) # Ensure that the child was removed self.assertEqual(len(elem), 2) self.assertEqual(elem[0], children[0]) self.assertEqual(elem[1], children[2]) self.assertEqual('child2' in elem, False) # Ensure the child cannot be retrieved by name def get_key(elem, key): return elem[key] self.assertRaises(KeyError, get_key, elem, 'child2') def test_element_text(self): # Create an element elem = xmlutil.TemplateElement('test') # Ensure that it has no text self.assertEqual(elem.text, None) # Try setting it to a string and ensure it becomes a selector elem.text = 'test' self.assertEqual(hasattr(elem.text, 'chain'), True) self.assertEqual(len(elem.text.chain), 1) self.assertEqual(elem.text.chain[0], 'test') # Try resetting the text to None elem.text = None self.assertEqual(elem.text, None) # Now make up a selector and try setting the text to that sel = xmlutil.Selector() elem.text = sel self.assertEqual(elem.text, sel) # Finally, try deleting the text and see what happens del elem.text self.assertEqual(elem.text, None) def test_apply_attrs(self): # Create a template element attrs = dict(attr1=xmlutil.ConstantSelector(1), attr2=xmlutil.ConstantSelector(2)) tmpl_elem = xmlutil.TemplateElement('test', attrib=attrs) # Create an etree element elem = etree.Element('test') # Apply the template to the element tmpl_elem.apply(elem, None) # Now, verify the correct attributes were set for k, v in elem.items(): self.assertEqual(str(attrs[k].value), v) def test_apply_text(self): # Create a template element tmpl_elem = xmlutil.TemplateElement('test') tmpl_elem.text = xmlutil.ConstantSelector(1) # Create an etree element elem = etree.Element('test') # Apply the template to the element tmpl_elem.apply(elem, None) # Now, verify the text was set self.assertEqual(str(tmpl_elem.text.value), elem.text) def test__render(self): attrs = dict(attr1=xmlutil.ConstantSelector(1), attr2=xmlutil.ConstantSelector(2), attr3=xmlutil.ConstantSelector(3)) # Create a master template element master_elem = xmlutil.TemplateElement('test', attr1=attrs['attr1']) # Create a couple of slave template element slave_elems = [ xmlutil.TemplateElement('test', attr2=attrs['attr2']), xmlutil.TemplateElement('test', attr3=attrs['attr3']), ] # Try the render elem = master_elem._render(None, None, slave_elems, None) # Verify the particulars of the render self.assertEqual(elem.tag, 'test') self.assertEqual(len(elem.nsmap), 0) for k, v in elem.items(): self.assertEqual(str(attrs[k].value), v) # Create a parent for the element to be rendered parent = etree.Element('parent') # Try the render again... elem = master_elem._render(parent, None, slave_elems, dict(a='foo')) # Verify the particulars of the render self.assertEqual(len(parent), 1) self.assertEqual(parent[0], elem) self.assertEqual(len(elem.nsmap), 1) self.assertEqual(elem.nsmap['a'], 'foo') def test_render(self): # Create a template element tmpl_elem = xmlutil.TemplateElement('test') tmpl_elem.text = xmlutil.Selector() # Create the object we're going to render obj = ['elem1', 'elem2', 'elem3', 'elem4'] # Try a render with no object elems = tmpl_elem.render(None, None) self.assertEqual(len(elems), 0) # Try a render with one object elems = tmpl_elem.render(None, 'foo') self.assertEqual(len(elems), 1) self.assertEqual(elems[0][0].text, 'foo') self.assertEqual(elems[0][1], 'foo') # Now, try rendering an object with multiple entries parent = etree.Element('parent') elems = tmpl_elem.render(parent, obj) self.assertEqual(len(elems), 4) # Check the results for idx in range(len(obj)): self.assertEqual(elems[idx][0].text, obj[idx]) self.assertEqual(elems[idx][1], obj[idx]) def test_subelement(self): # Try the SubTemplateElement constructor parent = xmlutil.SubTemplateElement(None, 'parent') self.assertEqual(parent.tag, 'parent') self.assertEqual(len(parent), 0) # Now try it with a parent element child = xmlutil.SubTemplateElement(parent, 'child') self.assertEqual(child.tag, 'child') self.assertEqual(len(parent), 1) self.assertEqual(parent[0], child) def test_wrap(self): # These are strange methods, but they make things easier elem = xmlutil.TemplateElement('test') self.assertEqual(elem.unwrap(), elem) self.assertEqual(elem.wrap().root, elem) def test_dyntag(self): obj = ['a', 'b', 'c'] # Create a template element with a dynamic tag tmpl_elem = xmlutil.TemplateElement(xmlutil.Selector()) # Try the render parent = etree.Element('parent') elems = tmpl_elem.render(parent, obj) # Verify the particulars of the render self.assertEqual(len(elems), len(obj)) for idx in range(len(obj)): self.assertEqual(elems[idx][0].tag, obj[idx]) class TemplateTest(test.TestCase): def test_wrap(self): # These are strange methods, but they make things easier elem = xmlutil.TemplateElement('test') tmpl = xmlutil.Template(elem) self.assertEqual(tmpl.unwrap(), elem) self.assertEqual(tmpl.wrap(), tmpl) def test__siblings(self): # Set up a basic template elem = xmlutil.TemplateElement('test') tmpl = xmlutil.Template(elem) # Check that we get the right siblings siblings = tmpl._siblings() self.assertEqual(len(siblings), 1) self.assertEqual(siblings[0], elem) def test__nsmap(self): # Set up a basic template elem = xmlutil.TemplateElement('test') tmpl = xmlutil.Template(elem, nsmap=dict(a="foo")) # Check out that we get the right namespace dictionary nsmap = tmpl._nsmap() self.assertNotEqual(id(nsmap), id(tmpl.nsmap)) self.assertEqual(len(nsmap), 1) self.assertEqual(nsmap['a'], 'foo') def test_master_attach(self): # Set up a master template elem = xmlutil.TemplateElement('test') tmpl = xmlutil.MasterTemplate(elem, 1) # Make sure it has a root but no slaves self.assertEqual(tmpl.root, elem) self.assertEqual(len(tmpl.slaves), 0) # Try to attach an invalid slave bad_elem = xmlutil.TemplateElement('test2') self.assertRaises(ValueError, tmpl.attach, bad_elem) self.assertEqual(len(tmpl.slaves), 0) # Try to attach an invalid and a valid slave good_elem = xmlutil.TemplateElement('test') self.assertRaises(ValueError, tmpl.attach, good_elem, bad_elem) self.assertEqual(len(tmpl.slaves), 0) # Try to attach an inapplicable template class InapplicableTemplate(xmlutil.Template): def apply(self, master): return False inapp_tmpl = InapplicableTemplate(good_elem) tmpl.attach(inapp_tmpl) self.assertEqual(len(tmpl.slaves), 0) # Now try attaching an applicable template tmpl.attach(good_elem) self.assertEqual(len(tmpl.slaves), 1) self.assertEqual(tmpl.slaves[0].root, good_elem) def test_master_copy(self): # Construct a master template elem = xmlutil.TemplateElement('test') tmpl = xmlutil.MasterTemplate(elem, 1, nsmap=dict(a='foo')) # Give it a slave slave = xmlutil.TemplateElement('test') tmpl.attach(slave) # Construct a copy copy = tmpl.copy() # Check to see if we actually managed a copy self.assertNotEqual(tmpl, copy) self.assertEqual(tmpl.root, copy.root) self.assertEqual(tmpl.version, copy.version) self.assertEqual(id(tmpl.nsmap), id(copy.nsmap)) self.assertNotEqual(id(tmpl.slaves), id(copy.slaves)) self.assertEqual(len(tmpl.slaves), len(copy.slaves)) self.assertEqual(tmpl.slaves[0], copy.slaves[0]) def test_slave_apply(self): # Construct a master template elem = xmlutil.TemplateElement('test') master = xmlutil.MasterTemplate(elem, 3) # Construct a slave template with applicable minimum version slave = xmlutil.SlaveTemplate(elem, 2) self.assertEqual(slave.apply(master), True) # Construct a slave template with equal minimum version slave = xmlutil.SlaveTemplate(elem, 3) self.assertEqual(slave.apply(master), True) # Construct a slave template with inapplicable minimum version slave = xmlutil.SlaveTemplate(elem, 4) self.assertEqual(slave.apply(master), False) # Construct a slave template with applicable version range slave = xmlutil.SlaveTemplate(elem, 2, 4) self.assertEqual(slave.apply(master), True) # Construct a slave template with low version range slave = xmlutil.SlaveTemplate(elem, 1, 2) self.assertEqual(slave.apply(master), False) # Construct a slave template with high version range slave = xmlutil.SlaveTemplate(elem, 4, 5) self.assertEqual(slave.apply(master), False) # Construct a slave template with matching version range slave = xmlutil.SlaveTemplate(elem, 3, 3) self.assertEqual(slave.apply(master), True) def test__serialize(self): # Our test object to serialize obj = { 'test': { 'name': 'foobar', 'values': [1, 2, 3, 4], 'attrs': { 'a': 1, 'b': 2, 'c': 3, 'd': 4, }, 'image': { 'name': 'image_foobar', 'id': 42, }, }, } # Set up our master template root = xmlutil.TemplateElement('test', selector='test', name='name') value = xmlutil.SubTemplateElement(root, 'value', selector='values') value.text = xmlutil.Selector() attrs = xmlutil.SubTemplateElement(root, 'attrs', selector='attrs') xmlutil.SubTemplateElement(attrs, 'attr', selector=xmlutil.get_items, key=0, value=1) master = xmlutil.MasterTemplate(root, 1, nsmap=dict(f='foo')) # Set up our slave template root_slave = xmlutil.TemplateElement('test', selector='test') image = xmlutil.SubTemplateElement(root_slave, 'image', selector='image', id='id') image.text = xmlutil.Selector('name') slave = xmlutil.SlaveTemplate(root_slave, 1, nsmap=dict(b='bar')) # Attach the slave to the master... master.attach(slave) # Try serializing our object siblings = master._siblings() nsmap = master._nsmap() result = master._serialize(None, obj, siblings, nsmap) # Now we get to manually walk the element tree... self.assertEqual(result.tag, 'test') self.assertEqual(len(result.nsmap), 2) self.assertEqual(result.nsmap['f'], 'foo') self.assertEqual(result.nsmap['b'], 'bar') self.assertEqual(result.get('name'), obj['test']['name']) for idx, val in enumerate(obj['test']['values']): self.assertEqual(result[idx].tag, 'value') self.assertEqual(result[idx].text, str(val)) idx += 1 self.assertEqual(result[idx].tag, 'attrs') for attr in result[idx]: self.assertEqual(attr.tag, 'attr') self.assertEqual(attr.get('value'), str(obj['test']['attrs'][attr.get('key')])) idx += 1 self.assertEqual(result[idx].tag, 'image') self.assertEqual(result[idx].get('id'), str(obj['test']['image']['id'])) self.assertEqual(result[idx].text, obj['test']['image']['name']) class MasterTemplateBuilder(xmlutil.TemplateBuilder): def construct(self): elem = xmlutil.TemplateElement('test') return xmlutil.MasterTemplate(elem, 1) class SlaveTemplateBuilder(xmlutil.TemplateBuilder): def construct(self): elem = xmlutil.TemplateElement('test') return xmlutil.SlaveTemplate(elem, 1) class TemplateBuilderTest(test.TestCase): def test_master_template_builder(self): # Make sure the template hasn't been built yet self.assertEqual(MasterTemplateBuilder._tmpl, None) # Now, construct the template tmpl1 = MasterTemplateBuilder() # Make sure that there is a template cached... self.assertNotEqual(MasterTemplateBuilder._tmpl, None) # Make sure it wasn't what was returned... self.assertNotEqual(MasterTemplateBuilder._tmpl, tmpl1) # Make sure it doesn't get rebuilt cached = MasterTemplateBuilder._tmpl tmpl2 = MasterTemplateBuilder() self.assertEqual(MasterTemplateBuilder._tmpl, cached) # Make sure we're always getting fresh copies self.assertNotEqual(tmpl1, tmpl2) # Make sure we can override the copying behavior tmpl3 = MasterTemplateBuilder(False) self.assertEqual(MasterTemplateBuilder._tmpl, tmpl3) def test_slave_template_builder(self): # Make sure the template hasn't been built yet self.assertEqual(SlaveTemplateBuilder._tmpl, None) # Now, construct the template tmpl1 = SlaveTemplateBuilder() # Make sure there is a template cached... self.assertNotEqual(SlaveTemplateBuilder._tmpl, None) # Make sure it was what was returned... self.assertEqual(SlaveTemplateBuilder._tmpl, tmpl1) # Make sure it doesn't get rebuilt tmpl2 = SlaveTemplateBuilder() self.assertEqual(SlaveTemplateBuilder._tmpl, tmpl1) # Make sure we're always getting the cached copy self.assertEqual(tmpl1, tmpl2) class MiscellaneousXMLUtilTests(test.TestCase): def test_make_flat_dict(self): expected_xml = ("<?xml version='1.0' encoding='UTF-8'?>\n" '<wrapper><a>foo</a><b>bar</b></wrapper>') root = xmlutil.make_flat_dict('wrapper') tmpl = xmlutil.MasterTemplate(root, 1) result = tmpl.serialize(dict(wrapper=dict(a='foo', b='bar'))) self.assertEqual(result, expected_xml)
sridevikoushik31/openstack
nova/tests/api/openstack/test_xmlutil.py
Python
apache-2.0
25,723
[ "VisIt" ]
df08200ec0d25ae481a588c5f8c0d704bec7294e68f86c8419e5f1d339e11320
#!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Sample for the Provisioning API and the Email Settings API with OAuth 2.0""" __author__ = 'Shraddha Gupta <[email protected]>' from optparse import OptionParser import gdata.apps import gdata.apps.emailsettings.client import gdata.client import gdata.gauth API_VERSION = '2.0' BASE_URL = '/a/feeds/group/%s' % API_VERSION SCOPE = ('https://apps-apis.google.com/a/feeds/group ' 'https://apps-apis.google.com/a/feeds/emailsettings/2.0/') HOST = 'apps-apis.google.com' class OAuth2ClientSample(object): """ OAuth2ClientSample object demos the use of OAuth2Token for retrieving Members of a Group and updating Email Settings for them.""" def __init__(self, domain, client_id, client_secret): """ Args: domain: string Domain name (e.g. domain.com) client_id: string Client_id of domain admin account. client_secret: string Client_secret of domain admin account. """ try: self.token = gdata.gauth.OAuth2Token(client_id=client_id, client_secret=client_secret, scope=SCOPE, user_agent='oauth2-provisioningv2') self.uri = self.token.generate_authorize_url() print 'Please visit this URL to authorize the application:' print self.uri # Get the verification code from the standard input. code = raw_input('What is the verification code? ').strip() self.token.get_access_token(code) except gdata.gauth.OAuth2AccessTokenError, e: print 'Invalid Access token, Check your credentials %s' % e exit(0) self.domain = domain self.baseuri = '%s/%s' % (BASE_URL, domain) self.client = gdata.client.GDClient(host=HOST) self.client.domain = self.domain # Authorize the client. # This will add the Authorization header to all future requests. self.token.authorize(self.client) self.email_client = gdata.apps.emailsettings.client.EmailSettingsClient( domain=self.domain, auth_token=self.token) self.token.authorize(self.email_client) def get_users(self, group): """Retrieves members from the given group. Args: group: string Id of the group Returns: Member feed for the given group """ uri = '%s/%s/member' % (self.baseuri, group) try: feed = self.client.GetFeed(uri=uri) return gdata.apps.PropertyFeedFromString(str(feed)) except gdata.client.RequestError, e: print 'Exception %s' % e def create_filter(self, feed): """Creates a mail filter that marks as read all messages not containing Domain name as one of their words for each member of the group. Args: feed: PropertyFeed Member feed whose emailsettings need to be updated """ for entry in feed.entry: memberType = None memberId = None domain = None for i, property in enumerate(entry.property): if property.name == 'memberType': memberType = property.value if property.name == 'memberId': user_name, domain = property.value.split('@', 1) memberId = property.value # Check that the member is a User belonging to the primary Domain. if memberType == 'User' and domain == self.domain: print 'creating filter for %s' % memberId self.email_client.CreateFilter(user_name, does_not_have_the_word=self.domain, mark_as_read=True) elif memberType == 'User': print 'User belongs to other Domain %s' %memberId else: print 'Member is a group %s' %memberId def run(self, group): feed = self.get_users(group) self.create_filter(feed) def main(): """Demos the Provisioning API and the Email Settings API with OAuth 2.0.""" usage = 'usage: %prog [options]' parser = OptionParser(usage=usage) parser.add_option('--DOMAIN', help='Google Apps Domain, e.g. "domain.com".') parser.add_option('--CLIENT_ID', help='Registered CLIENT_ID of Domain.') parser.add_option('--CLIENT_SECRET', help='Registered CLIENT_SECRET of Domain.') parser.add_option('--GROUP', help='Group identifier') (options, args) = parser.parse_args() if None in (options.DOMAIN, options.CLIENT_ID, options.CLIENT_SECRET, options.GROUP): parser.print_help() return sample = OAuth2ClientSample(options.DOMAIN, options.CLIENT_ID, options.CLIENT_SECRET) sample.run(options.GROUP) if __name__ == '__main__': main()
mzdaniel/oh-mainline
vendor/packages/gdata/samples/apps/provisioning_oauth2_example.py
Python
agpl-3.0
5,260
[ "VisIt" ]
f516adb36fd271ee230b7c956c085746e144f9e7680a77726b316a3c494da9cf
#!/usr/bin/python # (c) 2013, Cove Schneider # (c) 2014, Joshua Conner <[email protected]> # (c) 2014, Pavel Antonov <[email protected]> # # This file is part of Ansible, # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ###################################################################### DOCUMENTATION = ''' --- module: docker version_added: "1.4" short_description: manage docker containers deprecated: In 2.2 use M(docker_container) and M(docker_image) instead. description: - This is the original Ansible module for managing the Docker container life cycle. - "NOTE: Additional and newer modules are available. For the latest on orchestrating containers with Ansible visit our Getting Started with Docker Guide at https://github.com/ansible/ansible/blob/devel/docsite/rst/guide_docker.rst." options: count: description: - Number of matching containers that should be in the desired state. default: 1 image: description: - Container image used to match and launch containers. required: true pull: description: - Control when container images are updated from the C(docker_url) registry. If "missing," images will be pulled only when missing from the host; if '"always," the registry will be checked for a newer version of the image' each time the task executes. default: missing choices: [ "missing", "always" ] version_added: "1.9" entrypoint: description: - Corresponds to ``--entrypoint`` option of ``docker run`` command and ``ENTRYPOINT`` directive of Dockerfile. Used to match and launch containers. default: null required: false version_added: "2.1" command: description: - Command used to match and launch containers. default: null name: description: - Name used to match and uniquely name launched containers. Explicit names are used to uniquely identify a single container or to link among containers. Mutually exclusive with a "count" other than "1". default: null version_added: "1.5" ports: description: - "List containing private to public port mapping specification. Use docker 'CLI-style syntax: C(8000), C(9000:8000), or C(0.0.0.0:9000:8000)' where 8000 is a container port, 9000 is a host port, and 0.0.0.0 is - a host interface. The container ports need to be exposed either in the Dockerfile or via the C(expose) option." default: null version_added: "1.5" expose: description: - List of additional container ports to expose for port mappings or links. If the port is already exposed using EXPOSE in a Dockerfile, you don't need to expose it again. default: null version_added: "1.5" publish_all_ports: description: - Publish all exposed ports to the host interfaces. default: false version_added: "1.5" volumes: description: - List of volumes to mount within the container - 'Use docker CLI-style syntax: C(/host:/container[:mode])' - You can specify a read mode for the mount with either C(ro) or C(rw). Starting at version 2.1, SELinux hosts can additionally use C(z) or C(Z) mount options to use a shared or private label for the volume. default: null volumes_from: description: - List of names of containers to mount volumes from. default: null links: description: - List of other containers to link within this container with an optional - 'alias. Use docker CLI-style syntax: C(redis:myredis).' default: null version_added: "1.5" devices: description: - List of host devices to expose to container default: null required: false version_added: "2.1" log_driver: description: - You can specify a different logging driver for the container than for the daemon. "json-file" Default logging driver for Docker. Writes JSON messages to file. docker logs command is available only for this logging driver. "none" disables any logging for the container. "syslog" Syslog logging driver for Docker. Writes log messages to syslog. docker logs command is not available for this logging driver. "journald" Journald logging driver for Docker. Writes log messages to "journald". "gelf" Graylog Extended Log Format (GELF) logging driver for Docker. Writes log messages to a GELF endpoint likeGraylog or Logstash. "fluentd" Fluentd logging driver for Docker. Writes log messages to "fluentd" (forward input). "awslogs" (added in 2.1) Awslogs logging driver for Docker. Writes log messages to AWS Cloudwatch Logs. If not defined explicitly, the Docker daemon's default ("json-file") will apply. Requires docker >= 1.6.0. required: false default: json-file choices: - json-file - none - syslog - journald - gelf - fluentd - awslogs version_added: "2.0" log_opt: description: - Additional options to pass to the logging driver selected above. See Docker `log-driver <https://docs.docker.com/reference/logging/overview/>` documentation for more information. Requires docker >=1.7.0. required: false default: null version_added: "2.0" memory_limit: description: - RAM allocated to the container as a number of bytes or as a human-readable string like "512MB". Leave as "0" to specify no limit. default: 0 docker_url: description: - URL of the host running the docker daemon. This will default to the env var DOCKER_HOST if unspecified. default: ${DOCKER_HOST} or unix://var/run/docker.sock use_tls: description: - Whether to use tls to connect to the docker server. "no" means not to use tls (and ignore any other tls related parameters). "encrypt" means to use tls to encrypt the connection to the server. "verify" means to also verify that the server's certificate is valid for the server (this both verifies the certificate against the CA and that the certificate was issued for that host. If this is unspecified, tls will only be used if one of the other tls options require it. choices: [ "no", "encrypt", "verify" ] version_added: "1.9" tls_client_cert: description: - Path to the PEM-encoded certificate used to authenticate docker client. If specified tls_client_key must be valid default: ${DOCKER_CERT_PATH}/cert.pem version_added: "1.9" tls_client_key: description: - Path to the PEM-encoded key used to authenticate docker client. If specified tls_client_cert must be valid default: ${DOCKER_CERT_PATH}/key.pem version_added: "1.9" tls_ca_cert: description: - Path to a PEM-encoded certificate authority to secure the Docker connection. This has no effect if use_tls is encrypt. default: ${DOCKER_CERT_PATH}/ca.pem version_added: "1.9" tls_hostname: description: - A hostname to check matches what's supplied in the docker server's certificate. If unspecified, the hostname