Datasets:
ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'light source', 'Bi type in photocatalyst', 'Reaction medium', 'SBET (m2 /g)', 'loading (g/l)', 'CB edge(V)', 'irradiation time(h)', 'Main product', 'Yield (μmol/g/h)'}) and 10 missing columns ({'Preparation method', 'Reaction solution', 'Light intensity(W)', 'Ref', 'Calcination temperature(K)', 'Molecular formula', 'Photocatalyst dose(g L-1)', 'RH2(µmol h-1 g-1)', 'Calcination time(h)', 'Co-catalyst'}).
This happened while the csv dataset builder was generating data using
hf://datasets/kg4sci/CataTQA_Metadata/metadata/table_data/table10.csv (at revision 6f49b2b7b80c551a1c56830b9e567a7b32f38b46)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Bi type in photocatalyst: string
loading (g/l): double
SBET (m2 /g): double
Eg(eV): double
CB edge(V): string
light source: string
irradiation time(h): double
Reaction medium: string
Main product: string
Yield (μmol/g/h): double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1554
to
{'Molecular formula': Value(dtype='string', id=None), 'RH2(µmol h-1 g-1)': Value(dtype='float64', id=None), 'Eg(eV)': Value(dtype='float64', id=None), 'Preparation method': Value(dtype='string', id=None), 'Calcination temperature(K)': Value(dtype='float64', id=None), 'Calcination time(h)': Value(dtype='float64', id=None), 'Light intensity(W)': Value(dtype='string', id=None), 'Reaction solution': Value(dtype='string', id=None), 'Co-catalyst': Value(dtype='string', id=None), 'Photocatalyst dose(g L-1)': Value(dtype='float64', id=None), 'Ref': Value(dtype='string', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
builder._prepare_split(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'light source', 'Bi type in photocatalyst', 'Reaction medium', 'SBET (m2 /g)', 'loading (g/l)', 'CB edge(V)', 'irradiation time(h)', 'Main product', 'Yield (μmol/g/h)'}) and 10 missing columns ({'Preparation method', 'Reaction solution', 'Light intensity(W)', 'Ref', 'Calcination temperature(K)', 'Molecular formula', 'Photocatalyst dose(g L-1)', 'RH2(µmol h-1 g-1)', 'Calcination time(h)', 'Co-catalyst'}).
This happened while the csv dataset builder was generating data using
hf://datasets/kg4sci/CataTQA_Metadata/metadata/table_data/table10.csv (at revision 6f49b2b7b80c551a1c56830b9e567a7b32f38b46)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Molecular formula
string | RH2(µmol h-1 g-1)
float64 | Eg(eV)
float64 | Preparation method
string | Calcination temperature(K)
float64 | Calcination time(h)
float64 | Light intensity(W)
string | Reaction solution
string | Co-catalyst
string | Photocatalyst dose(g L-1)
float64 | Ref
string |
|---|---|---|---|---|---|---|---|---|---|---|
null | null | null | null | null | null | null | null | null | null | null |
BaTiO3
| 35
| 3
|
Solid state reaction
| 1,423
| 5
|
Xe lamp(300W),simulated sunlight
|
20% v/v CH3OH
|
Pt(0.4 wt%)
| 1.1
|
[1]
|
BaTi0.99Mo0.01O3
| 45
| 2.4
|
Solid state reaction
| 1,423
| 5
|
Xe lamp(300W),simulated sunlight
|
20% v/v CH3OH
|
Pt(0.4 wt%)
| 1.1
|
[1]
|
BaTi0.98Mo0.02O3
| 63
| 2.2
|
Solid state reaction
| 1,423
| 5
|
Xe lamp(300W),simulated sunlight
|
20% v/v CH3OH
|
Pt(0.4 wt%)
| 1.1
|
[1]
|
BaTi0.97Mo0.03O3
| 52
| 2.6
|
Solid state reaction
| 1,423
| 5
|
Xe lamp(300W),simulated sunlight
|
20% v/v CH3OH
|
Pt(0.4 wt%)
| 1.1
|
[1]
|
LaFeO3
| 144.7
| null |
Flux-growth
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[2]
|
LaFe0.85Ti0.15O3
| 309.3
| 2.1
|
Flux-growth
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[2]
|
La0.85Sr0.15FeO3
| 30.7
| null |
Flux-growth
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[2]
|
La0.9625Sr0.0375Fe0.8875Ti0.1125O3
| 62
| null |
Flux-growth
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[2]
|
La0.8875Sr0.1125Fe0.9625Ti0.0375O3
| 422.7
| null |
Flux-growth
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[2]
|
La0.925Sr0.075Fe0.925Ti0.075O3
| 554.7
| 2.1
|
Flux-growth
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[2]
|
Bi0.5Na0.5TiO3
| 325.4
| 2.92
|
Hydrothermal
| 433
| 24
|
Xe lamp(500W),346 nm±8.6 nm
|
20vol% CH3OH
|
Pt(3 wt%)
| 0.75
|
[3]
|
Sr0.9Bi0.1Ti0.9Fe0.1O3
| 47
| null |
Hydrothermal
| 473
| 48
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[4]
|
Sr0.8Bi0.2Ti0.8Fe0.2O3
| 45
| null |
Hydrothermal
| 473
| 48
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[4]
|
Sr0.7Bi0.3Ti0.7Fe0.3O3
| 25
| null |
Hydrothermal
| 473
| 48
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[4]
|
Sr0.6Bi0.4Ti0.6Fe0.4O3
| 50
| null |
Hydrothermal
| 473
| 48
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[4]
|
Sr0.5Bi0.5Ti0.5Fe0.5O3
| 20
| null |
Hydrothermal
| 473
| 48
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[4]
|
SrTiO3
| 202.6
| 3.25
|
Hydrothermal
| 423
| 10
|
Xe lamp(300W),320 nm <λ<780 nm
|
20% v/v CH3OH
|
Pt(1 wt%)
| 0.2
|
[5]
|
SrTiO3
| 106.8
| 3.25
|
Hydrothermal
| 453
| 10
|
Xe lamp(300W),320 nm <λ<780 nm
|
20% v/v CH3OH