is taken from the docker_url. default: Taken from docker_url version_added: "1.9" docker_api_version: description: - Remote API version to use. This defaults to the current default as specified by docker-py. default: docker-py default remote API version version_added: "1.8" docker_user: description: - Username or UID to use within the container required: false default: null version_added: "2.0" username: description: - Remote API username. default: null password: description: - Remote API password. default: null email: description: - Remote API email. default: null hostname: description: - Container hostname. default: null domainname: description: - Container domain name. default: null env: description: - Pass a dict of environment variables to the container. default: null env_file: version_added: "2.1" description: - Pass in a path to a file with environment variable (FOO=BAR). If a key value is present in both explicitly presented (i.e. as 'env') and in the environment file, the explicit value will override. Requires docker-py >= 1.4.0. default: null required: false dns: description: - List of custom DNS servers for the container. required: false default: null detach: description: - Enable detached mode to leave the container running in background. If disabled, fail unless the process exits cleanly. default: true signal: version_added: "2.0" description: - With the state "killed", you can alter the signal sent to the container. required: false default: KILL state: description: - Assert the container's desired state. "present" only asserts that the matching containers exist. "started" asserts that the matching containers both exist and are running, but takes no action if any configuration has changed. "reloaded" (added in Ansible 1.9) asserts that all matching containers are running and restarts any that have any images or configuration out of date. "restarted" unconditionally restarts (or starts) the matching containers. "stopped" and '"killed" stop and kill all matching containers. "absent" stops and then' removes any matching containers. required: false default: started choices: - present - started - reloaded - restarted - stopped - killed - absent privileged: description: - Whether the container should run in privileged mode or not. default: false lxc_conf: description: - LXC configuration parameters, such as C(lxc.aa_profile:unconfined). default: null stdin_open: description: - Keep stdin open after a container is launched. default: false version_added: "1.6" tty: description: - Allocate a pseudo-tty within the container. default: false version_added: "1.6" net: description: - 'Network mode for the launched container: bridge, none, container:<name|id>' - or host. Requires docker >= 0.11. default: false version_added: "1.8" pid: description: - Set the PID namespace mode for the container (currently only supports 'host'). Requires docker-py >= 1.0.0 and docker >= 1.5.0 required: false default: None aliases: [] version_added: "1.9" registry: description: - Remote registry URL to pull images from. default: DockerHub aliases: [] version_added: "1.8" read_only: description: - Mount the container's root filesystem as read only default: null aliases: [] version_added: "2.0" restart_policy: description: - Container restart policy. - The 'unless-stopped' choice is only available starting in Ansible 2.1 and for Docker 1.9 and above. choices: ["no", "on-failure", "always", "unless-stopped"] default: null version_added: "1.9" restart_policy_retry: description: - Maximum number of times to restart a container. Leave as "0" for unlimited retries. default: 0 version_added: "1.9" extra_hosts: version_added: "2.0" description: - Dict of custom host-to-IP mappings to be defined in the container insecure_registry: description: - Use insecure private registry by HTTP instead of HTTPS. Needed for docker-py >= 0.5.0. default: false version_added: "1.9" cpu_set: description: - CPUs in which to allow execution. Requires docker-py >= 0.6.0. required: false default: null version_added: "2.0" cap_add: description: - Add capabilities for the container. Requires docker-py >= 0.5.0. required: false default: false version_added: "2.0" cap_drop: description: - Drop capabilities for the container. Requires docker-py >= 0.5.0. required: false default: false aliases: [] version_added: "2.0" labels: description: - Set container labels. Requires docker >= 1.6 and docker-py >= 1.2.0. required: false default: null version_added: "2.1" stop_timeout: description: - How many seconds to wait for the container to stop before killing it. required: false default: 10 version_added: "2.0" timeout: description: - Docker daemon response timeout in seconds. required: false default: 60 version_added: "2.1" cpu_shares: description: - CPU shares (relative weight). Requires docker-py >= 0.6.0. required: false default: 0 version_added: "2.1" ulimits: description: - ulimits, list ulimits with name, soft and optionally hard limit separated by colons. e.g. nofile:1024:2048 Requires docker-py >= 1.2.0 and docker >= 1.6.0 required: false default: null version_added: "2.1" author: - "Cove Schneider (@cove)" - "Joshua Conner (@joshuaconner)" - "Pavel Antonov (@softzilla)" - "Thomas Steinbach (@ThomasSteinbach)" - "Philippe Jandot (@zfil)" - "Daan Oosterveld (@dusdanig)" requirements: - "python >= 2.6" - "docker-py >= 0.3.0" - "The docker server >= 0.10.0" ''' EXAMPLES = ''' # Containers are matched either by name (if provided) or by an exact match of # the image they were launched with and the command they're running. The module # can accept either a name to target a container uniquely, or a count to operate # on multiple containers at once when it makes sense to do so. # Ensure that a data container with the name "mydata" exists. If no container # by this name exists, it will be created, but not started. - name: data container docker: name: mydata image: busybox state: present volumes: - /data # Ensure that a Redis server is running, using the volume from the data # container. Expose the default Redis port. - name: redis container docker: name: myredis image: redis command: redis-server --appendonly yes state: started expose: - 6379 volumes_from: - mydata # Ensure that a container of your application server is running. This will: # - pull the latest version of your application image from DockerHub. # - ensure that a container is running with the specified name and exact image. # If any configuration options have changed, the existing container will be # stopped and removed, and a new one will be launched in its place. # - link this container to the existing redis container launched above with # an alias. # - grant the container read write permissions for the host's /dev/sda device # through a node named /dev/xvda # - bind TCP port 9000 within the container to port 8080 on all interfaces # on the host. # - bind UDP port 9001 within the container to port 8081 on the host, only # listening on localhost. # - specify 2 ip resolutions. # - set the environment variable SECRET_KEY to "ssssh". - name: application container docker: name: myapplication image: someuser/appimage state: reloaded pull: always links: - "myredis:aliasedredis" devices: - "/dev/sda:/dev/xvda:rwm" ports: - "8080:9000" - "127.0.0.1:8081:9001/udp" extra_hosts: host1: "192.168.0.1" host2: "192.168.0.2" env: SECRET_KEY: ssssh # Ensure that exactly five containers of another server are running with this # exact image and command. If fewer than five are running, more will be launched; # if more are running, the excess will be stopped. - name: load-balanced containers docker: state: reloaded count: 5 image: someuser/anotherappimage command: sleep 1d # Unconditionally restart a service container. This may be useful within a # handler, for example. - name: application service docker: name: myservice image: someuser/serviceimage state: restarted # Stop all containers running the specified image. - name: obsolete container docker: image: someuser/oldandbusted state: stopped # Stop and remove a container with the specified name. - name: obsolete container docker: name: ohno image: someuser/oldandbusted state: absent # Example Syslogging Output - name: myservice container docker: name: myservice image: someservice/someimage state: reloaded log_driver: syslog log_opt: syslog-address: tcp://my-syslog-server:514 syslog-facility: daemon syslog-tag: myservice ''' HAS_DOCKER_PY = True DEFAULT_DOCKER_API_VERSION = None DEFAULT_TIMEOUT_SECONDS = 60 import sys import json import os import shlex try: from urlparse import urlparse except ImportError: # python3 from urllib.parse import urlparse try: import docker.client import docker.utils import docker.errors from requests.exceptions import RequestException except ImportError: HAS_DOCKER_PY = False if HAS_DOCKER_PY: try: from docker.errors import APIError as DockerAPIError except ImportError: from docker.client import APIError as DockerAPIError try: # docker-py 1.2+ import docker.constants DEFAULT_DOCKER_API_VERSION = docker.constants.DEFAULT_DOCKER_API_VERSION DEFAULT_TIMEOUT_SECONDS = docker.constants.DEFAULT_TIMEOUT_SECONDS except (ImportError, AttributeError): # docker-py less than 1.2 DEFAULT_DOCKER_API_VERSION = docker.client.DEFAULT_DOCKER_API_VERSION DEFAULT_TIMEOUT_SECONDS = docker.client.DEFAULT_TIMEOUT_SECONDS def _human_to_bytes(number): suffixes = ['B', 'KB', 'MB', 'GB', 'TB', 'PB'] if isinstance(number, int): return number if number.isdigit(): return int(number) if number[-1] == suffixes[0] and number[-2].isdigit(): return number[:-1] i = 1 for each in suffixes[1:]: if number[-len(each):] == suffixes[i]: return int(number[:-len(each)]) * (1024 ** i) i = i + 1 raise ValueError('Could not convert %s to integer' % (number,)) def _ansible_facts(container_list): return {"docker_containers": container_list} def _docker_id_quirk(inspect): # XXX: some quirk in docker if 'ID' in inspect: inspect['Id'] = inspect['ID'] del inspect['ID'] return inspect def get_split_image_tag(image): # If image contains a host or org name, omit that from our check if '/' in image: registry, resource = image.rsplit('/', 1) else: registry, resource = None, image # now we can determine if image has a tag or a digest for s in ['@',':']: if s in resource: resource, tag = resource.split(s, 1) if registry: resource = '/'.join((registry, resource)) break else: tag = "latest" resource = image return resource, tag def normalize_image(image): """ Normalize a Docker image name to include the implied :latest tag. """ return ":".join(get_split_image_tag(image)) def is_running(container): '''Return True if an inspected container is in a state we consider "running."''' return container['State']['Running'] == True and not container['State'].get('Ghost', False) def get_docker_py_versioninfo(): if hasattr(docker, '__version__'): # a '__version__' attribute was added to the module but not until # after 0.3.0 was pushed to pypi. If it's there, use it. version = [] for part in docker.__version__.split('.'): try: version.append(int(part)) except ValueError: for idx, char in enumerate(part): if not char.isdigit(): nondigit = part[idx:] digit = part[:idx] break if digit: version.append(int(digit)) if nondigit: version.append(nondigit) elif hasattr(docker.Client, '_get_raw_response_socket'): # HACK: if '__version__' isn't there, we check for the existence of # `_get_raw_response_socket` in the docker.Client class, which was # added in 0.3.0 version = (0, 3, 0) else: # This is untrue but this module does not function with a version less # than 0.3.0 so it's okay to lie here. version = (0,) return tuple(version) def check_dependencies(module): """ Ensure `docker-py` >= 0.3.0 is installed, and call module.fail_json with a helpful error message if it isn't. """ if not HAS_DOCKER_PY: module.fail_json(msg="`docker-py` doesn't seem to be installed, but is required for the Ansible Docker module.") else: versioninfo = get_docker_py_versioninfo() if versioninfo < (0, 3, 0): module.fail_json(msg="The Ansible Docker module requires `docker-py` >= 0.3.0.") class DockerManager(object): counters = dict( created=0, started=0, stopped=0, killed=0, removed=0, restarted=0, pulled=0 ) reload_reasons = [] _capabilities = set() # Map optional parameters to minimum (docker-py version, server APIVersion) # docker-py version is a tuple of ints because we have to compare them # server APIVersion is passed to a docker-py function that takes strings _cap_ver_req = { 'devices': ((0, 7, 0), '1.2'), 'dns': ((0, 3, 0), '1.10'), 'volumes_from': ((0, 3, 0), '1.10'), 'restart_policy': ((0, 5, 0), '1.14'), 'extra_hosts': ((0, 7, 0), '1.3.1'), 'pid': ((1, 0, 0), '1.17'), 'log_driver': ((1, 2, 0), '1.18'), 'log_opt': ((1, 2, 0), '1.18'), 'host_config': ((0, 7, 0), '1.15'), 'cpu_set': ((0, 6, 0), '1.14'), 'cap_add': ((0, 5, 0), '1.14'), 'cap_drop': ((0, 5, 0), '1.14'), 'read_only': ((1, 0, 0), '1.17'), 'labels': ((1, 2, 0), '1.18'), 'stop_timeout': ((0, 5, 0), '1.0'), 'ulimits': ((1, 2, 0), '1.18'), # Clientside only 'insecure_registry': ((0, 5, 0), '0.0'), 'env_file': ((1, 4, 0), '0.0') } def __init__(self, module): self.module = module self.binds = None self.volumes = None if self.module.params.get('volumes'): self.binds = [] self.volumes = [] vols = self.module.params.get('volumes') for vol in vols: parts = vol.split(":") # regular volume if len(parts) == 1: self.volumes.append(parts[0]) # host mount (e.g. /mnt:/tmp, bind mounts host's /tmp to /mnt in the container) elif 2 <= len(parts) <= 3: # default to read-write mode = 'rw' # with supplied bind mode if len(parts) == 3: if parts[2] not in ["rw", "rw,Z", "rw,z", "z,rw", "Z,rw", "Z", "z", "ro", "ro,Z", "ro,z", "z,ro", "Z,ro"]: self.module.fail_json(msg='invalid bind mode ' + parts[2]) else: mode = parts[2] self.binds.append("%s:%s:%s" % (parts[0], parts[1], mode)) else: self.module.fail_json(msg='volumes support 1 to 3 arguments') self.lxc_conf = None if self.module.params.get('lxc_conf'): self.lxc_conf = [] options = self.module.params.get('lxc_conf') for option in options: parts = option.split(':', 1) self.lxc_conf.append({"Key": parts[0], "Value": parts[1]}) self.exposed_ports = None if self.module.params.get('expose'): self.exposed_ports = self.get_exposed_ports(self.module.params.get('expose')) self.port_bindings = None if self.module.params.get('ports'): self.port_bindings = self.get_port_bindings(self.module.params.get('ports')) self.links = None if self.module.params.get('links'): self.links = self.get_links(self.module.params.get('links')) self.ulimits = None if self.module.params.get('ulimits'): self.ulimits = [] ulimits = self.module.params.get('ulimits') for ulimit in ulimits: parts = ulimit.split(":") if len(parts) == 2: self.ulimits.append({'name': parts[0], 'soft': int(parts[1]), 'hard': int(parts[1])}) elif len(parts) == 3: self.ulimits.append({'name': parts[0], 'soft': int(parts[1]), 'hard': int(parts[2])}) else: self.module.fail_json(msg='ulimits support 2 to 3 arguments') # Connect to the docker server using any configured host and TLS settings. env_host = os.getenv('DOCKER_HOST') env_docker_verify = os.getenv('DOCKER_TLS_VERIFY') env_cert_path = os.getenv('DOCKER_CERT_PATH') env_docker_hostname = os.getenv('DOCKER_TLS_HOSTNAME') docker_url = module.params.get('docker_url') if not docker_url: if env_host: docker_url = env_host else: docker_url = 'unix://var/run/docker.sock' docker_api_version = module.params.get('docker_api_version') timeout = module.params.get('timeout') tls_client_cert = module.params.get('tls_client_cert', None) if not tls_client_cert and env_cert_path: tls_client_cert = os.path.join(env_cert_path, 'cert.pem') tls_client_key = module.params.get('tls_client_key', None) if not tls_client_key and env_cert_path: tls_client_key = os.path.join(env_cert_path, 'key.pem') tls_ca_cert = module.params.get('tls_ca_cert') if not tls_ca_cert and env_cert_path: tls_ca_cert = os.path.join(env_cert_path, 'ca.pem') tls_hostname = module.params.get('tls_hostname') if tls_hostname is None: if env_docker_hostname: tls_hostname = env_docker_hostname else: parsed_url = urlparse(docker_url) if ':' in parsed_url.netloc: tls_hostname = parsed_url.netloc[:parsed_url.netloc.rindex(':')] else: tls_hostname = parsed_url if not tls_hostname: tls_hostname = True # use_tls can be one of four values: # no: Do not use tls # encrypt: Use tls. We may do client auth. We will not verify the server # verify: Use tls. We may do client auth. We will verify the server # None: Only use tls if the parameters for client auth were specified # or tls_ca_cert (which requests verifying the server with # a specific ca certificate) use_tls = module.params.get('use_tls') if use_tls is None and env_docker_verify is not None: use_tls = 'verify' tls_config = None if use_tls != 'no': params = {} # Setup client auth if tls_client_cert and tls_client_key: params['client_cert'] = (tls_client_cert, tls_client_key) # We're allowed to verify the connection to the server if use_tls == 'verify' or (use_tls is None and tls_ca_cert): if tls_ca_cert: params['ca_cert'] = tls_ca_cert params['verify'] = True params['assert_hostname'] = tls_hostname else: params['verify'] = True params['assert_hostname'] = tls_hostname elif use_tls == 'encrypt': params['verify'] = False if params: # See https://github.com/docker/docker-py/blob/d39da11/docker/utils/utils.py#L279-L296 docker_url = docker_url.replace('tcp://', 'https://') tls_config = docker.tls.TLSConfig(**params) self.client = docker.Client(base_url=docker_url, version=docker_api_version, tls=tls_config, timeout=timeout) self.docker_py_versioninfo = get_docker_py_versioninfo() env = self.module.params.get('env', None) env_file = self.module.params.get('env_file', None) self.environment = self.get_environment(env, env_file) def _check_capabilities(self): """ Create a list of available capabilities """ api_version = self.client.version()['ApiVersion'] for cap, req_vers in self._cap_ver_req.items(): if (self.docker_py_versioninfo >= req_vers[0] and docker.utils.compare_version(req_vers[1], api_version) >= 0): self._capabilities.add(cap) def ensure_capability(self, capability, fail=True): """ Some of the functionality this ansible module implements are only available in newer versions of docker. Ensure that the capability is available here. If fail is set to False then return True or False depending on whether we have the capability. Otherwise, simply fail and exit the module if we lack the capability. """ if not self._capabilities: self._check_capabilities() if capability in self._capabilities: return True if not fail: return False api_version = self.client.version()['ApiVersion'] self.module.fail_json(msg='Specifying the `%s` parameter requires' ' docker-py: %s, docker server apiversion %s; found' ' docker-py: %s, server: %s' % ( capability, '.'.join(map(str, self._cap_ver_req[capability][0])), self._cap_ver_req[capability][1], '.'.join(map(str, self.docker_py_versioninfo)), api_version)) def get_environment(self, env, env_file): """ If environment files are combined with explicit environment variables, the explicit environment variables will override the key from the env file. """ final_env = {} if env_file: self.ensure_capability('env_file') parsed_env_file = docker.utils.parse_env_file(env_file) for name, value in parsed_env_file.iteritems(): final_env[name] = str(value) if env: for name, value in env.iteritems(): final_env[name] = str(value) return final_env def get_links(self, links): """ Parse the links passed, if a link is specified without an alias then just create the alias of the same name as the link """ processed_links = {} for link in links: parsed_link = link.split(':', 1) if(len(parsed_link) == 2): processed_links[parsed_link[0]] = parsed_link[1] else: processed_links[parsed_link[0]] = parsed_link[0] return processed_links def get_exposed_ports(self, expose_list): """ Parse the ports and protocols (TCP/UDP) to expose in the docker-py `create_container` call from the docker CLI-style syntax. """ if expose_list: exposed = [] for port in expose_list: port = str(port).strip() if port.endswith('/tcp') or port.endswith('/udp'): port_with_proto = tuple(port.split('/')) else: # assume tcp protocol if not specified port_with_proto = (port, 'tcp') exposed.append(port_with_proto) return exposed else: return None def get_start_params(self): """ Create start params """ params = { 'lxc_conf': self.lxc_conf, 'binds': self.binds, 'port_bindings': self.port_bindings, 'publish_all_ports': self.module.params.get('publish_all_ports'), 'privileged': self.module.params.get('privileged'), 'links': self.links, 'network_mode': self.module.params.get('net'), } optionals = {} for optional_param in ('devices', 'dns', 'volumes_from', 'restart_policy', 'restart_policy_retry', 'pid', 'extra_hosts', 'log_driver', 'cap_add', 'cap_drop', 'read_only', 'log_opt'): optionals[optional_param] = self.module.params.get(optional_param) if optionals['devices'] is not None: self.ensure_capability('devices') params['devices'] = optionals['devices'] if optionals['dns'] is not None: self.ensure_capability('dns') params['dns'] = optionals['dns'] if optionals['volumes_from'] is not None: self.ensure_capability('volumes_from') params['volumes_from'] = optionals['volumes_from'] if optionals['restart_policy'] is not None: self.ensure_capability('restart_policy') params['restart_policy'] = { 'Name': optionals['restart_policy'] } if params['restart_policy']['Name'] == 'on-failure': params['restart_policy']['MaximumRetryCount'] = optionals['restart_policy_retry'] # docker_py only accepts 'host' or None if 'pid' in optionals and not optionals['pid']: optionals['pid'] = None if optionals['pid'] is not None: self.ensure_capability('pid') params['pid_mode'] = optionals['pid'] if optionals['extra_hosts'] is not None: self.ensure_capability('extra_hosts') params['extra_hosts'] = optionals['extra_hosts'] if optionals['log_driver'] is not None: self.ensure_capability('log_driver') log_config = docker.utils.LogConfig(type=docker.utils.LogConfig.types.JSON) if optionals['log_opt'] is not None: for k, v in optionals['log_opt'].iteritems(): log_config.set_config_value(k, v) log_config.type = optionals['log_driver'] params['log_config'] = log_config if optionals['cap_add'] is not None: self.ensure_capability('cap_add') params['cap_add'] = optionals['cap_add'] if optionals['cap_drop'] is not None: self.ensure_capability('cap_drop') params['cap_drop'] = optionals['cap_drop'] if optionals['read_only'] is not None: self.ensure_capability('read_only') params['read_only'] = optionals['read_only'] return params def create_host_config(self): """ Create HostConfig object """ params = self.get_start_params() return docker.utils.create_host_config(**params) def get_port_bindings(self, ports): """ Parse the `ports` string into a port bindings dict for the `start_container` call. """ binds = {} for port in ports: # ports could potentially be an array like [80, 443], so we make sure they're strings # before splitting parts = str(port).split(':') container_port = parts[-1] if '/' not in container_port: container_port = int(parts[-1]) p_len = len(parts) if p_len == 1: # Bind `container_port` of the container to a dynamically # allocated TCP port on all available interfaces of the host # machine. bind = ('0.0.0.0',) elif p_len == 2: # Bind `container_port` of the container to port `parts[0]` on # all available interfaces of the host machine. bind = ('0.0.0.0', int(parts[0])) elif p_len == 3: # Bind `container_port` of the container to port `parts[1]` on # IP `parts[0]` of the host machine. If `parts[1]` empty bind # to a dynamically allocated port of IP `parts[0]`. bind = (parts[0], int(parts[1])) if parts[1] else (parts[0],) if container_port in binds: old_bind = binds[container_port] if isinstance(old_bind, list): # append to list if it already exists old_bind.append(bind) else: # otherwise create list that contains the old and new binds binds[container_port] = [binds[container_port], bind] else: binds[container_port] = bind return binds def get_summary_message(self): ''' Generate a message that briefly describes the actions taken by this task, in English. ''' parts = [] for k, v in self.counters.iteritems(): if v == 0: continue if v == 1: plural = "" else: plural = "s" parts.append("%s %d container%s" % (k, v, plural)) if parts: return ", ".join(parts) + "." else: return "No action taken." def get_reload_reason_message(self): ''' Generate a message describing why any reloaded containers were reloaded. ''' if self.reload_reasons: return ", ".join(self.reload_reasons) else: return None def get_summary_counters_msg(self): msg = "" for k, v in self.counters.iteritems(): msg = msg + "%s %d " % (k, v) return msg def increment_counter(self, name): self.counters[name] = self.counters[name] + 1 def has_changed(self): for k, v in self.counters.iteritems(): if v > 0: return True return False def get_inspect_image(self): try: return self.client.inspect_image(self.module.params.get('image')) except DockerAPIError as e: if e.response.status_code == 404: return None else: raise e def get_image_repo_tags(self): image, tag = get_split_image_tag(self.module.params.get('image')) if tag is None: tag = 'latest' resource = '%s:%s' % (image, tag) for image in self.client.images(name=image): if resource in image.get('RepoTags', []): return image['RepoTags'] return [] def get_inspect_containers(self, containers): inspect = [] for i in containers: details = self.client.inspect_container(i['Id']) details = _docker_id_quirk(details) inspect.append(details) return inspect def get_differing_containers(self): """ Inspect all matching, running containers, and return those that were started with parameters that differ from the ones that are provided during this module run. A list containing the differing containers will be returned, and a short string describing the specific difference encountered in each container will be appended to reload_reasons. This generates the set of containers that need to be stopped and started with new parameters with state=reloaded. """ running = self.get_running_containers() current = self.get_inspect_containers(running) defaults = self.client.info() #Get API version api_version = self.client.version()['ApiVersion'] image = self.get_inspect_image() if image is None: # The image isn't present. Assume that we're about to pull a new # tag and *everything* will be restarted. # # This will give false positives if you untag an image on the host # and there's nothing more to pull. return current differing = [] for container in current: # IMAGE # Compare the image by ID rather than name, so that containers # will be restarted when new versions of an existing image are # pulled. if container['Image'] != image['Id']: self.reload_reasons.append('image ({0} => {1})'.format(container['Image'], image['Id'])) differing.append(container) continue # ENTRYPOINT expected_entrypoint = self.module.params.get('entrypoint') if expected_entrypoint: expected_entrypoint = shlex.split(expected_entrypoint) actual_entrypoint = container["Config"]["Entrypoint"] if actual_entrypoint != expected_entrypoint: self.reload_reasons.append( 'entrypoint ({0} => {1})' .format(actual_entrypoint, expected_entrypoint) ) differing.append(container) continue # COMMAND expected_command = self.module.params.get('command') if expected_command: expected_command = shlex.split(expected_command) actual_command = container["Config"]["Cmd"] if actual_command != expected_command: self.reload_reasons.append('command ({0} => {1})'.format(actual_command, expected_command)) differing.append(container) continue # EXPOSED PORTS expected_exposed_ports = set((image['ContainerConfig'].get('ExposedPorts') or {}).keys()) for p in (self.exposed_ports or []): expected_exposed_ports.add("/".join(p)) actually_exposed_ports = set((container["Config"].get("ExposedPorts") or {}).keys()) if actually_exposed_ports != expected_exposed_ports: self.reload_reasons.append('exposed_ports ({0} => {1})'.format(actually_exposed_ports, expected_exposed_ports)) differing.append(container) continue # VOLUMES expected_volume_keys = set((image['ContainerConfig']['Volumes'] or {}).keys()) if self.volumes: expected_volume_keys.update(self.volumes) actual_volume_keys = set((container['Config']['Volumes'] or {}).keys()) if actual_volume_keys != expected_volume_keys: self.reload_reasons.append('volumes ({0} => {1})'.format(actual_volume_keys, expected_volume_keys)) differing.append(container) continue # ULIMITS expected_ulimit_keys = set(map(lambda x: '%s:%s:%s' % (x['name'],x['soft'],x['hard']), self.ulimits or [])) actual_ulimit_keys = set(map(lambda x: '%s:%s:%s' % (x['Name'],x['Soft'],x['Hard']), (container['HostConfig']['Ulimits'] or []))) if actual_ulimit_keys != expected_ulimit_keys: self.reload_reasons.append('ulimits ({0} => {1})'.format(actual_ulimit_keys, expected_ulimit_keys)) differing.append(container) continue # CPU_SHARES expected_cpu_shares = self.module.params.get('cpu_shares') actual_cpu_shares = container['HostConfig']['CpuShares'] if expected_cpu_shares and actual_cpu_shares != expected_cpu_shares: self.reload_reasons.append('cpu_shares ({0} => {1})'.format(actual_cpu_shares, expected_cpu_shares)) differing.append(container) continue # MEM_LIMIT try: expected_mem = _human_to_bytes(self.module.params.get('memory_limit')) except ValueError as e: self.module.fail_json(msg=str(e)) #For v1.19 API and above use HostConfig, otherwise use Config if docker.utils.compare_version('1.19', api_version) >= 0: actual_mem = container['HostConfig']['Memory'] else: actual_mem = container['Config']['Memory'] if expected_mem and actual_mem != expected_mem: self.reload_reasons.append('memory ({0} => {1})'.format(actual_mem, expected_mem)) differing.append(container) continue # ENVIRONMENT # actual_env is likely to include environment variables injected by # the Dockerfile. expected_env = {} for image_env in image['ContainerConfig']['Env'] or []: name, value = image_env.split('=', 1) expected_env[name] = value if self.environment: for name, value in self.environment.iteritems(): expected_env[name] = str(value) actual_env = {} for container_env in container['Config']['Env'] or []: name, value = container_env.split('=', 1) actual_env[name] = value if actual_env != expected_env: # Don't include the environment difference in the output. self.reload_reasons.append('environment {0} => {1}'.format(actual_env, expected_env)) differing.append(container) continue # LABELS expected_labels = {} for name, value in self.module.params.get('labels').iteritems(): expected_labels[name] = str(value) if type(container['Config']['Labels']) is dict: actual_labels = container['Config']['Labels'] else: for container_label in container['Config']['Labels'] or []: name, value = container_label.split('=', 1) actual_labels[name] = value if actual_labels != expected_labels: self.reload_reasons.append('labels {0} => {1}'.format(actual_labels, expected_labels)) differing.append(container) continue # HOSTNAME expected_hostname = self.module.params.get('hostname') actual_hostname = container['Config']['Hostname'] if expected_hostname and actual_hostname != expected_hostname: self.reload_reasons.append('hostname ({0} => {1})'.format(actual_hostname, expected_hostname)) differing.append(container) continue # DOMAINNAME expected_domainname = self.module.params.get('domainname') actual_domainname = container['Config']['Domainname'] if expected_domainname and actual_domainname != expected_domainname: self.reload_reasons.append('domainname ({0} => {1})'.format(actual_domainname, expected_domainname)) differing.append(container) continue # DETACH # We don't have to check for undetached containers. If it wasn't # detached, it would have stopped before the playbook continued! # NAME # We also don't have to check name, because this is one of the # criteria that's used to determine which container(s) match in # the first place. # STDIN_OPEN expected_stdin_open = self.module.params.get('stdin_open') actual_stdin_open = container['Config']['OpenStdin'] if actual_stdin_open != expected_stdin_open: self.reload_reasons.append('stdin_open ({0} => {1})'.format(actual_stdin_open, expected_stdin_open)) differing.append(container) continue # TTY expected_tty = self.module.params.get('tty') actual_tty = container['Config']['Tty'] if actual_tty != expected_tty: self.reload_reasons.append('tty ({0} => {1})'.format(actual_tty, expected_tty)) differing.append(container) continue # -- "start" call differences -- # LXC_CONF if self.lxc_conf: expected_lxc = set(self.lxc_conf) actual_lxc = set(container['HostConfig']['LxcConf'] or []) if actual_lxc != expected_lxc: self.reload_reasons.append('lxc_conf ({0} => {1})'.format(actual_lxc, expected_lxc)) differing.append(container) continue # BINDS expected_binds = set() if self.binds: for bind in self.binds: expected_binds.add(bind) actual_binds = set() for bind in (container['HostConfig']['Binds'] or []): if len(bind.split(':')) == 2: actual_binds.add(bind + ":rw") else: actual_binds.add(bind) if actual_binds != expected_binds: self.reload_reasons.append('binds ({0} => {1})'.format(actual_binds, expected_binds)) differing.append(container) continue # PORT BINDINGS expected_bound_ports = {} if self.port_bindings: for container_port, config in self.port_bindings.iteritems(): if isinstance(container_port, int): container_port = "{0}/tcp".format(container_port) if len(config) == 1: expected_bound_ports[container_port] = [{'HostIp': "0.0.0.0", 'HostPort': ""}] elif isinstance(config[0], tuple): expected_bound_ports[container_port] = [] for hostip, hostport in config: expected_bound_ports[container_port].append({ 'HostIp': hostip, 'HostPort': str(hostport)}) else: expected_bound_ports[container_port] = [{'HostIp': config[0], 'HostPort': str(config[1])}] actual_bound_ports = container['HostConfig']['PortBindings'] or {} if actual_bound_ports != expected_bound_ports: self.reload_reasons.append('port bindings ({0} => {1})'.format(actual_bound_ports, expected_bound_ports)) differing.append(container) continue # PUBLISHING ALL PORTS # What we really care about is the set of ports that is actually # published. That should be caught above. # PRIVILEGED expected_privileged = self.module.params.get('privileged') actual_privileged = container['HostConfig']['Privileged'] if actual_privileged != expected_privileged: self.reload_reasons.append('privileged ({0} => {1})'.format(actual_privileged, expected_privileged)) differing.append(container) continue # LINKS expected_links = set() for link, alias in (self.links or {}).iteritems(): expected_links.add("/{0}:{1}/{2}".format(link, container["Name"], alias)) actual_links = set(container['HostConfig']['Links'] or []) if actual_links != expected_links: self.reload_reasons.append('links ({0} => {1})'.format(actual_links, expected_links)) differing.append(container) continue # NETWORK MODE expected_netmode = self.module.params.get('net') or 'bridge' actual_netmode = container['HostConfig']['NetworkMode'] or 'bridge' if actual_netmode != expected_netmode: self.reload_reasons.append('net ({0} => {1})'.format(actual_netmode, expected_netmode)) differing.append(container) continue # DEVICES expected_devices = set() for device in (self.module.params.get('devices') or []): if len(device.split(':')) == 2: expected_devices.add(device + ":rwm") else: expected_devices.add(device) actual_devices = set() for device in (container['HostConfig']['Devices'] or []): actual_devices.add("{PathOnHost}:{PathInContainer}:{CgroupPermissions}".format(**device)) if actual_devices != expected_devices: self.reload_reasons.append('devices ({0} => {1})'.format(actual_devices, expected_devices)) differing.append(container) continue # DNS expected_dns = set(self.module.params.get('dns') or []) actual_dns = set(container['HostConfig']['Dns'] or []) if actual_dns != expected_dns: self.reload_reasons.append('dns ({0} => {1})'.format(actual_dns, expected_dns)) differing.append(container) continue # VOLUMES_FROM expected_volumes_from = set(self.module.params.get('volumes_from') or []) actual_volumes_from = set(container['HostConfig']['VolumesFrom'] or []) if actual_volumes_from != expected_volumes_from: self.reload_reasons.append('volumes_from ({0} => {1})'.format(actual_volumes_from, expected_volumes_from)) differing.append(container) # LOG_DRIVER if self.ensure_capability('log_driver', False): expected_log_driver = self.module.params.get('log_driver') or defaults['LoggingDriver'] actual_log_driver = container['HostConfig']['LogConfig']['Type'] if actual_log_driver != expected_log_driver: self.reload_reasons.append('log_driver ({0} => {1})'.format(actual_log_driver, expected_log_driver)) differing.append(container) continue if self.ensure_capability('log_opt', False): expected_logging_opts = self.module.params.get('log_opt') or {} actual_log_opts = container['HostConfig']['LogConfig']['Config'] if len(set(expected_logging_opts.items()) - set(actual_log_opts.items())) != 0: log_opt_reasons = { 'added': dict(set(expected_logging_opts.items()) - set(actual_log_opts.items())), 'removed': dict(set(actual_log_opts.items()) - set(expected_logging_opts.items())) } self.reload_reasons.append('log_opt ({0})'.format(log_opt_reasons)) differing.append(container) return differing def get_deployed_containers(self): """ Return any matching containers that are already present. """ entrypoint = self.module.params.get('entrypoint') if entrypoint is not None: entrypoint = shlex.split(entrypoint) command = self.module.params.get('command') if command is not None: command = shlex.split(command) name = self.module.params.get('name') if name and not name.startswith('/'): name = '/' + name deployed = [] # "images" will be a collection of equivalent "name:tag" image names # that map to the same Docker image. inspected = self.get_inspect_image() if inspected: repo_tags = self.get_image_repo_tags() else: repo_tags = [normalize_image(self.module.params.get('image'))] for container in self.client.containers(all=True): details = None if name: name_list = container.get('Names') if name_list is None: name_list = [] matches = name in name_list else: details = self.client.inspect_container(container['Id']) details = _docker_id_quirk(details) running_image = normalize_image(details['Config']['Image']) image_matches = running_image in repo_tags if command == None: command_matches = True else: command_matches = (command == details['Config']['Cmd']) if entrypoint == None: entrypoint_matches = True else: entrypoint_matches = ( entrypoint == details['Config']['Entrypoint'] ) matches = (image_matches and command_matches and entrypoint_matches) if matches: if not details: details = self.client.inspect_container(container['Id']) details = _docker_id_quirk(details) deployed.append(details) return deployed def get_running_containers(self): return [c for c in self.get_deployed_containers() if is_running(c)] def pull_image(self): extra_params = {} if self.module.params.get('insecure_registry'): if self.ensure_capability('insecure_registry', fail=False): extra_params['insecure_registry'] = self.module.params.get('insecure_registry') resource = self.module.params.get('image') image, tag = get_split_image_tag(resource) if self.module.params.get('username'): try: self.client.login( self.module.params.get('username'), password=self.module.params.get('password'), email=self.module.params.get('email'), registry=self.module.params.get('registry') ) except Exception as e: self.module.fail_json(msg="failed to login to the remote registry, check your username/password.", error=repr(e)) try: changes = list(self.client.pull(image, tag=tag, stream=True, **extra_params)) pull_success = False for change in changes: status = json.loads(change).get('status', '') if status.startswith('Status: Image is up to date for'): # Image is already up to date. Don't increment the counter. pull_success = True break elif (status.startswith('Status: Downloaded newer image for') or status.startswith('Download complete')): # Image was updated. Increment the pull counter. self.increment_counter('pulled') pull_success = True break if not pull_success: # Unrecognized status string. self.module.fail_json(msg="Unrecognized status from pull.", status=status, changes=changes) except Exception as e: self.module.fail_json(msg="Failed to pull the specified image: %s" % resource, error=repr(e)) def create_containers(self, count=1): try: mem_limit = _human_to_bytes(self.module.params.get('memory_limit')) except ValueError as e: self.module.fail_json(msg=str(e)) api_version = self.client.version()['ApiVersion'] params = {'image': self.module.params.get('image'), 'entrypoint': self.module.params.get('entrypoint'), 'command': self.module.params.get('command'), 'ports': self.exposed_ports, 'volumes': self.volumes, 'environment': self.environment, 'labels': self.module.params.get('labels'), 'hostname': self.module.params.get('hostname'), 'domainname': self.module.params.get('domainname'), 'detach': self.module.params.get('detach'), 'name': self.module.params.get('name'), 'stdin_open': self.module.params.get('stdin_open'), 'tty': self.module.params.get('tty'), 'cpuset': self.module.params.get('cpu_set'), 'cpu_shares': self.module.params.get('cpu_shares'), 'user': self.module.params.get('docker_user'), } if self.ensure_capability('host_config', fail=False): params['host_config'] = self.create_host_config() #For v1.19 API and above use HostConfig, otherwise use Config if docker.utils.compare_version('1.19', api_version) < 0: params['mem_limit'] = mem_limit else: params['host_config']['Memory'] = mem_limit if self.ulimits is not None: self.ensure_capability('ulimits') params['host_config']['ulimits'] = self.ulimits def do_create(count, params): results = [] for _ in range(count): result = self.client.create_container(**params) self.increment_counter('created') results.append(result) return results try: containers = do_create(count, params) except docker.errors.APIError as e: if e.response.status_code != 404: raise self.pull_image() containers = do_create(count, params) return containers def start_containers(self, containers): params = {} if not self.ensure_capability('host_config', fail=False): params = self.get_start_params() for i in containers: self.client.start(i) self.increment_counter('started') if not self.module.params.get('detach'): status = self.client.wait(i['Id']) if status != 0: output = self.client.logs(i['Id'], stdout=True, stderr=True, stream=False, timestamps=False) self.module.fail_json(status=status, msg=output) def stop_containers(self, containers): for i in containers: self.client.stop(i['Id'], self.module.params.get('stop_timeout')) self.increment_counter('stopped') return [self.client.wait(i['Id']) for i in containers] def remove_containers(self, containers): for i in containers: self.client.remove_container(i['Id']) self.increment_counter('removed') def kill_containers(self, containers): for i in containers: self.client.kill(i['Id'], self.module.params.get('signal')) self.increment_counter('killed') def restart_containers(self, containers): for i in containers: self.client.restart(i['Id']) self.increment_counter('restarted') class ContainerSet: def __init__(self, manager): self.manager = manager self.running = [] self.deployed = [] self.changed = [] def refresh(self): ''' Update our view of the matching containers from the Docker daemon. ''' self.deployed = self.manager.get_deployed_containers() self.running = [c for c in self.deployed if is_running(c)] def notice_changed(self, containers): ''' Record a collection of containers as "changed". ''' self.changed.extend(containers) def present(manager, containers, count, name): '''Ensure that exactly `count` matching containers exist in any state.''' containers.refresh() delta = count - len(containers.deployed) if delta > 0: created = manager.create_containers(delta) containers.notice_changed(manager.get_inspect_containers(created)) if delta < 0: # If both running and stopped containers exist, remove # stopped containers first. containers.deployed.sort(lambda cx, cy: cmp(is_running(cx), is_running(cy))) to_stop = [] to_remove = [] for c in containers.deployed[0:-delta]: if is_running(c): to_stop.append(c) to_remove.append(c) manager.stop_containers(to_stop) containers.notice_changed(manager.get_inspect_containers(to_remove)) manager.remove_containers(to_remove) def started(manager, containers, count, name): '''Ensure that exactly `count` matching containers exist and are running.''' containers.refresh() delta = count - len(containers.running) if delta > 0: if name and containers.deployed: # A stopped container exists with the requested name. # Clean it up before attempting to start a new one. manager.remove_containers(containers.deployed) created = manager.create_containers(delta) manager.start_containers(created) containers.notice_changed(manager.get_inspect_containers(created)) if delta < 0: excess = containers.running[0:-delta] containers.notice_changed(manager.get_inspect_containers(excess)) manager.stop_containers(excess) manager.remove_containers(excess) def reloaded(manager, containers, count, name): ''' Ensure that exactly `count` matching containers exist and are running. If any associated settings have been changed (volumes, ports or so on), restart those containers. ''' containers.refresh() for container in manager.get_differing_containers(): manager.stop_containers([container]) manager.remove_containers([container]) started(manager, containers, count, name) def restarted(manager, containers, count, name): ''' Ensure that exactly `count` matching containers exist and are running. Unconditionally restart any that were already running. ''' containers.refresh() for container in manager.get_differing_containers(): manager.stop_containers([container]) manager.remove_containers([container]) containers.refresh() manager.restart_containers(containers.running) started(manager, containers, count, name) def stopped(manager, containers, count, name): '''Stop any matching containers that are running.''' containers.refresh() manager.stop_containers(containers.running) containers.notice_changed(manager.get_inspect_containers(containers.running)) def killed(manager, containers, count, name): '''Kill any matching containers that are running.''' containers.refresh() manager.kill_containers(containers.running) containers.notice_changed(manager.get_inspect_containers(containers.running)) def absent(manager, containers, count, name): '''Stop and remove any matching containers.''' containers.refresh() manager.stop_containers(containers.running) containers.notice_changed(manager.get_inspect_containers(containers.deployed)) manager.remove_containers(containers.deployed) def main(): module = AnsibleModule( argument_spec = dict( count = dict(default=1, type='int'), image = dict(required=True), pull = dict(required=False, default='missing', choices=['missing', 'always']), entrypoint = dict(required=False, default=None, type='str'), command = dict(required=False, default=None), expose = dict(required=False, default=None, type='list'), ports = dict(required=False, default=None, type='list'), publish_all_ports = dict(default=False, type='bool'), volumes = dict(default=None, type='list'), volumes_from = dict(default=None, type='list'), links = dict(default=None, type='list'), devices = dict(default=None, type='list'), memory_limit = dict(default=0), memory_swap = dict(default=0, type='int'), cpu_shares = dict(default=0, type='int'), docker_url = dict(), use_tls = dict(default=None, choices=['no', 'encrypt', 'verify']), tls_client_cert = dict(required=False, default=None, type='path'), tls_client_key = dict(required=False, default=None, type='path'), tls_ca_cert = dict(required=False, default=None, type='path'), tls_hostname = dict(required=False, type='str', default=None), docker_api_version = dict(required=False, default=DEFAULT_DOCKER_API_VERSION, type='str'), docker_user = dict(default=None), username = dict(default=None), password = dict(no_log=True), email = dict(), registry = dict(), hostname = dict(default=None), domainname = dict(default=None), env = dict(type='dict'), env_file = dict(default=None), dns = dict(default=None, type='list'), detach = dict(default=True, type='bool'), state = dict(default='started', choices=['present', 'started', 'reloaded', 'restarted', 'stopped', 'killed', 'absent', 'running']), signal = dict(default=None), restart_policy = dict(default=None, choices=['always', 'on-failure', 'no', 'unless-stopped']), restart_policy_retry = dict(default=0, type='int'), extra_hosts = dict(type='dict'), debug = dict(default=False, type='bool'), privileged = dict(default=False, type='bool'), stdin_open = dict(default=False, type='bool'), tty = dict(default=False, type='bool'), lxc_conf = dict(default=None, type='list'), name = dict(default=None), net = dict(default=None), pid = dict(default=None), insecure_registry = dict(default=False, type='bool'), log_driver = dict(default=None, choices=['json-file', 'none', 'syslog', 'journald', 'gelf', 'fluentd', 'awslogs']), log_opt = dict(default=None, type='dict'), cpu_set = dict(default=None), cap_add = dict(default=None, type='list'), cap_drop = dict(default=None, type='list'), read_only = dict(default=None, type='bool'), labels = dict(default={}, type='dict'), stop_timeout = dict(default=10, type='int'), timeout = dict(required=False, default=DEFAULT_TIMEOUT_SECONDS, type='int'), ulimits = dict(default=None, type='list'), ), required_together = ( ['tls_client_cert', 'tls_client_key'], ), ) check_dependencies(module) try: manager = DockerManager(module) count = module.params.get('count') name = module.params.get('name') pull = module.params.get('pull') state = module.params.get('state') if state == 'running': # Renamed running to started in 1.9 state = 'started' if count < 0: module.fail_json(msg="Count must be greater than zero") if count > 1 and name: module.fail_json(msg="Count and name must not be used together") # Explicitly pull new container images, if requested. Do this before # noticing running and deployed containers so that the image names # will differ if a newer image has been pulled. # Missing images should be pulled first to avoid downtime when old # container is stopped, but image for new one is now downloaded yet. # It also prevents removal of running container before realizing # that requested image cannot be retrieved. if pull == "always" or (state == 'reloaded' and manager.get_inspect_image() is None): manager.pull_image() containers = ContainerSet(manager) if state == 'present': present(manager, containers, count, name) elif state == 'started': started(manager, containers, count, name) elif state == 'reloaded': reloaded(manager, containers, count, name) elif state == 'restarted': restarted(manager, containers, count, name) elif state == 'stopped': stopped(manager, containers, count, name) elif state == 'killed': killed(manager, containers, count, name) elif state == 'absent': absent(manager, containers, count, name) else: module.fail_json(msg='Unrecognized state %s. Must be one of: ' 'present; started; reloaded; restarted; ' 'stopped; killed; absent.' % state) module.exit_json(changed=manager.has_changed(), msg=manager.get_summary_message(), summary=manager.counters, reload_reasons=manager.get_reload_reason_message(), ansible_facts=_ansible_facts(containers.changed)) except DockerAPIError as e: module.fail_json(changed=manager.has_changed(), msg="Docker API Error: %s" % e.explanation) except RequestException as e: module.fail_json(changed=manager.has_changed(), msg=repr(e)) # import module snippets from ansible.module_utils.basic import * if __name__ == '__main__': main()
romain-dartigues/ansible-modules-core
cloud/docker/_docker.py
Python
gpl-3.0
74,953
[ "VisIt" ]
f3b89dc1f96a4082ea26684a9e986bfea1586b14374b42c85de6021df6b70477
import os import unittest from monty.os.path import which from monty.serialization import loadfn from pymatgen.command_line.mcsqs_caller import run_mcsqs from pymatgen.util.testing import PymatgenTest __author__ = "Handong Ling, Rachel Woods-Robinson" __maintainer__ = "Handong Ling, Rachel Woods-Robinson" __email__ = "[email protected], [email protected]" test_dir = os.path.join( os.path.dirname(__file__), "..", "..", "..", "test_files", "mcsqs" ) @unittest.skipIf(not which("mcsqs"), "mcsqs executable not present") class McsqsCallerTest(PymatgenTest): def setUp(self): self.pztstructs = loadfn(os.path.join(test_dir, "pztstructs.json")) self.pztstructs2 = loadfn(os.path.join(test_dir, "pztstructs2.json")) self.struc = self.get_structure("Pb2TiZrO6") self.perfect_match_zzn_rs = loadfn( os.path.join(test_dir, "perfect_match_zzn_rs.json") ) def test_mcsqs_caller_supercell(self): struc = self.struc.copy() struc.replace_species( {"Ti": {"Ti": 0.5, "Zr": 0.5}, "Zr": {"Ti": 0.5, "Zr": 0.5}} ) sqs = run_mcsqs( struc, {2: 6, 3: 4}, scaling=[2, 1, 1], search_time=0.01, instances=1 ) matches = [sqs.bestsqs.matches(s) for s in self.pztstructs] self.assertIn(True, matches) def test_mcsqs_caller_total_atoms(self): struc = self.struc.copy() struc.replace_species( {"Ti": {"Ti": 0.5, "Zr": 0.5}, "Zr": {"Ti": 0.5, "Zr": 0.5}} ) sqs = run_mcsqs(struc, {2: 6, 3: 4}, scaling=2, search_time=0.01, instances=1) matches = [sqs.bestsqs.matches(s) for s in self.pztstructs2] self.assertIn(True, matches) def test_mcsqs_caller_total_atoms_auto_instances(self): struc = self.struc.copy() struc.replace_species( {"Ti": {"Ti": 0.5, "Zr": 0.5}, "Zr": {"Ti": 0.5, "Zr": 0.5}} ) sqs = run_mcsqs( struc, {2: 6, 3: 4}, scaling=2, search_time=0.01, instances=None ) matches = [sqs.bestsqs.matches(s) for s in self.pztstructs2] self.assertIn(True, matches) def test_mcsqs_caller_parallel(self): # explicitly test with four instances struc = self.struc.copy() struc.replace_species( {"Ti": {"Ti": 0.5, "Zr": 0.5}, "Zr": {"Ti": 0.5, "Zr": 0.5}} ) sqs = run_mcsqs(struc, {2: 6, 3: 4}, scaling=2, search_time=0.01, instances=4) matches = [sqs.bestsqs.matches(s) for s in self.pztstructs2] self.assertIn(True, matches) def test_mcsqs_perfect_match_error(self): scale = 32 / self.perfect_match_zzn_rs.num_sites sqs = run_mcsqs( self.perfect_match_zzn_rs, {2: 6, 3: 4}, scaling=scale, search_time=1, instances=1, ) self.assertEqual(sqs.objective_function, "Perfect_match") def test_mcsqs_perfect_match_error_parallel(self): scale = 32 / self.perfect_match_zzn_rs.num_sites sqs = run_mcsqs( self.perfect_match_zzn_rs, {2: 6, 3: 4}, scaling=scale, search_time=1, instances=4, ) self.assertEqual(sqs.objective_function, "Perfect_match") def test_mcsqs_caller_runtime_error(self): struc = self.struc.copy() struc.replace_species( {"Ti": {"Ti": 0.5, "Zr": 0.5}, "Zr": {"Ti": 0.5, "Zr": 0.5}} ) struc.replace_species({"Pb": {"Ti": 0.2, "Pb": 0.8}}) struc.replace_species({"O": {"F": 0.8, "O": 0.2}}) self.assertRaises(RuntimeError, run_mcsqs, struc, {2: 6, 3: 4}, 10, 0.000001)
mbkumar/pymatgen
pymatgen/command_line/tests/test_mcsqs_caller.py
Python
mit
3,703
[ "pymatgen" ]
d71c01d419579acab28c47e711b0fc1acdde2a09221f3fd3ebd86bccb74e9950
#!/usr/bin/env ipython3 ## # @file # Calculate approximative stellar masses from V-band magnitude, V-I color, distance to dwarf galaxy. # Read in [some].bin.[MV,V-I], output ID,Mstar # (c) 2013 Pascal Steger, [email protected] import numpy import sys if(len(sys.argv)<2): print "use: stellarmass.py [car,scl,sex,for]" exit(1) # choose simulation dwarf = sys.argv[1] dir = gp.files.machine print(dir+dwarf+"/table_merged.bin") delim=[0,22,3,3,6,4,3,5,6,6,7,5,6,5,6,5,6] ID=numpy.genfromtxt(dir+dwarf+"/table_merged.bin",skiprows=29,unpack=True,usecols=(0,1),delimiter=delim,dtype="string") RAh,RAm,RAs,DEd,DEm,DEs,Vmag,VI,VHel,e_VHel,SigFe,e_SigFe,SigMg,e_SigMg,PM=numpy.genfromtxt(dir+dwarf+"/table_merged.bin",skiprows=29,unpack=True,usecols=tuple(range(2,17)),delimiter=delim,filling_values=-1) print('Vmag = ',Vmag[0:10]) MCMD,MvCMD,VICMD=numpy.genfromtxt(dir+dwarf+"/../SCMD/SCMD.dat",\ skiprows=1,unpack=True,usecols=(0,4,8),filling_values=-1) # luminosity distance, measured in [parsecs] kpc = 1000 DL= { 'for': lambda x: x * (138),#+/- 8 'car': lambda x: x * (101),#+/- 5 'sex': lambda x: x * (86), #+/- 4 'scl': lambda x: x * (79) #+/- 4 }[dwarf](kpc) # print("DL = ",DL) import matplotlib matplotlib.use('pdf') from pylab import * ion();subplot(111) n,bins,rectangles = hist(PM, bins=20, normed=True) axvline(x=0.95,color='r') xlabel(r'PM') ylabel(r'number') xlim([0,1]) savefig(dir+dwarf+"/PM.pdf") ioff();clf() # only use stars which are members of the dwarf pm = (PM>0.95)*(VI<70) print(pm) print("fraction of members = ",1.0*sum(pm)/len(pm)) ID=ID[1][pm]; RAh=RAh[pm]; RAm=RAm[pm]; DEd=DEd[pm]; DEm=DEm[pm]; DEs=DEs[pm] Vmag = Vmag[pm]; VI=VI[pm]; VHel=VHel[pm]; e_VHel=e_VHel[pm] SigFe=SigFe[pm]; e_SigFe=e_SigFe[pm]; SigMg=SigMg[pm]; e_SigMg=e_SigMg[pm] PM=PM[pm] VMag = Vmag-5.0*(numpy.log10(DL)-1.0) minVMag,maxVMag=numpy.min(VMag),numpy.max(VMag) minVI,maxVI =numpy.min(VI),numpy.max(VI) print("min, max of VMag= ",minVMag,maxVMag) windowCMD = (minVMag<=MvCMD)*(MvCMD<=maxVMag)*(minVI<=VICMD)*(VICMD<=maxVI) MCMD = MCMD[windowCMD] MvCMD = MvCMD[windowCMD] VICMD = VICMD[windowCMD] ion(); subplot(111) # set_xaxis('log') plot(VI,VMag,'b.',linewidth=1) # errorbar(rmean,rho,xerr=rspan,yerr=err,linewidth=3) plot(VICMD,MvCMD,'r+',linewidth=3) xyset = [[str(MCMD[i]),VICMD[i],MvCMD[i]] for i in range(len(VICMD))] print(xyset[0:3]) for label, x, y in xyset: annotate(label,xy = (x, y)) # visible region # plt.xlim([10**0,3*10**1]) # plt.ylim([10**-2,10**2]) xlabel(r'$V-I$') ylabel(r'$M_V$') # legend(['\rho','\rho'],'lower left') # title('z=11.7') ioff();savefig(dir+dwarf+"/HRD.pdf") show();clf()
PascalSteger/gravimage
programs/stellarmass.py
Python
gpl-2.0
2,675
[ "Galaxy" ]
6877843b4137a6265b1bfa0c0a5dde6e3002c259305266fb052b3bf0f3e250ca
# -*- coding: utf-8 -*- # Copyright 2016-2020 Fabian Hofmann (FIAS), Jonas Hoersch (KIT, IAI) and # Fabian Gotzens (FZJ, IEK-STE) # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Collection of power plant data bases and statistical data """ import logging import os import re import xml.etree.ElementTree as ET from zipfile import ZipFile import entsoe as entsoe_api import numpy as np import pandas as pd import pycountry import requests from deprecation import deprecated from .cleaning import ( clean_powerplantname, clean_technology, gather_fueltype_info, gather_set_info, gather_technology_info, ) from .core import _data_in, _package_data, get_config from .heuristics import scale_to_net_capacities from .utils import ( config_filter, correct_manually, fill_geoposition, get_raw_file, set_column_name, ) logger = logging.getLogger(__name__) cget = pycountry.countries.get net_caps = get_config()["display_net_caps"] def BEYONDCOAL(raw=False, update=False, config=None): """ Importer for the BEYOND COAL database. Parameters ---------- raw : boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config fn = get_raw_file("BEYONDCOAL", update=update, config=config) df = pd.read_excel(fn, sheet_name="Plant", header=[0, 1, 2], skiprows=[3]) if raw: return df phaseout_col = "Covered by country phase-out? [if yes: country phase-out year]" df = ( df["Plant Data"] .droplevel(1, axis=1) .rename( columns={ "Plant name": "Name", "Fuel type": "Fueltype", "Latitude": "lat", "Longitude": "lon", "Commissioning year of first unit": "DateIn", "(Announced) Retirement year of last unit": "DateOut", "Coal capacity open": "Capacity", "Plant status\n(gross)": "status", "EBC plant ID": "projectID", } ) .query('status != "Cancelled"') .assign( DateOut=lambda df: df.DateOut.fillna(df[phaseout_col]).replace( {8888: np.nan} ), projectID=lambda df: "BEYOND-" + df.projectID, Fueltype=lambda df: df.Fueltype.str.title(), Set="PP", ) .pipe(config_filter, name="BEYONDCOAL", config=config) .pipe(set_column_name, "BEYONDCOAL") ) return df def OPSD( rawEU=False, rawDE=False, rawDE_withBlocks=False, update=False, statusDE=["operating", "reserve", "special_case", "shutdown_temporary"], config=None, ): """ Importer for the OPSD (Open Power Systems Data) database. Parameters ---------- rawEU : Boolean, default False Whether to return the raw EU (=non-DE) database. rawDE : Boolean, default False Whether to return the raw DE database. update: bool, default False Whether to update the data from the url. statusDE : list, default ['operating', 'reserve', 'special_case'] Filter DE entries by operational status ['operating', 'shutdown', 'reserve', etc.] config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config opsd_DE = pd.read_csv(get_raw_file("OPSD_DE", update, config), na_values=" ") opsd_EU = pd.read_csv(get_raw_file("OPSD_EU", update, config), na_values=" ") if rawEU and rawDE: raise ( NotImplementedError( """ It is not possible to show both DE and EU raw databases at the same time as they have different formats. Choose only one! """ ) ) if rawEU: return opsd_EU if rawDE: return opsd_DE if rawDE_withBlocks: DE_blocks = ( opsd_DE.loc[lambda x: ~(x["block_bnetza"].isna())] .loc[lambda x: x["block_bnetza"] != x["name_bnetza"]] .assign(block=lambda x: x.block_bnetza.str.strip()) .loc[lambda x: ~(x.block.isin(["-", "entfällt"]))] .assign(len_block=lambda x: x.block.apply(len)) ) upd = ( DE_blocks.loc[lambda x: (x.len_block <= 6)] .loc[lambda x: (x.block.str.slice(0, 5) != "Block")] .assign(block=lambda x: "Block " + x["block"]) ) DE_blocks.update(upd) DE_blocks = DE_blocks.assign( name_bnetza=lambda x: x["name_bnetza"].str.strip() + " " + x["block"] ) opsd_DE.update(DE_blocks) return opsd_DE.drop("Unnamed: 0", axis=1).set_index("id") opsd_EU = ( opsd_EU.rename(columns=str.title) .rename( columns={ "Lat": "lat", "Lon": "lon", "Energy_Source": "Fueltype", "Commissioned": "DateIn", "Eic_Code": "EIC", } ) .eval("DateRetrofit = DateIn") .assign(projectID=lambda s: "OEU" + pd.Series(s.index.astype(str), s.index)) .reindex(columns=config["target_columns"]) ) opsd_DE = ( opsd_DE.rename(columns=str.title) .rename( columns={ "Lat": "lat", "Lon": "lon", "Fuel": "Fueltype", "Type": "Set", "Country_Code": "Country", "Capacity_Net_Bnetza": "Capacity", "Commissioned": "DateIn", "Shutdown": "DateOut", "Eic_Code_Plant": "EIC", "Id": "projectID", } ) .assign( Name=lambda d: d.Name_Bnetza.fillna(d.Name_Uba), Fueltype=lambda d: d.Fueltype.fillna(d.Energy_Source_Level_1), DateRetrofit=lambda d: d.Retrofit.fillna(d.DateIn), ) ) if statusDE is not None: opsd_DE = opsd_DE.loc[opsd_DE.Status.isin(statusDE)] opsd_DE = opsd_DE.reindex(columns=config["target_columns"]) return ( pd.concat([opsd_EU, opsd_DE], ignore_index=True) .replace( dict( Fueltype={ "Biomass and biogas": "Bioenergy", "Fossil fuels": np.nan, "Mixed fossil fuels": "Other", "Natural gas": "Natural Gas", "Non-renewable waste": "Waste", "Other bioenergy and renewable waste": "Bioenergy", "Other or unspecified energy sources": "Other", "Other fossil fuels": "Other", "Other fuels": "Other", }, Set={"IPP": "PP"}, ) ) .replace( {"Country": {"UK": "GB", "[ \t]+|[ \t]+$.": ""}, "Capacity": {0.0: np.nan}}, regex=True, ) .dropna(subset=["Capacity"]) .assign( Name=lambda df: df.Name.str.title().str.strip(), Fueltype=lambda df: df.Fueltype.str.title().str.strip(), ) .powerplant.convert_alpha2_to_country() .pipe(set_column_name, "OPSD") # .pipe(correct_manually, 'OPSD', config=config) .pipe(config_filter, name="OPSD", config=config) .pipe(gather_set_info) .pipe(clean_powerplantname) .pipe(clean_technology) ) def GEO(raw=False, update=False, config=None): """ Importer for the GEO database. Parameters ---------- raw : Boolean, default False Whether to return the original dataset config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config rename_cols = { "GEO_Assigned_Identification_Number": "projectID", "Name": "Name", "Type": "Fueltype", "Type_of_Plant_rng1": "Technology", "Type_of_Fuel_rng1_Primary": "FuelClassification1", "Type_of_Fuel_rng2_Secondary": "FuelClassification2", "Country": "Country", "Design_Capacity_MWe_nbr": "Capacity", "Year_Project_Commissioned": "DateIn", "Year_rng1_yr1": "DateRetrofit", "Longitude_Start": "lon", "Latitude_Start": "lat", } geo = pd.read_csv( get_raw_file("GEO", update=update, config=config), low_memory=False ) if raw: return geo geo = geo.rename(columns=rename_cols) units = pd.read_csv( get_raw_file("GEO_units", update=update, config=config), low_memory=False ) # map from units to plants units["DateIn"] = units.Date_Commissioned_dt.str[:4].astype(float) units["Efficiency"] = ( units.Unit_Efficiency_Percent.str.replace("%", "").astype(float) / 100 ) units = units.groupby("GEO_Assigned_Identification_Number").agg( {"DateIn": [min, max], "Efficiency": "mean"} ) _ = geo.projectID.map(units.DateIn["min"]) geo["DateIn"] = ( geo.DateIn.str[:4] .apply(pd.to_numeric, errors="coerce") .where(lambda x: x > 1900) .fillna(_) ) _ = geo.projectID.map(units.DateIn["max"]) geo["DateRetrofit"] = geo.DateRetrofit.astype(float).fillna(_) _ = units.Efficiency["mean"] geo["Efficiency"] = geo.projectID.map(_) countries = config["target_countries"] return ( geo.assign(projectID=lambda s: "GEO" + s.projectID.astype(str)) .query("Country in @countries") .replace( { col: {"Gas": "Natural Gas"} for col in {"Fueltype", "FuelClassification1", "FuelClassification2"} } ) .pipe(gather_fueltype_info, search_col=["FuelClassification1"]) .pipe(gather_technology_info, search_col=["FuelClassification1"], config=config) .pipe(gather_set_info) .pipe(set_column_name, "GEO") .pipe(config_filter, name="GEO", config=config) .pipe(clean_powerplantname) .pipe(clean_technology, generalize_hydros=True) .pipe(scale_to_net_capacities, (not config["GEO"]["net_capacity"])) .pipe(config_filter, name="GEO", config=config) .pipe(correct_manually, "GEO", config=config) ) @deprecated( deprecated_in="0.4.9", removed_in="0.5.0", details="Removed since data is not publicly available anymore", ) def CARMA(raw=False, update=False, config=None): """ Importer for the Carma database. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config carma = pd.read_csv(get_raw_file("CARMA", update, config), low_memory=False) if raw: return carma return ( carma.rename( columns={ "Geoposition": "Geoposition", "cap": "Capacity", "city": "location", "country": "Country", "fuel1": "Fueltype", "lat": "lat", "lon": "lon", "plant": "Name", "plant.id": "projectID", } ) .assign(projectID=lambda df: "CARMA" + df.projectID.astype(str)) .loc[lambda df: df.Country.isin(config["target_countries"])] .replace( dict( Fueltype={ "COAL": "Hard Coal", "WAT": "Hydro", "FGAS": "Natural Gas", "NUC": "Nuclear", "FLIQ": "Oil", "WIND": "Wind", "EMIT": "Other", "GEO": "Geothermal", "WSTH": "Waste", "SUN": "Solar", "BLIQ": "Bioenergy", "BGAS": "Bioenergy", "BSOL": "Bioenergy", "OTH": "Other", } ) ) .pipe(clean_powerplantname) .drop_duplicates() .pipe(set_column_name, "CARMA") .pipe(config_filter, name="CARMA", config=config) .pipe(gather_technology_info, config=config) .pipe(gather_set_info) .pipe(clean_technology) .pipe(scale_to_net_capacities, not config["CARMA"]["net_capacity"]) .pipe(correct_manually, "CARMA", config=config) ) def JRC(raw=False, update=False, config=None): """ Importer for the JRC Hydro-power plants database retrieves from https://github.com/energy-modelling-toolkit/hydro-power-database. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config fn = get_raw_file("JRC", update, config) key = "jrc-hydro-power-plant-database.csv" with ZipFile(fn, "r") as file: df = pd.read_csv(file.open(key)) if raw: return df df = ( df.rename( columns={ "id": "projectID", "name": "Name", "installed_capacity_MW": "Capacity", "country_code": "Country", "type": "Technology", "dam_height_m": "DamHeight_m", "volume_Mm3": "Volume_Mm3", "storage_capacity_MWh": "StorageCapacity_MWh", } ) .eval("Duration = StorageCapacity_MWh / Capacity") .replace( dict( Technology={ "HDAM": "Reservoir", "HPHS": "Pumped Storage", "HROR": "Run-Of-River", } ) ) .drop(columns=["pypsa_id", "GEO"]) .assign(Set="Store", Fueltype="Hydro") .powerplant.convert_alpha2_to_country() .pipe(config_filter) ) # TODO: Temporary section to deal with duplicate identifiers in the JRC # input file. Can be removed again, once the duplicates have been removed # in a new release. mask = df.projectID.duplicated(keep=False) df.loc[mask, "projectID"] += ( df.groupby("projectID").cumcount().replace({0: "a", 1: "b", 2: "c", 3: "d"}) ) return df @deprecated( deprecated_in="0.4.9", removed_in="0.5.0", details="Use the JRC data instead", ) def IWPDCY(config=None): """ This data is not yet available. Was extracted manually from the 'International Water Power & Dam Country Yearbook'. Parameters ---------- config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config return ( pd.read_csv(config["IWPDCY"]["fn"], encoding="utf-8", index_col="id") .assign(File="IWPDCY.csv", projectID=lambda df: "IWPDCY" + df.index.astype(str)) .dropna(subset=["Capacity"]) .pipe(set_column_name, "IWPDCY") .pipe(config_filter, name="IWPDY", config=config) .pipe(gather_set_info) .pipe(correct_manually, "IWPDCY", config=config) ) def Capacity_stats( raw=False, level=2, config=None, update=False, source="entsoe SO&AF", year=2016 ): """ Standardize the aggregated capacity statistics provided by the ENTSO-E. Parameters ---------- year : int Year of the data (range usually 2013-2017) (defaults to 2016) source : str Which statistics source from {'entsoe SO&AF', 'entsoe Statistics', 'EUROSTAT', ...} (defaults to 'entsoe SO&AF') Returns ------- df : pd.DataFrame Capacity statistics per country and fuel-type """ if config is None: config = get_config() df = pd.read_csv(get_raw_file("Capacity_stats", update, config), index_col=0) if raw: return df countries = config["target_countries"] df = ( df.query("source == @source & year == @year") .rename(columns={"technology": "Fueltype"}) .rename(columns=str.title) .powerplant.convert_alpha2_to_country() # .query('Country in @countries') .replace( dict( Fueltype={ "Bioenergy and other renewable fuels": "Bioenergy", "Bioenergy and renewable waste": "Waste", "Coal derivatives": "Hard Coal", "Differently categorized fossil fuels": "Other", "Differently categorized renewable energy sources": "Other", "Hard coal": "Hard Coal", "Mixed fossil fuels": "Other", "Natural gas": "Natural Gas", "Other or unspecified energy sources": "Other", "Tide, wave, and ocean": "Other", } ) ) .loc[lambda df: df.Fueltype.isin(config["target_fueltypes"])] .pipe(set_column_name, source.title()) ) return df def GPD(raw=False, update=False, config=None, filter_other_dbs=True): """ Importer for the `Global Power Plant Database`. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config fn = get_raw_file("GPD", update, config) key = "global_power_plant_database.csv" with ZipFile(fn, "r") as file: df = pd.read_csv(file.open(key), low_memory=False) if raw: return df other_dbs = [] if filter_other_dbs: other_dbs = ["GEODB", "Open Power System Data", "ENTSOE"] countries = config["target_countries"] return ( df.rename(columns=lambda x: x.title()) .query("Country_Long in @countries &" " Source not in @other_dbs") .drop(columns="Country") .rename( columns={ "Gppd_Idnr": "projectID", "Country_Long": "Country", "Primary_Fuel": "Fueltype", "Latitude": "lat", "Longitude": "lon", "Capacity_Mw": "Capacity", # 'Source': 'File' "Commissioning_Year": "DateIn", } ) .replace( dict( Fueltype={ "Coal": "Hard Coal", "Biomass": "Bioenergy", "Gas": "Natural Gas", "Wave and Tidal": "Hydro", } ) ) .pipe(clean_powerplantname) .pipe(set_column_name, "GPD") .pipe(config_filter, name="GPD", config=config) .pipe(gather_technology_info, config=config) # .pipe(gather_set_info) # .pipe(correct_manually, 'GPD', config=config) ) # def WIKIPEDIA(raw=False): # from bs4 import BeautifulSoup # # url = 'https://en.wikipedia.org/wiki/List_of_power_stations_in_Germany' # # dfs = pd.read_html(url, attrs={"class": ["wikitable","wikitable sortable"]}) # soup = BeautifulSoup(requests.get(url).text) # all_headers = [h.text for h in soup.find_all("h2")] # headers = [header[:-6] for header in all_headers if header[-6:] == '[edit]'] # headers = headers[:len(dfs)] # df = pd.concat(dfs, keys=headers, axis=0, sort=True) def ESE(raw=False, update=False, config=None): """ Importer for the ESE database. This database is not given within the repository because of its restrictive license. Get it by clicking 'Export Data XLS' on https://goo.gl/gVMwKJ and save the downloaded 'projects.xls' file in /path/to/powerplantmatching/data/in/. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config df = pd.read_csv(get_raw_file("ESE", update, config), error_bad_lines=False) if raw: return df target_countries = config["target_countries"] return ( df.rename(columns=str.strip) .rename( columns={ "Title": "Name", "Technology Mid-Type": "Technology", "Longitude": "lon", "Latitude": "lat", "Technology Broad Category": "Fueltype", } ) .assign( Set="Store", projectID="ESE" + df.index.astype(str), DateIn=lambda df: ( df["Commissioned"].str[-4:].apply(pd.to_numeric, errors="coerce") ), Capacity=df["Rated Power"] / 1e3, ) .query("Status == 'Operational' & Country in @target_countries") .pipe(clean_powerplantname) .pipe(clean_technology, generalize_hydros=True) .replace( dict( Fueltype={ "Electro-chemical": "Battery", "Pumped Hydro Storage": "Hydro", } ) ) .pipe(set_column_name, "ESE") .pipe(config_filter, name="ESE", config=config) # .pipe(correct_manually, 'ESE', config=config) ) def ENTSOE(raw=False, update=False, config=None, entsoe_token=None): """ Importer for the list of installed generators provided by the ENTSO-E Transparency Project. Geographical information is not given. If update=True, the dataset is parsed through a request to 'https://transparency.entsoe.eu/generation/r2/\ installedCapacityPerProductionUnit/show', Internet connection required. If raw=True, the same request is done, but the unprocessed data is returned. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() entsoe_token: String Security token of the ENTSO-E Transparency platform Note: For obtaining a security token refer to section 2 of the RESTful API documentation of the ENTSOE-E Transparency platform https://transparency.entsoe.eu/content/static_content/Static%20content/ web%20api/Guide.html#_authentication_and_authorisation. Please save the token in your config.yaml file (key 'entsoe_token'). """ config = get_config() if config is None else config def parse_entsoe(entsoe_token): url = "https://transparency.entsoe.eu/api" # retrieved from pd.read_html('https://transparency.entsoe.eu/content/stat # ic_content/Static%20content/web%20api/Guide.html#_request_methods')[-1] level1 = ["registeredResource.name", "registeredResource.mRID"] level2 = ["voltage_PowerSystemResources.highVoltageLimit", "psrType"] level3 = ["quantity"] def namespace(element): m = re.match(r"\{.*\}", element.tag) return m.group(0) if m else "" entsoe = pd.DataFrame() logger.info(f"Retrieving data from {url}") for domain in entsoe_api.mappings.Area: ret = requests.get( url, params=dict( securityToken=entsoe_token, documentType="A71", processType="A33", In_Domain=domain, periodStart="201912312300", periodEnd="202012312300", ), ) etree = ET.fromstring(ret.content) ns = namespace(etree) df_domain = pd.DataFrame(columns=level1 + level2 + level3 + ["Country"]) for i, level in enumerate([level1, level2, level3]): for arg in level: df_domain[arg] = [ e.text for e in etree.findall("*/" * (i + 1) + ns + arg) ] entsoe = entsoe.append(df_domain, ignore_index=True) return entsoe path = get_raw_file("ENTSOE", config=config, skip_retrieve=True) if os.path.exists(path) and not update: df = pd.read_csv(path) else: token = config.get("entsoe_token") if token is not None: df = parse_entsoe(token) df.to_csv(path) else: logger.info( "No entsoe_token in config.yaml given, " "falling back to stored version." ) df = pd.read_csv(get_raw_file("ENTSOE", update, config)) if raw: return df fuelmap = entsoe_api.mappings.PSRTYPE_MAPPINGS country_map_entsoe = ( pd.read_csv(_package_data("entsoe_country_codes.csv"), index_col=0) .rename(index=str) .Country ) return ( df.rename( columns={ "psrType": "Fueltype", "quantity": "Capacity", "registeredResource.mRID": "projectID", "registeredResource.name": "Name", } ) .reindex(columns=config["target_columns"]) .replace({"Fueltype": fuelmap}) .drop_duplicates("projectID") .assign( EIC=lambda df: df.projectID, Country=lambda df: df.projectID.str[:2].map(country_map_entsoe), Name=lambda df: df.Name.str.title(), Fueltype=lambda df: df.Fueltype.replace( { "Fossil Hard coal": "Hard Coal", "Fossil Coal-derived gas": "Other", ".*Hydro.*": "Hydro", ".*Oil.*": "Oil", ".*Peat": "Bioenergy", "Fossil Brown coal/Lignite": "Lignite", "Biomass": "Bioenergy", "Fossil Gas": "Natural Gas", "Marine": "Other", "Wind Offshore": "Offshore", "Wind Onshore": "Onshore", }, regex=True, ), Capacity=lambda df: pd.to_numeric(df.Capacity), ) .powerplant.convert_alpha2_to_country() .pipe(clean_powerplantname) .pipe(fill_geoposition, use_saved_locations=True, saved_only=True) .query("Capacity > 0") .pipe(gather_technology_info, config=config) .pipe(gather_set_info) .pipe(clean_technology) .pipe(set_column_name, "ENTSOE") .pipe(config_filter, name="ENTSOE", config=config) .pipe(correct_manually, "ENTSOE", config=config) ) # def OSM(): # """ # Parser and Importer for Open Street Map power plant data. # """ # import requests # overpass_url = "http://overpass-api.de/api/interpreter" # overpass_query = """ # [out:json][timeout:210]; # area["name"="Luxembourg"]->.boundaryarea; # ( # // query part for: “power=plant” # node["power"="plant"](area.boundaryarea); # way["power"="plant"](area.boundaryarea); # relation["power"="plant"](area.boundaryarea); # node["power"="generator"](area.boundaryarea); # way["power"="generator"](area.boundaryarea); # relation["power"="generator"](area.boundaryarea); # ); # out body; # """ # response = requests.get(overpass_url, # params={'data': overpass_query}) # data = response.json() # df = pd.DataFrame(data['elements']) # df = pd.concat([df.drop(columns='tags'), df.tags.apply(pd.Series)], axis=1) # @deprecated( deprecated_in="0.4.9", removed_in="0.5.0", details="This function is not maintained anymore.", ) def WEPP(raw=False, config=None): """ Importer for the standardized WEPP (Platts, World Elecrtric Power Plants Database). This database is not provided by this repository because of its restrictive licence. Parameters ---------- raw : Boolean, default False Whether to return the original dataset config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config # Define the appropriate datatype for each column (some columns e.g. # 'YEAR' cannot be integers, as there are N/A values, which np.int # does not yet(?) support.) datatypes = { "UNIT": str, "PLANT": str, "COMPANY": str, "MW": np.float64, "STATUS": str, "YEAR": np.float64, "UTYPE": str, "FUEL": str, "FUELTYPE": str, "ALTFUEL": str, "SSSMFR": str, "BOILTYPE": str, "TURBMFR": str, "TURBTYPE": str, "GENMFR": str, "GENTYPE": str, "SFLOW": np.float64, "SPRESS": np.float64, "STYPE": str, "STEMP": np.float64, "REHEAT1": np.float64, "REHEAT2": np.float64, "PARTCTL": str, "PARTMFR": str, "SO2CTL": str, "FGDMFR": str, "NOXCTL": str, "NOXMFR": str, "AE": str, "CONstr, UCT": str, "COOL": str, "RETIRE": np.float64, "CITY": str, "STATE": str, "COUNTRY": str, "AREA": str, "SUBREGION": str, "POSTCODE": str, "PARENT": str, "ELECTYPE": str, "BUSTYPE": str, "COMPID": str, "LOCATIONID": str, "UNITID": str, } # Now read the Platts WEPP Database wepp = pd.read_csv(config["WEPP"]["source_file"], dtype=datatypes, encoding="utf-8") if raw: return wepp # Fit WEPP-column names to our specifications wepp.columns = wepp.columns.str.title() wepp.rename( columns={ "Unit": "Name", "Fuel": "Fueltype", "Fueltype": "Technology", "Mw": "Capacity", "Year": "DateIn", "Retire": "DateOut", "Lat": "lat", "Lon": "lon", "Unitid": "projectID", }, inplace=True, ) wepp.loc[:, "DateRetrofit"] = wepp.DateIn # Do country transformations and drop those which are not in defined scope c = { "ENGLAND & WALES": "UNITED KINGDOM", "GIBRALTAR": "SPAIN", "SCOTLAND": "UNITED KINGDOM", } wepp.Country = wepp.Country.replace(c).str.title() wepp = ( wepp.loc[lambda df: df.Country.isin(config["target_countries"])] .loc[lambda df: df.Status.isin(["OPR", "CON"])] .assign(File=config["WEPP"]["source_file"]) ) # Replace fueltypes d = { "AGAS": "Bioenergy", # Syngas from gasified agricultural waste "BFG": "Other", # blast furnance gas -> "Hochofengas" "BGAS": "Bioenergy", "BIOMASS": "Bioenergy", "BL": "Bioenergy", "CGAS": "Hard Coal", "COAL": "Hard Coal", "COG": "Other", # coke oven gas -> deutsch: "Hochofengas" "COKE": "Hard Coal", "CSGAS": "Hard Coal", # Coal-seam-gas "CWM": "Hard Coal", # Coal-water mixture (aka coal-water slurry) "DGAS": "Other", # sewage digester gas -> deutsch: "Klaergas" "FGAS": "Other", # Flare gas or wellhead gas or associated gas "GAS": "Natural Gas", "GEO": "Geothermal", "H2": "Other", # Hydrogen gas "HZDWST": "Waste", # Hazardous waste "INDWST": "Waste", # Industrial waste or refinery waste "JET": "Oil", # Jet fuels "KERO": "Oil", # Kerosene "LGAS": "Other", # landfill gas -> deutsch: "Deponiegas" "LIGNIN": "Bioenergy", "LIQ": "Other", # (black) liqour -> deutsch: "Schwarzlauge", # die bei Papierherstellung anfaellt "LNG": "Natural Gas", # Liquified natural gas "LPG": "Natural Gas", # Liquified petroleum gas (u. butane/propane) "MBM": "Bioenergy", # Meat and bonemeal "MEDWST": "Bioenergy", # Medical waste "MGAS": "Other", # mine gas -> deutsch: "Grubengas" "NAP": "Oil", # naphta "OGAS": "Oil", # Gasified crude oil/refinery bottoms/bitumen "PEAT": "Other", "REF": "Waste", "REFGAS": "Other", # Syngas from gasified refuse "RPF": "Waste", # Waste paper and/or waste plastic "PWST": "Other", # paper mill waste "RGAS": "Other", # refinery off-gas -> deutsch: "Raffineriegas" "SHALE": "Oil", "SUN": "Solar", "TGAS": "Other", # top gas -> deutsch: "Hochofengas" "TIRES": "Other", # Scrap tires "UNK": "Other", "UR": "Nuclear", "WAT": "Hydro", "WOOD": "Bioenergy", "WOODGAS": "Bioenergy", "WSTGAS": "Other", # waste gas -> deutsch: "Industrieabgas" "WSTWSL": "Waste", # Wastewater sludge "WSTH": "Waste", } wepp.Fueltype = wepp.Fueltype.replace(d) # Fill NaNs to allow str actions wepp.Technology.fillna("", inplace=True) wepp.Turbtype.fillna("", inplace=True) # Correct technology infos: wepp.loc[wepp.Technology.str.contains("LIG", case=False), "Fueltype"] = "Lignite" wepp.loc[ wepp.Turbtype.str.contains("KAPLAN|BULB", case=False), "Technology" ] = "Run-Of-River" wepp.Technology = wepp.Technology.replace( {"CONV/PS": "Pumped Storage", "CONV": "Reservoir", "PS": "Pumped Storage"} ) tech_st_pattern = [ "ANTH", "BINARY", "BIT", "BIT/ANTH", "BIT/LIG", "BIT/SUB", "BIT/SUB/LIG", "COL", "DRY ST", "HFO", "LIG", "LIG/BIT", "PWR", "RDF", "SUB", ] tech_ocgt_pattern = ["AGWST", "LITTER", "RESID", "RICE", "STRAW"] tech_ccgt_pattern = ["LFO"] wepp.loc[wepp.Technology.isin(tech_st_pattern), "Technology"] = "Steam Turbine" wepp.loc[wepp.Technology.isin(tech_ocgt_pattern), "Technology"] = "OCGT" wepp.loc[wepp.Technology.isin(tech_ccgt_pattern), "Technology"] = "CCGT" ut_ccgt_pattern = [ "CC", "GT/C", "GT/CP", "GT/CS", "GT/ST", "ST/C", "ST/CC/GT", "ST/CD", "ST/CP", "ST/CS", "ST/GT", "ST/GT/IC", "ST/T", "IC/CD", "IC/CP", "IC/GT", ] ut_ocgt_pattern = ["GT", "GT/D", "GT/H", "GT/HY", "GT/IC", "GT/S", "GT/T", "GTC"] ut_st_pattern = ["ST", "ST/D"] ut_ic_pattern = ["IC", "IC/H"] wepp.loc[wepp.Utype.isin(ut_ccgt_pattern), "Technology"] = "CCGT" wepp.loc[wepp.Utype.isin(ut_ocgt_pattern), "Technology"] = "OCGT" wepp.loc[wepp.Utype.isin(ut_st_pattern), "Technology"] = "Steam Turbine" wepp.loc[wepp.Utype.isin(ut_ic_pattern), "Technology"] = "Combustion Engine" wepp.loc[wepp.Utype == "WTG", "Technology"] = "Onshore" wepp.loc[wepp.Utype == "WTG/O", "Technology"] = "Offshore" wepp.loc[ (wepp.Fueltype == "Solar") & (wepp.Utype.isin(ut_st_pattern)), "Technology" ] = "CSP" # Derive the SET column chp_pattern = [ "CC/S", "CC/CP", "CCSS/P", "GT/CP", "GT/CS", "GT/S", "GT/H", "IC/CP", "IC/H", "ST/S", "ST/H", "ST/CP", "ST/CS", "ST/D", ] wepp.loc[wepp.Utype.isin(chp_pattern), "Set"] = "CHP" wepp.loc[wepp.Set.isnull(), "Set"] = "PP" # Clean up the mess wepp.Fueltype = wepp.Fueltype.str.title() wepp.loc[wepp.Technology.str.len() > 4, "Technology"] = wepp.loc[ wepp.Technology.str.len() > 4, "Technology" ].str.title() # Done! wepp.datasetID = "WEPP" return ( wepp.pipe(set_column_name, "WEPP") .pipe(config_filter, name="WEPP", config=config) .pipe(scale_to_net_capacities, (not config["WEPP"]["net_capacity"])) .pipe(correct_manually, "WEPP", config=config) ) def UBA( raw=False, update=False, config=None, header=9, skipfooter=26, prune_wind=True, prune_solar=True, ): """ Importer for the UBA Database. Please download the data from `<https://www.umweltbundesamt.de/dokument/datenbank-kraftwerke-in -deutschland>`_. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() header : int, Default 9 The zero-indexed row in which the column headings are found. skipfooter : int, Default 26 """ config = get_config() if config is None else config fn = get_raw_file("UBA", update, config) uba = pd.read_excel(fn, skipfooter=skipfooter, na_values="n.b.", header=header) if raw: return uba uba = uba.rename( columns={ "Kraftwerksname / Standort": "Name", "Elektrische Bruttoleistung (MW)": "Capacity", "Inbetriebnahme (ggf. Ertüchtigung)": "DateIn", "Primärenergieträger": "Fueltype", "Anlagenart": "Technology", "Fernwärme-leistung (MW)": "CHP", "Standort-PLZ": "PLZ", } ) from .heuristics import PLZ_to_LatLon_map uba = uba.assign( Name=uba.Name.replace({r"\s\s+": " "}, regex=True), lon=uba.PLZ.map(PLZ_to_LatLon_map()["lon"]), lat=uba.PLZ.map(PLZ_to_LatLon_map()["lat"]), DateIn=uba.DateIn.str.replace(r"\(|\)|\/|\-", " ") .str.split(" ") .str[0] .astype(float), Country="Germany", File="kraftwerke-de-ab-100-mw.xls", projectID=["UBA{:03d}".format(i + header + 2) for i in uba.index], Technology=uba.Technology.replace( { "DKW": "Steam Turbine", "DWR": "Pressurized Water Reactor", "G/AK": "Steam Turbine", "GT": "OCGT", "GuD": "CCGT", "GuD / HKW": "CCGT", "HKW": "Steam Turbine", "HKW (DT)": "Steam Turbine", "HKW / GuD": "CCGT", "HKW / SSA": "Steam Turbine", "IKW": "OCGT", "IKW / GuD": "CCGT", "IKW / HKW": "Steam Turbine", "IKW / HKW / GuD": "CCGT", "IKW / SSA": "OCGT", "IKW /GuD": "CCGT", "LWK": "Run-Of-River", "PSW": "Pumped Storage", "SWK": "Reservoir Storage", "SWR": "Boiled Water Reactor", } ), ) uba.loc[uba.CHP.notnull(), "Set"] = "CHP" uba = uba.pipe(gather_set_info) uba.loc[uba.Fueltype == "Wind (O)", "Technology"] = "Offshore" uba.loc[uba.Fueltype == "Wind (L)", "Technology"] = "Onshore" uba.loc[uba.Fueltype.str.contains("Wind"), "Fueltype"] = "Wind" uba.loc[uba.Fueltype.str.contains("Braunkohle"), "Fueltype"] = "Lignite" uba.loc[uba.Fueltype.str.contains("Steinkohle"), "Fueltype"] = "Hard Coal" uba.loc[uba.Fueltype.str.contains("Erdgas"), "Fueltype"] = "Natural Gas" uba.loc[uba.Fueltype.str.contains("HEL"), "Fueltype"] = "Oil" uba.Fueltype = uba.Fueltype.replace( { "Biomasse": "Bioenergy", "Gichtgas": "Other", "HS": "Oil", "Konvertergas": "Other", "Licht": "Solar", "Raffineriegas": "Other", "Uran": "Nuclear", "Wasser": "Hydro", "\xd6lr\xfcckstand": "Oil", } ) uba.Name.replace([r"(?i)oe", r"(?i)ue"], ["ö", "ü"], regex=True, inplace=True) if prune_wind: uba = uba.loc[lambda x: x.Fueltype != "Wind"] if prune_solar: uba = uba.loc[lambda x: x.Fueltype != "Solar"] return ( uba.pipe(set_column_name, "UBA").pipe( scale_to_net_capacities, not config["UBA"]["net_capacity"] ) # .pipe(config_filter, name='UBA', config=config) # .pipe(correct_manually, 'UBA', config=config) ) def BNETZA( raw=False, update=False, config=None, header=9, sheet_name="Gesamtkraftwerksliste BNetzA", prune_wind=True, prune_solar=True, ): """ Importer for the database put together by Germany's 'Federal Network Agency' (dt. 'Bundesnetzagentur' (BNetzA)). Please download the data from `<https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/ Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/ Kraftwerksliste/kraftwerksliste-node.html>`_. Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() header : int, Default 9 The zero-indexed row in which the column headings are found. """ config = get_config() if config is None else config fn = get_raw_file("BNETZA", update, config) bnetza = pd.read_excel(fn, header=header, sheet_name=sheet_name, parse_dates=False) if raw: return bnetza bnetza = bnetza.rename( columns={ "Kraftwerksnummer Bundesnetzagentur": "projectID", "Kraftwerksname": "Name", "Netto-Nennleistung (elektrische Wirkleistung) in MW": "Capacity", "Wärmeauskopplung (KWK)\n(ja/nein)": "Set", "Ort\n(Standort Kraftwerk)": "Ort", ( "Auswertung\nEnergieträger (Zuordnung zu einem " "Hauptenergieträger bei Mehreren Energieträgern)" ): "Fueltype", "Kraftwerksstatus \n(in Betrieb/\nvorläufig " "stillgelegt/\nsaisonale Konservierung\nNetzreserve/ " "Sicherheitsbereitschaft/\nSonderfall)": "Status", ( "Aufnahme der kommerziellen Stromerzeugung der derzeit " "in Betrieb befindlichen Erzeugungseinheit\n(Datum/Jahr)" ): "DateIn", "PLZ\n(Standort Kraftwerk)": "PLZ", } ) # If BNetzA-Name is empty replace by company, if this is empty by city. from .heuristics import PLZ_to_LatLon_map pattern = "|".join( [ ".*(?i)betrieb", ".*(?i)gehindert", "(?i)vorläufig.*", "Sicherheitsbereitschaft", "Sonderfall", ] ) bnetza = bnetza.assign( lon=bnetza.PLZ.map(PLZ_to_LatLon_map()["lon"]), lat=bnetza.PLZ.map(PLZ_to_LatLon_map()["lat"]), Name=bnetza.Name.where( bnetza.Name.str.len().fillna(0) > 4, bnetza.Unternehmen + " " + bnetza.Name.fillna(""), ) .fillna(bnetza.Ort) .str.strip(), DateIn=bnetza.DateIn.str[:4].apply(pd.to_numeric, errors="coerce"), Blockname=bnetza.Blockname.replace( { ".*(GT|gasturbine).*": "OCGT", ".*(DT|HKW|(?i)dampfturbine|(?i)heizkraftwerk).*": "Steam Turbine", ".*GuD.*": "CCGT", }, regex=True, ), )[ lambda df: df.projectID.notna() & df.Status.str.contains(pattern, regex=True, case=False) ].pipe( gather_technology_info, search_col=["Name", "Fueltype", "Blockname"], config=config, ) add_location_b = bnetza[bnetza.Ort.notnull()].apply( lambda ds: (ds["Ort"] not in ds["Name"]) and (str.title(ds["Ort"]) not in ds["Name"]), axis=1, ) bnetza.loc[bnetza.Ort.notnull() & add_location_b, "Name"] = ( bnetza.loc[bnetza.Ort.notnull() & add_location_b, "Ort"] + " " + bnetza.loc[bnetza.Ort.notnull() & add_location_b, "Name"] ) techmap = { "solare": "PV", "Laufwasser": "Run-Of-River", "Speicherwasser": "Reservoir", "Pumpspeicher": "Pumped Storage", } for fuel in techmap: bnetza.loc[ bnetza.Fueltype.str.contains(fuel, case=False), "Technology" ] = techmap[fuel] # Fueltypes bnetza.Fueltype.replace( { "Erdgas": "Natural Gas", "Steinkohle": "Hard Coal", "Braunkohle": "Lignite", "Wind.*": "Wind", "Solar.*": "Solar", ".*(?i)energietr.*ger.*\n.*": "Other", "Kern.*": "Nuclear", "Mineral.l.*": "Oil", "Biom.*": "Bioenergy", ".*(?i)(e|r|n)gas": "Other", "Geoth.*": "Geothermal", "Abfall": "Waste", ".*wasser.*": "Hydro", ".*solar.*": "PV", }, regex=True, inplace=True, ) if prune_wind: bnetza = bnetza[lambda x: x.Fueltype != "Wind"] if prune_solar: bnetza = bnetza[lambda x: x.Fueltype != "Solar"] # Filter by country bnetza = bnetza[~bnetza.Bundesland.isin(["Österreich", "Schweiz", "Luxemburg"])] return ( bnetza.assign( Country="Germany", Set=bnetza.Set.fillna("Nein") .str.title() .replace({"Ja": "CHP", "Nein": "PP"}), ).pipe(set_column_name, "BNETZA") # .pipe(config_filter, name='BNETZA', config=config) # .pipe(correct_manually, 'BNETZA', config=config) ) def OPSD_VRE(raw=False, update=False, config=None): """ Importer for the OPSD (Open Power Systems Data) renewables (VRE) database. This sqlite database is very big and hence not part of the package. It needs to be obtained from `<http://data.open-power-system-data.org/renewable_power_plants/>`_ Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config df = pd.read_csv(get_raw_file("OPSD_VRE"), index_col=0, low_memory=False) if raw: return df return ( df.rename( columns={ "energy_source_level_2": "Fueltype", "technology": "Technology", "data_source": "file", "country": "Country", "electrical_capacity": "Capacity", "municipality": "Name", } ) .assign(DateIn=lambda df: df.commissioning_date.str[:4].astype(float), Set="PP") .powerplant.convert_alpha2_to_country() .pipe(set_column_name, "OPSD_VRE") .pipe(config_filter, config=config) .drop("Name", axis=1) ) def OPSD_VRE_country(country, raw=False, update=False, config=None): """ Get country specifig data from OPSD for renewables, if available. Available for DE, FR, PL, CH, DK, CZ and SE (last update: 09/2020). Parameters ---------- raw : Boolean, default False Whether to return the original dataset update: bool, default False Whether to update the data from the url. config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ config = get_config() if config is None else config # there is a problem with GB in line 1651 (version 20/08/20) use low_memory df = pd.read_csv(get_raw_file(f"OPSD_VRE_{country}"), low_memory=False) if raw: return df return ( df.assign(Country=country, Set="PP") .rename( columns={ "energy_source_level_2": "Fueltype", "technology": "Technology", "data_source": "file", "electrical_capacity": "Capacity", "municipality": "Name", } ) # there is a problem with GB in line 1651 (version 20/08/20) .assign(Capacity=lambda df: pd.to_numeric(df.Capacity, "coerce")) .powerplant.convert_alpha2_to_country() .pipe(config_filter, config=config) .drop("Name", axis=1) ) @deprecated( deprecated_in="0.4.9", removed_in="0.5.0", details="Removed since data is not publicly available anymore", ) def IRENA_stats(config=None): """ Reads the IRENA Capacity Statistics 2017 Database Parameters ---------- config : dict, default None Add custom specific configuration, e.g. powerplantmatching.config.get_config(target_countries='Italy'), defaults to powerplantmatching.config.get_config() """ if config is None: config = get_config() # Read the raw dataset df = pd.read_csv(_data_in("IRENA_CapacityStatistics2017.csv"), encoding="utf-8") # "Unpivot" df = pd.melt( df, id_vars=["Indicator", "Technology", "Country"], var_name="Year", value_vars=[str(i) for i in range(2000, 2017, 1)], value_name="Capacity", ) # Drop empty df.dropna(axis=0, subset=["Capacity"], inplace=True) # Drop generations df = df[df.Indicator == "Electricity capacity (MW)"] df.drop("Indicator", axis=1, inplace=True) # Drop countries out of scope df.Country.replace( {"Czechia": "Czech Republic", "UK": "United Kingdom"}, inplace=True ) df = df.loc[lambda df: df.Country.isin(config["target_countries"])] # Convert to numeric df.Year = df.Year.astype(int) df.Capacity = df.Capacity.str.strip().str.replace(" ", "").astype(float) # Handle Fueltypes and Technologies d = { "Bagasse": "Bioenergy", "Biogas": "Bioenergy", "Concentrated solar power": "Solar", "Geothermal": "Geothermal", "Hydro 1-10 MW": "Hydro", "Hydro 10+ MW": "Hydro", "Hydro <1 MW": "Hydro", "Liquid biofuels": "Bioenergy", "Marine": "Hydro", "Mixed and pumped storage": "Hydro", "Offshore wind energy": "Wind", "Onshore wind energy": "Wind", "Other solid biofuels": "Bioenergy", "Renewable municipal waste": "Waste", "Solar photovoltaic": "Solar", } df.loc[:, "Fueltype"] = df.Technology.map(d) # df = df.loc[lambda df: df.Fueltype.isin(config['target_fueltypes'])] d = { "Concentrated solar power": "CSP", "Solar photovoltaic": "PV", "Onshore wind energy": "Onshore", "Offshore wind energy": "Offshore", } df.Technology.replace(d, inplace=True) df.loc[:, "Set"] = "PP" return df.reset_index(drop=True).pipe(set_column_name, "IRENA Statistics")
FRESNA/powerplantmatching
powerplantmatching/data.py
Python
gpl-3.0
53,638
[ "BLAST" ]
36b564b75d5450310528bd59007af3c57023fa932ca26791e484f4cc0840c3e7
# $Id$ # # Copyright (C) 2003-2006 greg Landrum and Rational Discovery LLC # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # """unit testing code for the Smiles file handling stuff """ import unittest,sys,os from rdkit import RDConfig from rdkit import Chem from rdkit.six import next class TestCase(unittest.TestCase): def setUp(self): self.smis = ['CC','CCC','CCCCC','CCCCCC','CCCCCCC','CC','CCCCOC'] def test1LazyReader(self): " tests lazy reads """ supp = Chem.SmilesMolSupplierFromText('\n'.join(self.smis),',',0,-1,0) for i in range(4): m = next(supp) assert m,'read %d failed'%i assert m.GetNumAtoms(),'no atoms in mol %d'%i i = len(supp)-1 m = supp[i] assert m,'read %d failed'%i assert m.GetNumAtoms(),'no atoms in mol %d'%i ms = [x for x in supp] for i in range(len(supp)): m = ms[i] if m: ms[i] = Chem.MolToSmiles(m) l = len(supp) assert l == len(self.smis),'bad supplier length: %d'%(l) i = len(self.smis)-3 m = supp[i-1] assert m,'back index %d failed'%i assert m.GetNumAtoms(),'no atoms in mol %d'%i with self.assertRaisesRegexp(Exception, ""): m = supp[len(self.smis)] # out of bound read must fail def test2LazyIter(self): " tests lazy reads using the iterator interface " supp = Chem.SmilesMolSupplierFromText('\n'.join(self.smis),',',0,-1,0) nDone = 0 for mol in supp: assert mol,'read %d failed'%nDone assert mol.GetNumAtoms(),'no atoms in mol %d'%nDone nDone += 1 assert nDone==len(self.smis),'bad number of molecules' l = len(supp) assert l == len(self.smis),'bad supplier length: %d'%(l) i = len(self.smis)-3 m = supp[i-1] assert m,'back index %d failed'%i assert m.GetNumAtoms(),'no atoms in mol %d'%i with self.assertRaisesRegexp(Exception, ""): m = supp[len(self.smis)] # out of bound read must not fail def test3BoundaryConditions(self): smis = ['CC','CCOC','fail','CCO'] supp = Chem.SmilesMolSupplierFromText('\n'.join(smis),',',0,-1,0) self.assertEqual(len(supp), 4) self.assertIs(supp[2], None) self.assertTrue(supp[3]) supp = Chem.SmilesMolSupplierFromText('\n'.join(smis),',',0,-1,0) self.assertIs(supp[2], None) self.assertTrue(supp[3]) self.assertEqual(len(supp), 4) with self.assertRaisesRegexp(Exception, ""): supp[4] supp = Chem.SmilesMolSupplierFromText('\n'.join(smis),',',0,-1,0) self.assertEqual(len(supp), 4) self.assertTrue(supp[3]) with self.assertRaisesRegexp(Exception, ""): supp[4] supp = Chem.SmilesMolSupplierFromText('\n'.join(smis),',',0,-1,0) with self.assertRaisesRegexp(Exception, ""): supp[4] self.assertEqual(len(supp), 4) self.assertTrue(supp[3]) if __name__ == '__main__': unittest.main()
adalke/rdkit
rdkit/Chem/Suppliers/UnitTestSmilesMolSupplier.py
Python
bsd-3-clause
3,033
[ "RDKit" ]
ba1d36b979bd81fe3cd661e4976fffbff4c00ab979d9590b2a0cdd7634c97ee2
import numpy as np __all__ = ["OneHotFeaturizer"] class Featurizer(object): """ Abstract class for calculating a set of features for a molecule. Child classes implement the _featurize method for calculating features for a single molecule. """ def featurize(self, mols, verbose=True, log_every_n=1000): """ Calculate features for molecules. Parameters ---------- mols : iterable RDKit Mol objects. """ mols = list(mols) features = [] for i, mol in enumerate(mols): if mol is not None: features.append(self._featurize(mol)) else: features.append(np.array([])) features = np.asarray(features) return features def _featurize(self, mol): """ Calculate features for a single molecule. Parameters ---------- mol : RDKit Mol Molecule. """ raise NotImplementedError('Featurizer is not defined.') def __call__(self, mols): """ Calculate features for molecules. Parameters ---------- mols : iterable RDKit Mol objects. """ return self.featurize(mols) class OneHotFeaturizer(Featurizer): """ NOTE(LESWING) Not Thread Safe in initialization of charset """ def __init__(self, charset=None, padlength=120): """ Parameters ---------- charset: obj:`list` of obj:`str` Each string is length 1 padlength: int length to pad the smile strings to """ self.charset = charset self.pad_length = padlength def featurize(self, smiles, verbose=True, log_every_n=1000): """ Parameters ---------- mols: obj List of rdkit Molecule Objects verbose: bool How much logging log_every_n: How often to log Returns ------- obj numpy array of features """ if self.charset is None: self.charset = self._create_charset(smiles) return np.array([self.one_hot_encoded(smile) for smile in smiles]) def one_hot_array(self, i): """ Create a one hot array with bit i set to 1 Parameters ---------- i: int bit to set to 1 Returns ------- obj:`list` of obj:`int` length len(self.charset) """ return [int(x) for x in [ix == i for ix in range(len(self.charset))]] def one_hot_index(self, c): """ TODO(LESWING) replace with map lookup vs linear scan Parameters ---------- c character whose index we want Returns ------- int index of c in self.charset """ return self.charset.index(c) def pad_smile(self, smile): """ Pad A Smile String to self.pad_length Parameters ---------- smile: str Returns ------- str smile string space padded to self.pad_length """ return smile.ljust(self.pad_length) def one_hot_encoded(self, smile): """ One Hot Encode an entire SMILE string Parameters ---------- smile: str smile string to encode Returns ------- object np.array of one hot encoded arrays for each character in smile """ return np.array([ self.one_hot_array(self.one_hot_index(x)) for x in self.pad_smile(smile) ]) def untransform(self, z): """ Convert from one hot representation back to SMILE Parameters ---------- z: obj:`list` list of one hot encoded features Returns ------- Smile Strings picking MAX for each one hot encoded array """ z1 = [] for i in range(len(z)): s = "" for j in range(len(z[i])): oh = np.argmax(z[i][j]) s += self.charset[oh] z1.append([s.strip()]) return z1 def _create_charset(self, smiles): """ create the charset from smiles Parameters ---------- smiles: obj:`list` of obj:`str` list of smile strings Returns ------- obj:`list` of obj:`str` List of length one strings that are characters in smiles. No duplicates """ s = set() for smile in smiles: for c in smile: s.add(c) return [' '] + sorted(list(s))
cxhernandez/molencoder
molencoder/featurizers.py
Python
mit
4,722
[ "RDKit" ]
25c223e958bda1580a09f9542f70b28340e02a57e70a3bfab489011772b1439e
import ast import unittest import mnfy class FunctionToLambdaTests(unittest.TestCase): def setUp(self): self.transform = mnfy.FunctionToLambda() def _test_failure(self, fxn_code): fxn_ast = ast.parse(fxn_code) new_ast = self.transform.visit(fxn_ast) new_fxn = new_ast.body[0] self.assertIsInstance(new_fxn, ast.FunctionDef, '{} not an instance of ast.FunctionDef'.format(new_ast.__class__)) def test_decorator_fail(self): self._test_failure('@dec\ndef X(): return') def test_returns_annotation_fail(self): self._test_failure('def X()->None: return') def test_body_too_long_fail(self): self._test_failure('def X(): x = 2 + 3; return x') def test_body_not_return_fail(self): self._test_failure('def X(): Y()') def test_no_vararg_annotation_fail(self): self._test_failure('def X(*arg:None): return') def test_no_kwarg_annotation_fail(self): self._test_failure('def X(**kwargs:None): return') def test_no_arg_annotation_fail(self): self._test_failure('def X(a, b:None, c): return') def test_success(self): module = ast.parse('def identity(): return 42') fxn = module.body[0] new_ast = self.transform.visit(module) assign = new_ast.body[0] self.assertIsInstance(assign, ast.Assign) self.assertEqual(len(assign.targets), 1) target = assign.targets[0] self.assertIsInstance(target, ast.Name) self.assertEqual(target.id, 'identity') self.assertIsInstance(target.ctx, ast.Store) lmda = assign.value self.assertIsInstance(lmda, ast.Lambda) self.assertIs(lmda.args, fxn.args) self.assertIs(lmda.body, fxn.body[0].value) def test_return_None(self): # If a function has a bare return then the lambda should return None. module = ast.parse('def fxn(): return') new_ast = self.transform.visit(module) lambda_ = new_ast.body[0].value self.assertIsInstance(lambda_.body, ast.Name) self.assertEqual(lambda_.body.id, 'None') self.assertIsInstance(lambda_.body.ctx, ast.Load) unittest.skip('not implemented') def test_empty_return(self): pass if __name__ == '__main__': unittest.main()
brettcannon/mnfy
tests/test_unsafe_transforms.py
Python
apache-2.0
2,323
[ "VisIt" ]
9863c3f3bd72b5ddfe4c728f24be57086f5bd4d6474a4153c1348e85bcecc3af
""" Unit tests for vector functions """ import unittest import os try: from StringIO import StringIO except ImportError: from io import StringIO import json import picogeojson from test_helper import TESTDATA import karta.vector as vector import karta.vector._geojson as geojson from karta.vector.geometry import Point, Line, Polygon, Multipoint, Multiline, Multipolygon from karta.crs import LonLatWGS84, WebMercator, Cartesian class TestGeoJSON(unittest.TestCase): def test_read_scalar_properties(self): path = os.path.join(TESTDATA, "geojson_input/california.geojson") geoms = vector.read_geojson(path) self.assertEqual(geoms[0].properties, {'featurecla': 'Land', 'scalerank': 0}) return def test_geometrycollection2geometry(self): path = os.path.join(TESTDATA, "geojson_input/geometrycollection.json") geoms = vector.read_geojson(path) self.assertEqual(len(geoms), 2) self.assertTrue(isinstance(geoms[0], vector.Point)) self.assertTrue(isinstance(geoms[1], vector.Line)) return def test_featurecollection2geometry(self): path = os.path.join(TESTDATA, "geojson_input/featurecollection.json") features = vector.read_geojson(path) ans0 = Point((102.0, 0.5), properties={"prop0":"value0"}, crs=LonLatWGS84) self.assertEqual(features[0], ans0) ans1 = Line([(102.0, 0.0), (103.0, 1.0), (104.0, 0.0), (105.0, 1.0)], properties={"prop0":"value0", "prop1":0.0}, crs=LonLatWGS84) self.assertEqual(features[1], ans1) ans2 = Polygon([(100.0, 0.0), (101.0, 0.0), (101.0, 1.0), (100.0, 1.0), (100.0, 0.0)], properties={"prop0":"value0", "prop1":{"this":"that"}}, crs=LonLatWGS84) self.assertEqual(features[2], ans2) return def test_read_capitols(self): path = os.path.join(TESTDATA, "geojson_input/us-capitols.json") features = vector.read_geojson(path) names = ['Phoenix, Arizona, United States', 'Sacramento, California, United States', 'Atlanta, Georgia, United States', 'Indianapolis, Indiana, United States', 'Helena, Montana, United States', 'Columbus, Ohio, United States', 'Richmond, Virginia, United States', 'Topeka, Kansas, United States', 'Boston, Massachusetts, United States', 'Lincoln, Nebraska, United States', 'Oklahoma City, Oklahoma, United States', 'Juneau, Alaska, United States', 'Pierre, South Dakota, United States', 'Honolulu, Hawaii, United States', 'Montgomery, Alabama, United States', 'Little Rock, Arkansas, United States', 'Denver, Colorado, United States', 'Hartford, Connecticut, United States', 'Dover, Delaware, United States', 'Washington, District of Columbia, United States', 'Tallahassee, Florida, United States', 'Boise, Idaho, United States', 'Springfield, Illinois, United States', 'Des Moines, Iowa, United States', 'Frankfort, Kentucky, United States', 'Baton Rouge, Louisiana, United States', 'Augusta, Maine, United States', 'Annapolis, Maryland, United States', 'Lansing, Michigan, United States', 'Saint Paul, Minnesota, United States', 'Jackson, Mississippi, United States', 'Jefferson City, Missouri, United States', 'Carson City, Nevada, United States', 'Concord, New Hampshire, United States', 'Trenton, New Jersey, United States', 'Santa Fe, New Mexico, United States', 'Albany, New York, United States', 'Raleigh, North Carolina, United States', 'Bismarck, North Dakota, United States', 'Salem, Oregon, United States', 'Harrisburg, Pennsylvania, United States', 'Providence, Rhode Island, United States', 'Columbia, South Carolina, United States', 'Nashville, Tennessee, United States', 'Austin, Texas, United States', 'Salt Lake City, Utah, United States', 'Montpelier, Vermont, United States', 'Olympia, Washington, United States', 'Charleston, West Virginia, United States', 'Madison, Wisconsin, United States', 'Cheyenne, Wyoming, United States'] self.assertEqual(names, features[0].data.getfield("n")) return def test_read_with_crs(self): path = os.path.join(TESTDATA, "geojson_input/us-capitols.json") features = vector.read_geojson(path, crs=LonLatWGS84) for f in features: self.assertEqual(f.crs, LonLatWGS84) return class TestGeoJSONOutput(unittest.TestCase): maxDiff = None def verify(self, a, b, precision): if type(a) != type(b): raise AssertionError("{} != {}".format(type(a), type(b))) if isinstance(a, list): for (_a, _b) in zip(a, b): self.verify(_a, _b, precision) elif isinstance(a, float): self.assertAlmostEqual(a, b, places=precision) else: self.assertEqual(a, b) return def verifyDict(self, d1, d2, precision): for key, v in d1.items(): try: self.assertTrue(key in d2) except AssertionError as e: raise AssertionError("key '{}' not in dict 2".format(key)) if isinstance(v, dict): self.verifyDict(v, d2[key], precision) else: self.verify(v, d2[key], precision) return def verifyJSON(self, json1, json2, precision=7): """ Verify that two JSON strings are equivalent """ obj1 = json.loads(json1) obj2 = json.loads(json2) self.verifyDict(obj1, obj2, precision) return def test_point_write_cartesian(self): p = Point((100.0, 0.0), crs=Cartesian) s = p.as_geojson(urn="urn:ogc:def:crs:EPSG::5806", force_wgs84=False) ans = """{"properties": {},"bbox": [100.0, 0.0, 100.0, 0.0], "geometry": {"coordinates": [100.0, 0.0], "type": "Point"}, "type": "Feature", "crs": {"properties": {"name": "urn:ogc:def:crs:EPSG::5806"}, "type": "name"} }""" self.verifyJSON(s, ans) return def test_point_write(self): p = Point((100.0, 0.0), crs=LonLatWGS84) s = p.as_geojson(urn="urn:ogc:def:crs:EPSG::5806") ans = """{"properties": {}, "bbox": [100.0, 0.0, 100.0, 0.0], "geometry": {"coordinates": [100.0, 0.0], "type": "Point"}, "type": "Feature", "crs": {"properties": {"name": "urn:ogc:def:crs:EPSG::5806"}, "type": "name"}}""" self.verifyJSON(s, ans) return def test_line_write(self): p = Line([(100.0, 0.0), (101.0, 1.0)], crs=LonLatWGS84) s = p.as_geojson(urn="urn:ogc:def:crs:EPSG::5806") ans = """{"type": "Feature", "geometry": {"coordinates": [[100.0, 0.0], [101.0, 1.0]], "type": "LineString"}, "properties": {}, "bbox": [100.0, 0.0, 101.0, 1.0], "crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::5806"}}}""" self.verifyJSON(s, ans) return def test_polygon_write(self): p = Polygon([[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0]], crs=LonLatWGS84) s = p.as_geojson(urn="urn:ogc:def:crs:EPSG::5806") ans = """{ "properties": {}, "bbox": [100.0, 0.0, 101.0, 1.0], "geometry": { "type": "Polygon", "coordinates": [ [ [ 100.0, 0.0 ], [ 101.0, 0.0 ], [ 101.0, 1.0 ], [ 100.0, 1.0 ], [ 100.0, 0.0 ] ] ] }, "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::5806" } }, "type": "Feature" }""" self.verifyJSON(s, ans) return def test_multiline_write(self): p = Multiline([[(100, 0), (101, 1)], [(102, 2), (103, 3)]], crs=LonLatWGS84) s = p.as_geojson(urn="urn:ogc:def:crs:EPSG::5806") ans = """{"type": "Feature", "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::5806" } }, "properties": {}, "bbox": [100.0, 0.0, 103.0, 3.0], "geometry" : { "type": "MultiLineString", "coordinates": [ [ [100.0, 0.0], [101.0, 1.0] ], [ [102.0, 2.0], [103.0, 3.0] ] ] } }""" self.verifyJSON(s, ans) def test_multipolygon_write(self): p = Multipolygon([[[(102, 2), (103, 2), (103, 3), (102, 3)]], [[(100, 0), (101, 0), (101, 1), (100, 1)], [(100.2, 0.2), (100.8, 0.2), (100.8, 0.8), (100.2, 0.8)]]], crs=LonLatWGS84) s = p.as_geojson(urn="urn:ogc:def:crs:EPSG::5806") ans = """{"type": "Feature", "properties": {},"bbox": [100.0, 0.0, 103.0, 3.0], "geometry" : { "type": "MultiPolygon", "coordinates": [ [[[102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0]]], [[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]], [[100.2, 0.2], [100.2, 0.8], [100.8, 0.8], [100.8, 0.2], [100.2, 0.2]]] ] }, "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::5806" } } }""" self.verifyJSON(s, ans) def test_write_reproject(self): # tests whether coordinates are correctly reprojected to WGS84 lon/lat p = Line([(1e6, 1e6), (1.2e6, 1.4e6)], crs=WebMercator) s = p.as_geojson() ans = """{ "type": "Feature", "properties": {}, "bbox": [8.983152841195214, 8.946573850543412, 10.779783409434257, 12.476624651238847], "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } }, "geometry": { "coordinates": [[8.983152841195214, 8.946573850543412], [10.779783409434257, 12.476624651238847]], "type": "LineString" } }""" self.verifyJSON(s, ans) return def test_write_string_data(self): capitols = Multipoint([(-112.1, 33.57), (-121.5, 38.57), (-84.42, 33.76), (-86.15, 39.78), (-112.0, 46.6), (-82.99, 39.98), (-77.48, 37.53), (-95.69, 39.04), (-71.02, 42.33), (-96.68, 40.81)], data = {"n": ["Phoenix, Arizona", "Sacramento, California", "Atlanta, Georgia", "Indianapolis, Indiana", "Helena, Montana", "Columbus, Ohio", "Richmond, Virginia", "Topeka, Kansas", "Boston, Massachusetts", "Lincoln, Nebraska"]}, crs=LonLatWGS84) s = capitols.as_geojson(urn="urn:ogc:def:crs:EPSG::5806") d = json.loads(s) ans = """{"bbox": [-121.5, 33.57, -71.02, 46.6], "properties": { "n": [ "Phoenix, Arizona", "Sacramento, California", "Atlanta, Georgia", "Indianapolis, Indiana", "Helena, Montana", "Columbus, Ohio", "Richmond, Virginia", "Topeka, Kansas", "Boston, Massachusetts", "Lincoln, Nebraska" ] }, "type": "Feature", "geometry": {"type": "MultiPoint", "coordinates": [ [ -112.1, 33.57 ], [ -121.5, 38.57 ], [ -84.42, 33.76 ], [ -86.15, 39.78 ], [ -112.0, 46.6 ], [ -82.99, 39.98 ], [ -77.48, 37.53 ], [ -95.69, 39.04 ], [ -71.02, 42.33 ], [ -96.68, 40.81 ] ] }, "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::5806" } } } """ self.verifyJSON(s, ans) return def test_write_data_crs(self): capitols = Multipoint([Point((-112.1, 33.57), crs=LonLatWGS84), Point((-121.5, 38.57), crs=LonLatWGS84), Point((-84.42, 33.76), crs=LonLatWGS84), Point((-86.15, 39.78), crs=LonLatWGS84), Point((-112.0, 46.6), crs=LonLatWGS84), Point((-82.99, 39.98), crs=LonLatWGS84), Point((-77.48, 37.53), crs=LonLatWGS84), Point((-95.69, 39.04), crs=LonLatWGS84), Point((-71.02, 42.33), crs=LonLatWGS84), Point((-96.68, 40.81), crs=LonLatWGS84), Point((-97.51, 35.47), crs=LonLatWGS84), Point((-134.2, 58.37), crs=LonLatWGS84), Point((-100.3, 44.38), crs=LonLatWGS84)]) s = capitols.as_geojson() self.assertTrue("crs" in s) self.assertTrue('"name": "urn:ogc:def:crs:OGC:1.3:CRS84"' in s) return if __name__ == "__main__": unittest.main()
fortyninemaps/karta
tests/geojson_tests.py
Python
mit
12,954
[ "COLUMBUS" ]
e050050830ed2d81230125b1def8197f8a04c3f17277f8558c27ab10ea1bd060
import numpy as np from ctypes import c_int, c_double, c_bool, c_float, c_char_p, c_bool, c_void_p import ctypes import os LIB_PATH = os.path.dirname( os.path.realpath(__file__) ) LIB_PATH_CPP = os.path.normpath(LIB_PATH+'../../../'+'/cpp/Build/libs/Molecular') def recompile(path): print( "recompile path :", path ) dir_bak = os.getcwd() os.chdir( path) os.system("make" ) os.chdir( dir_bak ) print( os.getcwd() ) # =========== main recompile(LIB_PATH_CPP) lib = ctypes.CDLL( LIB_PATH_CPP+"/libCLCFGO_lib.so" ) array1ui = np.ctypeslib.ndpointer(dtype=np.uint32, ndim=1, flags='CONTIGUOUS') array1i = np.ctypeslib.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array2i = np.ctypeslib.ndpointer(dtype=np.int32, ndim=2, flags='CONTIGUOUS') array1d = np.ctypeslib.ndpointer(dtype=np.double, ndim=1, flags='CONTIGUOUS') array2d = np.ctypeslib.ndpointer(dtype=np.double, ndim=2, flags='CONTIGUOUS') array3d = np.ctypeslib.ndpointer(dtype=np.double, ndim=3, flags='CONTIGUOUS') c_int_p = ctypes.POINTER(c_int) c_double_p = ctypes.POINTER(c_double) # ========= C functions #void loadFromFile( char const* filename, bool bCheck ){ lib.loadFromFile.argtypes = [ c_char_p ] lib.loadFromFile.restype = c_bool def loadFromFile( fname ): return lib.loadFromFile( fname ) #void init( int natom_, int nOrb_, int perOrb_, int natypes_ ){ lib.init.argtypes = [ c_int, c_int, c_int, c_int ] lib.init.restype = None def init( natom, nOrb, perOrb, natypes ): lib.init( natom, nOrb, perOrb, natypes ) # void eval(){ lib.eval.argtypes = [ ] lib.eval.restype = c_double def eval( ): return lib.eval( ) # double evalFunc( double r, double s ){ lib.evalFunc.argtypes = [ c_double, c_double ] lib.evalFunc.restype = c_double def evalFunc( r, s ): return lib.evalFunc( r, s ) #void evalFuncDerivs( int n, double* r, double* s, double* Es, double* Fs ){ lib.evalFuncDerivs.argtypes = [ c_int, array1d, array1d, array1d, array1d ] lib.evalFuncDerivs.restype = None def evalFuncDerivs( r, s, Es=None, Fs=None ): r = r + s*0 s = s + r*0 n = len(r) if Es is None: Es=np.zeros(n) if Fs is None: Fs=np.zeros(n) lib.evalFuncDerivs( n, r, s, Es, Fs ) return Es,Fs #double coulombOrbPair( int io, int jo ){ return solver.CoulombOrbPair( io, jo ); } lib.coulombOrbPair.argtypes = [ c_int, c_int ] lib.coulombOrbPair.restype = c_double def coulombOrbPair( io, jo ): return lib.coulombOrbPair( io, jo ) #double projectOrb( int io, bool bNormalize ){ lib.projectOrb.argtypes = [ c_int, c_bool ] lib.projectOrb.restype = c_double def projectOrb( io, bNormalize=False ): return lib.projectOrb( io, bNormalize ) # double* getEnergyPointer(){ lib.getEnergyPointer.argtypes = [] lib.getEnergyPointer.restype = c_double_p def getEnergyTerms( sh=(7,) ): # Ek=0, Eee EeePaul EeeExch Eae EaePaul Eaa ptr = lib.getEnergyPointer() return np.ctypeslib.as_array( ptr, shape=sh ) #int* getDimPointer (){ lib.getDimPointer.argtypes = [] lib.getDimPointer.restype = c_int_p def getDimPointer( sh=(8,) ): # natypes natom nOrb nBas perOrb perOrb2 nqOrb nQtot ptr = lib.getDimPointer() return np.ctypeslib.as_array( ptr, shape=sh ) # void printAtomsAndElectrons(){ lib.printAtomsAndElectrons.argtypes = [ ] lib.printAtomsAndElectrons.restype = None def printAtomsAndElectrons( ): lib.printAtomsAndElectrons( ) # void printSetup(){ lib.printSetup .argtypes = [ ] lib.printSetup .restype = None def printSetup ( ): lib.printSetup ( ) #int* getIBuff(const char* name){ lib.getIBuff.argtypes = [c_char_p] lib.getIBuff.restype = c_int_p def getIBuff(name,sh): if not isinstance(sh, tuple): sh=(sh,) ptr = lib.getIBuff(name) return np.ctypeslib.as_array( ptr, shape=sh) #double* getBuff(const char* name){ lib.getBuff.argtypes = [c_char_p] lib.getBuff.restype = c_double_p def getBuff(name,sh): ptr = lib.getBuff(name) if not isinstance(sh, tuple): sh=(sh,) #sh_ = (natom,) #if sh is not None: # sh_ = sh_ + sh #print "DEBUG type( ptr ) ", type( ptr ), sh return np.ctypeslib.as_array( ptr, shape=sh) #void atomsPotAtPoints( int n, double* ps, double* out, double s, double Q ) #void orbAtPoints ( int io, int n, double* ps, double* out ) #void rhoAtPoints ( int io, int n, double* ps, double* out ) #void hartreeAtPoints ( int io, int n, double* ps, double* out ) #void atomsPotAtPoints( int n, double* ps, double* out, double s, double Q ) lib.atomsPotAtPoints.argtypes = [ c_int, array2d, array1d, c_double, c_double ] lib.atomsPotAtPoints.restype = c_double def atomsPotAtPoints( ps, out=None, s=0.0, Q=1.0 ): n = len(ps) if out is None: out=np.zeros(n) lib.atomsPotAtPoints( n, ps, out, s, Q ) return out #void orbAtPoints ( int io, int n, double* ps, double* out ) lib.orbAtPoints.argtypes = [ c_int, c_int, array2d, array1d ] lib.orbAtPoints.restype = c_double def orbAtPoints( ps, io=0, out=None ): n = len(ps) if out is None: out=np.zeros(n) lib.orbAtPoints( io, n, ps, out ) return out #void rhoAtPoints ( int io, int n, double* ps, double* out ) lib.rhoAtPoints.argtypes = [ c_int, c_int, array2d, array1d ] lib.rhoAtPoints.restype = c_double def rhoAtPoints( ps, io=0, out=None ): n = len(ps) if out is None: out=np.zeros(n) lib.rhoAtPoints( io, n, ps, out ) return out #void hartreeAtPoints ( int io, int n, double* ps, double* out ) lib.hartreeAtPoints.argtypes = [ c_int, c_int, array2d, array1d ] lib.hartreeAtPoints.restype = c_double def hartreeAtPoints( ps, io=0, out=None ): n = len(ps) if out is None: out=np.zeros(n) lib.hartreeAtPoints( io, n, ps, out ) return out #double test_GaussIntegral_ST( int iMODE, int n, double sj, double* sis, double* rs, double* E, double* fr, double* fs ){ lib.test_GaussIntegral_ST.argtypes = [ c_int, c_int, c_double, array1d, array1d, array1d, array1d, array1d ] lib.test_GaussIntegral_ST.restype = c_double def test_GaussIntegral_ST( iMODE=0, sj=1.0, sis=None, rs=None, r0=0.0, si=1.0 ): if rs is None: n=len(sis) rs =np.zeros(n); rs[:]=r0 if sis is None: n=len(rs) sis=np.zeros(n); sis[:]=si E=np.zeros(n); fr=np.zeros(n); fs=np.zeros(n) lib.test_GaussIntegral_ST( iMODE, n, sj, sis, rs, E, fr, fs ) return E, fr, fs #test_Poisson( double Rmax, double gStep, double * line_rho=0, double* line_rho_=0, bool bPrint=0, bool bSave=0, useWf=true ){ lib.test_Poisson.argtypes = [ c_int, c_double, c_double, array1d, array1d, c_bool, c_bool, c_bool ] lib.test_Poisson.restype = c_double def test_Poisson( io=0, Rmax=5.0, dx=0.1, bPrint=False, bSave=False, useWf=True, line_rho=None, line_rho_=None ): n = int(2*Rmax/dx) if line_rho is None: line_rho =np.zeros(n) if line_rho_ is None: line_rho_=np.zeros(n) err2 = lib.test_Poisson( io, Rmax, dx, line_rho, line_rho_, bPrint, bSave, useWf ) return err2, line_rho, line_rho_ #double test_CrossKinetic( int io, int jo, int nint, double dx, double Rmax, double gStep, double * line_Ek=0, double* line_Ek_g=0, double * line_f1=0, double* line_f2=0, int bPrint=0, bool bSave=0 ){ lib.test_OrbInteraction.argtypes = [ c_int, c_int, c_int, c_int, c_double, c_double, c_double, array1d, array1d, array1d, array1d, c_int, c_bool ] lib.test_OrbInteraction.restype = c_double def test_OrbInteraction( iMODE=1, io=0, jo=0, nint=40, dx=0.2, Rmax=5.0, gStep=0.1, bPrint=0, bSave=False, line_Ek=None, line_Ek_g=None, line_f1=None, line_f2=None ): ''' iMODE : 1) Overlap S12 2) Kinetic T12 3) Colomb K12 ''' ng = int( ( 2*Rmax + nint*dx )/gStep ) #print(" test_OrbInteraction ng ", ng) if line_Ek is None: line_Ek =np.zeros(nint) if line_Ek_g is None: line_Ek_g =np.zeros(nint) if line_f1 is None: line_f1 =np.zeros(ng) if line_f2 is None: line_f2 =np.zeros(ng) err2 = lib.test_OrbInteraction( iMODE, io, jo, nint, dx, Rmax, gStep, line_Ek, line_Ek_g, line_f1, line_f2, bPrint, bSave ) #print "line_Ek_g ", line_Ek_g #print "line_Ek ", line_Ek return err2, line_Ek, line_Ek_g, line_f1, line_f2 #void testDerivs_Coulomb_model( int n, double x0, double dx ){ lib.testDerivsP_Coulomb_model.argtypes = [ c_int, c_double, c_double ] lib.testDerivsP_Coulomb_model.restype = c_double def testDerivsP_Coulomb_model( n=100, x0=0.0, dx=0.1 ): return lib.testDerivsP_Coulomb_model( n, x0, dx ) #void testDerivs_Coulomb_model( int n, double x0, double dx ){ lib.testDerivsS_Coulomb_model.argtypes = [ c_int, c_double, c_double ] lib.testDerivsS_Coulomb_model.restype = c_double def testDerivsS_Coulomb_model( n=100, x0=0.0, dx=0.1 ): return lib.testDerivsS_Coulomb_model( n, x0, dx ) #void testDerivsP_Total( int n, double x0, double dx ){ lib.testDerivsP_Total.argtypes = [ c_int, c_double, c_double ] lib.testDerivsP_Total.restype = c_double def testDerivsP_Total( n=100, x0=0.0, dx=0.1 ): return lib.testDerivsP_Total( n, x0, dx ) #void testDerivsS_Total( int n, double x0, double dx ){ lib.testDerivsS_Total.argtypes = [ c_int, c_double, c_double ] lib.testDerivsS_Total.restype = c_double def testDerivsS_Total( n=100, x0=0.0, dx=0.1 ): return lib.testDerivsS_Total( n, x0, dx ) #void testDerivsTotal( int n, double* xs, double* Es, double* Fs, int what ){ lib.testDerivsTotal.argtypes = [ c_int, array1d, array1d, array1d, c_int ] lib.testDerivsTotal.restype = c_double def testDerivsTotal( xs, Es=None, Fs=None, what=0 ): n = len(xs) if Es is None: Es = np.zeros(n) if Fs is None: Fs = np.zeros(n) lib.testDerivsTotal( n, xs, Es, Fs, what ) return Es,Fs #void setSwitches(bool bNormalize, bool bEvalKinetic, bool bEvalCoulomb, bool bEvalExchange, bool bEvalPauli, int iPauliModel, bool bEvalAA, bool bEvalAE, bool bEvalAECoulomb, bool bEvalAEPauli ){ lib.setSwitches.argtypes = [ c_bool, c_bool, c_bool, c_bool, c_bool, c_int, c_bool, c_bool, c_bool, c_bool ] lib.setSwitches.restype = None def setSwitches( normalize=True, kinetic=True, coulomb=True, exchange=True, pauli=True, pauliModel=0, AA=True, AE=True, AECoulomb=True, AEPauli=True ): lib.setSwitches( normalize, kinetic, coulomb, exchange, pauli, pauliModel, AA, AE, AECoulomb, AEPauli ) #void setSwitches_(int bNormalize, int bNormForce, int bEvalKinetic, int bEvalCoulomb, int bEvalExchange, int bEvalPauli, int bEvalAA, int bEvalAE, int bEvalAECoulomb, int bEvalAEPauli ){ lib.setSwitches_.argtypes = [ c_int, c_int, c_int, c_int, c_int, c_int, c_int, c_int, c_int, c_int ] lib.setSwitches_.restype = None def setSwitches_( normalize=0, normForce=0, kinetic=0, coulomb=0, exchange=0, pauli=0, AA=0, AE=0, AECoulomb=0, AEPauli=0 ): lib.setSwitches_( normalize, normForce, kinetic, coulomb, exchange, pauli, AA, AE, AECoulomb, AEPauli ) #void setPauliMode( int iPauli ){ lib.setPauliMode.argtypes = [ c_int ] lib.setPauliMode.restype = None def setPauliMode( iPauli ): lib.setPauliMode( iPauli ) # ========= Python Functions def getBuffs( natom, norb, perOrb ): global Ebuf Ebuf = getEnergyTerms( ) global apos,aforce,aPars,atype apos = getBuff( "apos", (natom,3) ) aforce = getBuff( "aforce", (natom,3) ) aPars = getBuff ( "aPars", (natom,4) ) atype = getIBuff( "atype", (natom) ) # orbitals global opos, odip, oEs, oQs, oQs, onq, ospin opos = getBuff ( "opos", (norb,3) ) odip = getBuff ( "odip", (norb,3) ) oEs = getBuff ( "oEs", (norb) ) oQs = getBuff ( "oQs", (norb) ) onq = getIBuff( "onq", (norb) ) ospin = getIBuff( "ospin", (norb) ) # --- Wave-function components for each orbital global epos, esize, ecoef epos = getBuff( "epos", (norb,perOrb,3) ) esize = getBuff( "esize", (norb,perOrb) ) ecoef = getBuff( "ecoef", (norb,perOrb) ) # --- Forces acting on wave-functions components global efpos, efsize, efcoef efpos = getBuff( "efpos", (norb,perOrb,3) ) efsize = getBuff( "efsize", (norb,perOrb) ) efcoef = getBuff( "efcoef", (norb,perOrb) ) # --- Forces acting on wave-functions components global enfpos, enfsize, enfcoef enfpos = getBuff( "enfpos", (norb,perOrb,3) ) enfsize = getBuff( "enfsize", (norb,perOrb) ) enfcoef = getBuff( "enfcoef", (norb,perOrb) ) # --- Auxuliary electron density expansion basis functions global rhoP, rhoQ, rhoS rhoP = getBuff( "rhoP", (norb,perOrb,3) ) rhoQ = getBuff( "rhoQ", (norb,perOrb) ) rhoS = getBuff( "rhoS", (norb,perOrb) ) # --- Forces acting on auxuliary density basis functions global rhofP, rhofQ, rhofS rhofP = getBuff( "rhofP", (norb,perOrb,3) ) rhofQ = getBuff( "rhofQ", (norb,perOrb) ) rhofS = getBuff( "rhofS", (norb,perOrb) ) def test_Gaussian_Overlap_Product_derivatives(): # ============== Gaussian Overlap Product derivatives #esizes[0][0] = xs print "esizes", esizes C,s,p, dCr, dA,dB = ref.product3D_s_deriv( xs,eXpos[0][0], eXpos[0][1],eXpos[0][1] ) (dSsi,dXsi,dXxi,dCsi) = dA plt.figure() plt.plot( xs, C, label = "C" ) plt.plot( xs, dCsi, label = "dC/dsa" ) plt.plot( xs_, (C[1:]-C[:-1])/dx, label = "dC/dsa_num", lw=3,ls=":" ) plt.plot( xs, p, label = "p") plt.plot( xs, dXsi, label = "dp/dsa") plt.plot( xs_, (p[1:]-p[:-1])/dx, label = "dp/dsa_num", lw=3,ls=":" ) plt.plot( xs, s, label = "s") plt.plot( xs, dSsi, label = "ds/dsa") plt.plot( xs_, (s[1:]-s[:-1])/dx, label = "ds/dsa_num", lw=3,ls=":" ) plt.legend() plt.grid() plt.minorticks_on() plt.grid(which='minor', linestyle=':', linewidth='0.5', color='gray') plt.title('Gaussian Overlap Derivative') def test_Gaussian_Electrostatics_derivatives(): # ============== Gaussian Electrostatics derivatives print "esizes", esizes plt.figure() E,fr,fs = ref.Coulomb( xs, 1.0 ) plt.plot( xs, E, label = "E(r)") plt.plot( xs, fr*xs, label = "dE/dr") plt.plot( xs_, (E[1:]-E[:-1])/dx, label = "dE/dr_num", lw=3,ls=":" ) E,fr,fs = ref.Coulomb( 1.0, xs ) plt.plot( xs, E, label = "E(s)") plt.plot( xs, fs*xs, label = "dE/ds") plt.plot( xs_, (E[1:]-E[:-1])/dx, label = "dE/ds_num", lw=3,ls=":" ) plt.legend() plt.grid() plt.minorticks_on() plt.grid(which='minor', linestyle=':', linewidth='0.5', color='gray') plt.title('Gaussian Coulomb Derivative') # ========================================= # ============== Derivs in Python ============ # ========================================= def plot_Derivs_Python(): print " ========== Derivs in Python " #eXpos[0][0] = xa (E, Fp,Fs) = ref.evalEFtot( ecoefs, esizes, eXpos, xa=xs ); F=Fp #(E, Fp,Fs) = ref.evalEFtot( ecoefs, esizes, eXpos, sa=xs ); F=Fs #(E, F) = ref.evalEF_S_off ( xs, ecoefs, esizes, eXpos ) plt.subplot(1,2,2) #plt.plot( xs, r , label='r' ) #plt.plot( xs, r , label='r' ) #plt.plot( xs, Sab , label='Sab' ) #plt.plot( xs, Qab , label='Qab' ) #plt.plot( xs, dQab, label='dSab_ana' ) #plt.plot( xs_, (Sab[1:]-Sab[:-1])/dx,':', label='dSab_num' ) #plt.figure(figsize=(12,10)) plt.plot( xs, E, label='E' ) plt.plot( xs, F, label='F_ana' ) plt.plot( xs_,(E[1:]-E[:-1])/dx,':', label='F_num', lw=3 ) #plt.plot( xs, fxi, label='fxi' ) plt.title('Python') plt.legend() #plt.ylim(-30,40) #plt.ylim(-5,30) plt.ylim( ylims[0], ylims[1] ) plt.grid() plt.minorticks_on() plt.grid(which='minor', linestyle=':', linewidth='0.5', color='gray') # ========================================= # ============== Derivs in C++ ============ # ========================================= def plot_Derivs_Cpp(): init(natom,norb,perORb,1) # natom, nOrb, perOrb, natypes ecoef = getBuff("ecoef",(norb,perORb) ) esize = getBuff("esize",(norb,perORb) ) epos = getBuff("epos" ,(norb,perORb,3)) aQ = getBuff("aQs", (natom,) ) aQsize = getBuff("aQsize",(natom,) ) aPcoef = getBuff("aPcoef",(natom,) ) aPsize = getBuff("aPsize",(natom,) ) apos = getBuff("apos" ,(natom,3) ) plt.subplot(1,2,1) plt.title('C++') #plt.plot(l_xs,l_r,label="r") ecoef[:,:] = np.array(ecoefs)[:,:] esize[:,:] = np.array(esizes)[:,:] epos [:,:,0] = np.array(eXpos)[:,:] epos [:,:,1] = np.array(eYpos)[:,:] epos [:,:,2] = np.array(eZpos)[:,:] aQ [:] = np.array(aQs ) aQsize[:] = np.array(aQsizes) aPcoef[:] = np.array(aPcoefs) aPsize[:] = np.array(aPsizes) apos [:,:]= np.array(aposs)[:,:] #aposs_ = np.array(aposs)[:,:] #apos [:,1] = aposs_[:,1] #apos [:,2] = aposs_[:,2] n = len(xs) #testDerivs_Coulomb_model( n=n, x0=0.0, dx=0.1 ) print "===>> RUN C++ test : testDerivs_Total " #setSwitches( normalize=False, kinetic=False, coulomb=False, exchange=False, pauli=False, pauliModel=1, AA=False, AE=True, AECoulomb=False, AEPauli=True ); #setSwitches( normalize=False, kinetic=False, coulomb=False, exchange=False, pauli=False, pauliModel=1, AA=False, AE=True, AECoulomb=True, AEPauli=False ); setSwitches( normalize=False, kinetic=False ); Es,Fs = testDerivsTotal( xs, what=0 ) # position deriv #Es,Fs = testDerivsTotal( xs, what=1 ) # size deriv print "===<< DONE C++ test : testDerivs_Total " plt.plot(xs ,Es,label="E" ) plt.plot(xs ,-Fs,label="Fana") plt.plot(xs_,(Es[1:]-Es[:-1])/dx,label="Fnum",ls=':',lw=3) if __name__ == "__main__": loadFromFile( "../../cpp/sketches_SDL/Molecular/data/e2_1g_2o.fgo" ) #loadFromFile( "../../cpp/sketches_SDL/Molecular/data/H2O_1g_8o.fgo" ) printSetup() printAtomsAndElectrons() eval() exit() import matplotlib.pyplot as plt import CLCFGO_coulomb_derivs as ref natom = 1 aposs = [[0.0,0.0,0.0],] aQs = [4.0,] # atomic nuclei charge (after screening core electrons) aPcoefs = [500.0,] # atomic core pauli repulsion coeficient (strenght) aQsizes = [0.5,] # atomic nuclei/pseudopotential size (radius of core electrons ) aPsizes = [0.1,] # atomic nuclei/pseudopotential size (radius of core electrons ) norb = 1 perORb = 1 ecoefs = [[1.0,], ] esizes = [[0.1,],] #eXpos = [[0.,],] eXpos = [[0.,],] eYpos = [[0.,],] eZpos = [[0.,],] ''' norb = 2 perORb = 2 ecoefs = [[1.0,1.0],[1.0,1.0] ] esizes = [[1.0,1.0],[1.0,1.0] ] #eXpos = [[0.,+0.5],[-3.5,-1.5]] eXpos = [[0.,+0.0],[ -0.5, 0.5]] eYpos = [[0.,+0.0],[ 0.0, 0.0]] eZpos = [[0.,+0.0],[ 0.0, 0.0]] ''' ''' norb = 2 perORb = 2 #ecoefs = [[+0.93,+0.68],[+0.65,+1.3]] #esizes = [[+1.30,+0.90],[+1.60,+0.7]] #eXpos = [[+0.00,+0.50],[-3.50,-2.0]] #eYpos = [[+0.00,+0.00],[+0.00,+0.0]] #eZpos = [[+0.50,-0.30],[-0.40,+0.8]] ''' x0 = -1.0 dx = 0.05 xs = np.arange( x0, 4.0, dx ) xs_ = (xs[1:]+xs[:-1])*0.5 #test_Gaussian_Overlap_Product_derivatives() test_Gaussian_Electrostatics_derivatives() #plt.show() #exit() # ===================== #ylims=[-5,5] #ylims=[-5,20] #ylims=[-30,80] ylims=[-200,400] plt.figure(figsize=(14,8)) plot_Derivs_Python() plot_Derivs_Cpp() plt.legend() #plt.ylim(-30,40) #plt.ylim(-5,30) #plt.xlim(0,l_xs[-3]) #plt.ylim( ylims[0], ylims[1] ) plt.grid() plt.minorticks_on() plt.grid(which='minor', linestyle=':', linewidth='0.5', color='gray') #print "Fc++ %g Fpy %g " %(l_Fana[0],F[0]) plt.show()
ProkopHapala/SimpleSimulationEngine
python/pyMolecular/CLCFGO.py
Python
mit
19,696
[ "Gaussian" ]
103ef737b5699ba6677f0929fec2ed32844771a6681695332892e2ccef43b27d
import tensorflow as tf import utils.utils as utils class Cifar10CNN: def __init__(self, config): self.config = config def conv2d(self, data, weight): return tf.nn.conv2d(data, weight, strides=[1, 1, 1, 1], padding='SAME') def max_pool(self, data): return tf.nn.max_pool(data, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def variable_on_cpu(self, name, shape, initializer): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor """ with tf.device('/cpu:0'): var = tf.get_variable(name, shape, initializer=initializer, dtype=tf.float32) return var def variable_with_weight_decay(self, name, shape, stddev, wd): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor """ var = self.variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=tf.float32)) if wd is not None: weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def model(self, images, eval=False, image_placeholder=None): num_classes = int(self.config.get('main', 'num_classes')) image_size = int(self.config.get('main', 'subsection_image_size')) num_channels = int(self.config.get('main', 'num_channels')) with tf.variable_scope('conv1', reuse=eval) as scope: kernel = self.variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=0.0) if image_placeholder is None: conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') else: whitened_image = tf.image.per_image_whitening(tf.reshape(image_placeholder, [image_size, image_size, num_channels])) whitened_image_reshaped = tf.reshape(whitened_image, [1, image_size, image_size, num_channels]) conv = tf.nn.conv2d(whitened_image_reshaped, kernel, [1, 1, 1, 1], padding='SAME') biases = self.variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) bias = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(bias, name=scope.name) # pool1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') with tf.variable_scope('conv2', reuse=eval) as scope: kernel = self.variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = self.variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) bias = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(bias, name=scope.name) # norm2 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # local3 with tf.variable_scope('local3', reuse=eval) as scope: # Move everything into depth so we can perform a single matrix multiply. if image_placeholder is None: reshape = tf.reshape(pool2, [int(self.config.get('main', 'batch_size')), -1]) else: reshape = tf.reshape(pool2, [1, -1]) dim = reshape.get_shape()[1].value weights = self.variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = self.variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) # local4 with tf.variable_scope('local4', reuse=eval) as scope: weights = self.variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = self.variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) # softmax, i.e. softmax(WX + b) with tf.variable_scope('softmax_linear', reuse=eval) as scope: weights = self.variable_with_weight_decay('weights', [192, num_classes], stddev=1/192.0, wd=0.0) biases = self.variable_on_cpu('biases', [num_classes], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) return softmax_linear
chiochio/pwnml
dpwn/models/cifar10_cnn.py
Python
mit
6,216
[ "Gaussian" ]
e465aaf7470c5dee77f5148e7aa8b2f3fa119d00ceab8ae50411bc51f86345a7
# pylint: disable=missing-docstring # pylint: disable=redefined-outer-name from lettuce import world, step from lettuce.django import django_url from nose.tools import assert_equal def create_cert_course(): world.clear_courses() org = 'edx' number = '999' name = 'Certificates' world.scenario_dict['COURSE'] = world.CourseFactory.create( org=org, number=number, display_name=name) world.scenario_dict['course_id'] = world.scenario_dict['COURSE'].id world.UPSELL_LINK_CSS = u'.message-upsell a.action-upgrade[href*="{}"]'.format( world.scenario_dict['course_id'] ) honor_mode = world.CourseModeFactory.create( course_id=world.scenario_dict['course_id'], mode_slug='honor', mode_display_name='honor mode', min_price=0, ) verfied_mode = world.CourseModeFactory.create( course_id=world.scenario_dict['course_id'], mode_slug='verified', mode_display_name='verified cert course', min_price=16, suggested_prices='32,64,128', currency='usd', ) def register(): url = u'courses/{}/about'.format(world.scenario_dict['course_id']) world.browser.visit(django_url(url)) world.css_click('section.intro a.register') assert world.is_css_present('section.wrapper h3.title') @step(u'I select the audit track$') def select_the_audit_track(step): create_cert_course() register() btn_css = 'input[name="honor_mode"]' world.wait(1) # TODO remove this after troubleshooting JZ world.css_find(btn_css) world.css_click(btn_css) def select_contribution(amount=32): radio_css = 'input[value="{}"]'.format(amount) world.css_click(radio_css) assert world.css_find(radio_css).selected def click_verified_track_button(): world.wait_for_ajax_complete() btn_css = 'input[value="Pursue a Verified Certificate"]' world.css_click(btn_css) @step(u'I select the verified track for upgrade') def select_verified_track_upgrade(step): select_contribution(32) world.wait_for_ajax_complete() btn_css = 'input[value="Upgrade Your Enrollment"]' world.css_click(btn_css) # TODO: might want to change this depending on the changes for upgrade assert world.is_css_present('section.progress') @step(u'I select the verified track$') def select_the_verified_track(step): create_cert_course() register() select_contribution(32) click_verified_track_button() assert world.is_css_present('section.progress') @step(u'I should see the course on my dashboard$') def should_see_the_course_on_my_dashboard(step): course_css = 'li.course-item' assert world.is_css_present(course_css) @step(u'I go to step "([^"]*)"$') def goto_next_step(step, step_num): btn_css = { '1': '#face_next_button', '2': '#face_next_link', '3': '#photo_id_next_link', '4': '#pay_button', } next_css = { '1': 'div#wrapper-facephoto.carousel-active', '2': 'div#wrapper-idphoto.carousel-active', '3': 'div#wrapper-review.carousel-active', '4': 'div#wrapper-review.carousel-active', } world.css_click(btn_css[step_num]) # Pressing the button will advance the carousel to the next item # and give the wrapper div the "carousel-active" class assert world.css_find(next_css[step_num]) @step(u'I capture my "([^"]*)" photo$') def capture_my_photo(step, name): # Hard coded red dot image image_data = '' snapshot_script = "$('#{}_image')[0].src = '{}';".format(name, image_data) # Mirror the javascript of the photo_verification.html page world.browser.execute_script(snapshot_script) world.browser.execute_script("$('#{}_capture_button').hide();".format(name)) world.browser.execute_script("$('#{}_reset_button').show();".format(name)) world.browser.execute_script("$('#{}_approve_button').show();".format(name)) assert world.css_find('#{}_approve_button'.format(name)) @step(u'I approve my "([^"]*)" photo$') def approve_my_photo(step, name): button_css = { 'face': 'div#wrapper-facephoto li.control-approve', 'photo_id': 'div#wrapper-idphoto li.control-approve', } wrapper_css = { 'face': 'div#wrapper-facephoto', 'photo_id': 'div#wrapper-idphoto', } # Make sure that the carousel is in the right place assert world.css_has_class(wrapper_css[name], 'carousel-active') assert world.css_find(button_css[name]) # HACK: for now don't bother clicking the approve button for # id_photo, because it is sending you back to Step 1. # Come back and figure it out later. JZ Aug 29 2013 if name == 'face': world.css_click(button_css[name]) # Make sure you didn't advance the carousel assert world.css_has_class(wrapper_css[name], 'carousel-active') @step(u'I select a contribution amount$') def select_contribution_amount(step): select_contribution(32) @step(u'I confirm that the details match$') def confirm_details_match(step): # First you need to scroll down on the page # to make the element visible? # Currently chrome is failing with ElementNotVisibleException world.browser.execute_script("window.scrollTo(0,1024)") cb_css = 'input#confirm_pics_good' world.css_click(cb_css) assert world.css_find(cb_css).checked @step(u'I am at the payment page') def at_the_payment_page(step): world.wait_for_present('input[name=transactionSignature]') @step(u'I submit valid payment information$') def submit_payment(step): # First make sure that the page is done if it still executing # an ajax query. world.wait_for_ajax_complete() button_css = 'input[value=Submit]' world.css_click(button_css) @step(u'I have submitted face and ID photos$') def submitted_face_and_id_photos(step): step.given('I am logged in') step.given('I select the verified track') step.given('I go to step "1"') step.given('I capture my "face" photo') step.given('I approve my "face" photo') step.given('I go to step "2"') step.given('I capture my "photo_id" photo') step.given('I approve my "photo_id" photo') step.given('I go to step "3"') @step(u'I have submitted photos to verify my identity') def submitted_photos_to_verify_my_identity(step): step.given('I have submitted face and ID photos') step.given('I select a contribution amount') step.given('I confirm that the details match') step.given('I go to step "4"') @step(u'I submit my photos and confirm') def submit_photos_and_confirm(step): step.given('I go to step "1"') step.given('I capture my "face" photo') step.given('I approve my "face" photo') step.given('I go to step "2"') step.given('I capture my "photo_id" photo') step.given('I approve my "photo_id" photo') step.given('I go to step "3"') step.given('I select a contribution amount') step.given('I confirm that the details match') step.given('I go to step "4"') @step(u'I see that my payment was successful') def see_that_my_payment_was_successful(step): title = world.css_find('div.wrapper-content-main h3.title') assert_equal(title.text, u'Congratulations! You are now verified on edX.') @step(u'I navigate to my dashboard') def navigate_to_my_dashboard(step): world.css_click('span.avatar') assert world.css_find('section.my-courses') @step(u'I see the course on my dashboard') def see_the_course_on_my_dashboard(step): course_link_css = u'section.my-courses a[href*="{}"]'.format(world.scenario_dict['course_id']) assert world.is_css_present(course_link_css) @step(u'I see the upsell link on my dashboard') def see_upsell_link_on_my_dashboard(step): course_link_css = world.UPSELL_LINK_CSS assert world.is_css_present(course_link_css) @step(u'I do not see the upsell link on my dashboard') def see_no_upsell_link(step): course_link_css = world.UPSELL_LINK_CSS assert world.is_css_not_present(course_link_css) @step(u'I select the upsell link on my dashboard') def select_upsell_link_on_my_dashboard(step): # expand the upsell section world.css_click('.message-upsell') course_link_css = world.UPSELL_LINK_CSS # click the actual link world.css_click(course_link_css) @step(u'I see that I am on the verified track') def see_that_i_am_on_the_verified_track(step): id_verified_css = 'li.course-item article.course.verified' assert world.is_css_present(id_verified_css) @step(u'I leave the flow and return$') def leave_the_flow_and_return(step): world.visit(u'verify_student/verified/{}/'.format(world.scenario_dict['course_id'])) @step(u'I am at the verified page$') def see_the_payment_page(step): assert world.css_find('button#pay_button') @step(u'I edit my name$') def edit_my_name(step): btn_css = 'a.retake-photos' world.css_click(btn_css)
olexiim/edx-platform
lms/djangoapps/courseware/features/certificates.py
Python
agpl-3.0
9,052
[ "VisIt" ]
56823adaf2af72af5c6224c0eaee2e5160115437bf5e38898d989ca8429a132a
# -*- coding: utf-8 -*- ## ## This file is part of Invenio. ## Copyright (C) 2013 CERN. ## ## Invenio is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 2 of the ## License, or (at your option) any later version. ## ## Invenio is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Invenio; if not, write to the Free Software Foundation, Inc., ## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA from wtforms import FormField, FieldList, Field, Form CFG_GROUPS_META = { 'classes': None, 'indication': None, 'description': None } """ Default group metadata. """ CFG_FIELD_FLAGS = [ 'hidden', 'disabled', 'touched', ] """ List of WTForm field flags to be saved in draft. See more about WTForm field flags on: http://wtforms.simplecodes.com/docs/1.0.4/fields.html#wtforms.fields.Field.flags """ def filter_flags(field): """ Return a list of flags (from CFG_FIELD_FLAGS) set on a field. """ return filter(lambda flag: getattr(field.flags, flag), CFG_FIELD_FLAGS) """ Form customization you can customize the following for the form _title: str, the title to be rendered on top of the form _subtitle: str/html. explanatory text to be shown under the title. _drafting: bool, show or hide the drafts at the right of the form """ class WebDepositForm(Form): """ Generic WebDeposit Form class """ def __init__(self, *args, **kwargs): super(WebDepositForm, self).__init__(*args, **kwargs) if not hasattr(self, 'template'): self.template = 'deposit/run.html' if not hasattr(self, '_drafting'): self._drafting = True self.type = self.__class__.__name__ def reset_field_data(self, exclude=[]): """ Reset the fields.data value to that of field.object_data. Useful after initializing a form with both formdata and draftdata where the formdata is missing field values (usually because we are saving a single field). @param exclude: List of field names to exclude. """ for field in self._fields.values(): field.reset_field_data(exclude=exclude) def get_groups(self): """ Get a list of the (group metadata, list of fields)-tuples The last element of the list has no group metadata (i.e. None), and contains the list of fields not assigned to any group. """ fields_included = set() field_groups = [] if hasattr(self, 'groups'): for group in self.groups: group_obj = { 'name': group[0], 'meta': CFG_GROUPS_META.copy(), } fields = [] for field_name in group[1]: if field_name in ['-', ]: fields.append(field_name) else: try: fields.append(self[field_name]) fields_included.add(field_name) except KeyError: pass if len(group) == 3: group_obj['meta'].update(group[2]) field_groups.append((group_obj, fields)) # Append missing fields not defined in groups rest_fields = [] for field in self: if field.name not in fields_included: rest_fields.append(field) if rest_fields: field_groups.append((None, rest_fields)) return field_groups def get_template(self): """ Get template to render this form. Define a data member `template` to customize which template to use. By default, it will render the template `deposit/run.html` """ return [self.template] def post_process(self, form=None, formfields=[], submit=False): """ Run form post-processing by calling `post_process` on each field, passing any extra `Form.post_process_<fieldname>` processors to the field. If ``formfields'' are specified, only the given fields' processors will be run (which may touch all fields of the form). The post processing allows the form to alter other fields in the form, via e.g. contacting external services (e.g a DOI field could retrieve title, authors from CrossRef/DataCite). """ if form is None: form = self for name, field, in self._fields.items(): inline = getattr( self, 'post_process_%s' % name, None) if inline is not None: extra = [inline] else: extra = [] field.post_process(form, formfields=formfields, extra_processors=extra, submit=submit) def autocomplete(self, name, term, limit=50, _form=None): """ Auto complete a form field. Example:: form = FormClass() form.autocomplete('related_identifiers-1-scheme','do') Implementation notes: The form will first try a fast lookup by field name in the form, and delegate the auto-completion to the field. This will work for all but field enclosures (FieldList and FormField). If the first lookup fails, each field enclosure is checked if they can auto-complete the term, which usually involves parsing the field name and generating a stub-field (see further details in wtforms_field module). @param name: Name of field (e.g. title or related_identifiers-1-scheme) @param term: Term to return auto-complete results for @param limit: Maximum number of results to return @return: None in case field could not be found, otherwise a (possibly empty) list of results. """ if name in self._fields: res = self._fields[name].perform_autocomplete( _form or self, name, term, limit=limit, ) if res is not None: return res[:limit] else: for f in self._fields.values(): # Only check field enclosures which cannot be found with above # method. if name.startswith(f.name): res = f.perform_autocomplete( _form or self, name, term, limit=limit, ) if res is not None: return res[:limit] return None def get_flags(self, filter_func=filter_flags): """ Return dictionary of fields and their set flags """ flags = {} for f in self._fields.values(): if hasattr(f, 'get_flags'): flags.update(f.get_flags(filter_func=filter_func)) else: flags.update({f.name: filter_func(f)}) return flags def set_flags(self, flags): """ Set flags on fields @param flags: Dictionary of fields and their set flags (same structure as returned by get_flags). """ for f in self._fields.values(): f.set_flags(flags) @property def json_data(self): """ Return form data in a format suitable for the standard JSON encoder, by calling Field.json_data() on each field if it exists, otherwise is uses the value of Field.data. """ return dict( (name, f.json_data if getattr(f, 'json_data', None) else f.data) for name, f in self._fields.items() ) @property def messages(self): """ Return a dictionary of form messages. """ _messages = {} for f in self._fields.values(): _messages.update(f.messages) return dict([ ( fname, msgs if msgs.get('state', '') or msgs.get('messages', '') else {} ) for fname, msgs in _messages.items() ]) return _messages class FormVisitor(object): """ Generic form visitor to iterate over all fields in a form. See DataExporter for example how to export all data. """ def visit(self, form_or_field): if isinstance(form_or_field, FormField): self.visit_formfield(form_or_field) elif isinstance(form_or_field, FieldList): self.visit_fieldlist(form_or_field) elif isinstance(form_or_field, Form): self.visit_form(form_or_field) elif isinstance(form_or_field, Field): self.visit_field(form_or_field) def visit_form(self, form): for field in form: self.visit(field) def visit_field(self, field): pass def visit_fieldlist(self, fieldlist): for field in fieldlist.get_entries(): self.visit(field) def visit_formfield(self, formfield): self.visit(formfield.form) class DataExporter(FormVisitor): """ Visitor to export form data into dictionary supporting filtering and key renaming. Usage:: form = ... visitor = DataExporter(filter_func=lambda f: not f.flags.disabled) visitor.visit(form) Given e.g. the following form:: class MyForm(WebDepositForm): title = TextField(export_key='my_title') notes = TextAreaField() authors = FieldList(FormField(AuthorForm)) the visitor will export a dictionary similar to:: {'my_title': ..., 'notes': ..., authors: [{...}, ...], } """ def __init__(self, filter_func=None): self.data = {} self.data_stack = [self.data] if filter_func is not None: self.filter_func = filter_func else: self.filter_func = lambda f: True def _export_name(self, field): """ Get dictionary key - defaults to field name """ return field.export_key if getattr(field, 'export_key', None) \ else field.short_name # # Stack helper methods # def _top_stack_element(self): return self.data_stack[-1] def _pop_stack(self): self.data_stack.pop() def _push_stack(self, field, prototype): data = self._top_stack_element() if isinstance(data, list): data.append(prototype) self.data_stack.append(data[-1]) else: data[self._export_name(field)] = prototype self.data_stack.append(data[self._export_name(field)]) # # Visit methods # def visit_field(self, field): if (self.filter_func)(field): data = self._top_stack_element() if isinstance(data, list): data.append(field.data) else: data[self._export_name(field)] = field.data def visit_formfield(self, formfield): if (self.filter_func)(formfield): self._push_stack(formfield, {}) super(DataExporter, self).visit_formfield(formfield) self._pop_stack() def visit_fieldlist(self, fieldlist): if (self.filter_func)(fieldlist): self._push_stack(fieldlist, []) super(DataExporter, self).visit_fieldlist(fieldlist) self._pop_stack()
MSusik/invenio
invenio/modules/deposit/form.py
Python
gpl-2.0
11,838
[ "VisIt" ]
c09a6e51e2deb8bbf0164a2a319ea35b615b7e7944631f86ff3332fa7fdd4db6
import math """ Parameters for instruments and Abins """ # Instruments constants ############################# # These parameters can be changed by a user if necessary fwhm = 3.0 # approximate value for the full width at half maximum for Gaussian experimental resolutions # TwoDMap instrument delta_width = 0.1 # width of narrow Gaussian which approximates Dirac delta # TOSCA instrument # TOSCA parameters for calculating Q^2 tosca_final_neutron_energy = 32.0 # Final energy on the crystal analyser in cm-1 tosca_cos_scattering_angle = math.cos(2.356) # Angle of the crystal analyser radians # TOSCA parameters for resolution function # sigma = tosca_a * omega * omega + tosca_b * omega + tosca_c # where sigma is width of Gaussian function tosca_a = 0.0000001 tosca_b = 0.005 tosca_c = 2.5 # Instruments constants end ########################## # Abins internal parameters ########################## # Parameters which can be changed by a user if necessary # name of the group in the hdf file in which extracted data from DFT phonon calculations are stored dft_group = "PhononAB" powder_data_group = "Powder" # name of the group where PowderData is stored crystal_data_group = "SingleCrystal" # name of the group where SingleCrystalData is stored s_data_group = "S" # name of the group where dynamical factor is stored pkt_per_peak = 50 # number of points for each peak broadened by the experimental resolution bin_width = 1.0 # defines width of bins used in rebinning of S max_wavenumber = 4100.0 # maximum wavenumber in cm^-1 taken into account while creating workspaces (exclusive) min_wavenumber = 0.0 # minimal wavenumber in cm^-1 taken into account while creating workspaces (exclusive) acoustic_phonon_threshold = 0.0 # frequencies below this value are treated as acoustic and neglected. # threshold expressed as a fraction of max S intensity below which S values are treated as zero s_relative_threshold = 0.01 # values of S below that value are considered to be zero (to be use in case threshold calculated from # s_relative_threshold is larger than s_absolute_threshold) s_absolute_threshold = 10e-8 optimal_size = 5000000 # this is used to create optimal size of chunk energies for which S is calculated # Actual chunk of energies < optimal_size threads = 3 # number of threads used in parallel calculations # Abins internal parameters end ###########################
wdzhou/mantid
scripts/AbinsModules/AbinsParameters.py
Python
gpl-3.0
2,417
[ "CRYSTAL", "DIRAC", "Gaussian" ]
e474c4cc085a7859ffa16f0a435408ca2be70cc8cb14fcb52e3334f9ea747007
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyPhonopy(PythonPackage): """Phonopy is an open source package for phonon calculations at harmonic and quasi-harmonic levels.""" homepage = "http://atztogo.github.io/phonopy/index.html" url = "http://sourceforge.net/projects/phonopy/files/phonopy/phonopy-1.10/phonopy-1.10.0.tar.gz" version('1.10.0', '973ed1bcea46e21b9bf747aab9061ff6') depends_on('py-numpy', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-pyyaml', type=('build', 'run'))
skosukhin/spack
var/spack/repos/builtin/packages/py-phonopy/package.py
Python
lgpl-2.1
1,833
[ "phonopy" ]
28fee2f0a1237a6e25f6fe5d93fe6a7d86c78c765455f148003886e122ee5de7
# -*- coding: utf-8 -*- # vi:si:et:sw=4:sts=4:ts=4 ## ## Copyright (C) 2012 Async Open Source <http://www.async.com.br> ## All rights reserved ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., or visit: http://www.gnu.org/. ## ## Author(s): Stoq Team <[email protected]> ## import mock from stoqlib.gui.dialogs.purchasedetails import PurchaseDetailsDialog from stoqlib.gui.editors.callseditor import CallsEditor from stoqlib.gui.editors.workordereditor import WorkOrderEditor from stoqlib.gui.test.uitestutils import GUITest from stoqlib.gui.widgets.webview import WebView class TestWebView(GUITest): @mock.patch('stoqlib.gui.widgets.webview.run_dialog') @mock.patch('stoqlib.gui.widgets.webview.api.new_store') def test_dialog_payment_details(self, new_store, run_dialog): new_store.return_value = self.store payment = self.create_payment() web_view = WebView() web_view.app = None with mock.patch.object(self.store, 'commit'): with mock.patch.object(self.store, 'close'): web_view._dialog_payment_details(id=payment.id) @mock.patch('stoqlib.gui.widgets.webview.run_dialog') @mock.patch('stoqlib.gui.widgets.webview.api.new_store') def test_dialog_purchase(self, new_store, run_dialog): new_store.return_value = self.store purchase = self.create_purchase_order() web_view = WebView() web_view.app = None with mock.patch.object(self.store, 'commit'): with mock.patch.object(self.store, 'close'): web_view._dialog_purchase(id=purchase.id) run_dialog.assert_called_once_with( PurchaseDetailsDialog, None, self.store, purchase) @mock.patch('stoqlib.gui.widgets.webview.run_dialog') @mock.patch('stoqlib.gui.widgets.webview.api.new_store') def test_dialog_call(self, new_store, run_dialog): new_store.return_value = self.store call = self.create_call() web_view = WebView() web_view.app = None with mock.patch.object(self.store, 'commit'): with mock.patch.object(self.store, 'close'): web_view._dialog_call(id=call.id) run_dialog.assert_called_once_with( CallsEditor, None, self.store, call, None, None) @mock.patch('stoqlib.gui.widgets.webview.run_dialog') @mock.patch('stoqlib.gui.widgets.webview.api.new_store') def test_dialog_work_order(self, new_store, run_dialog): new_store.return_value = self.store wo = self.create_workorder() web_view = WebView() web_view.app = None with mock.patch.object(self.store, 'commit'): with mock.patch.object(self.store, 'close'): web_view._dialog_work_order(id=wo.id) run_dialog.assert_called_once_with( WorkOrderEditor, None, self.store, wo, visual_mode=False) def test_show_in_payments_by_date(self): web_view = WebView() web_view.app = mock.Mock() web_view._show_in_payments_by_date('2013-1-1') web_view.app.window.run_application.assert_called_once_with( u'receivable', refresh=False) def test_show_out_payments_by_date(self): web_view = WebView() web_view.app = mock.Mock() web_view._show_out_payments_by_date('2013-1-1') web_view.app.window.run_application.assert_called_once_with( u'payable', refresh=False) def test_show_purchases_by_date(self): web_view = WebView() web_view.app = mock.Mock() web_view._show_purchases_by_date('2013-1-1') web_view.app.window.run_application.assert_called_once_with( u'purchase', refresh=False) def test_show_work_orders_by_date(self): web_view = WebView() web_view.app = mock.Mock() web_view._show_work_orders_by_date('2013-1-1') web_view.app.window.run_application.assert_called_once_with( u'services', refresh=False)
tiagocardosos/stoq
stoqlib/gui/test/test_widgets_webview.py
Python
gpl-2.0
4,647
[ "VisIt" ]
1fb6d4fbd640e2dcbd49545e530f5c4f28fbb82d7876526acb9754f7d3f9c316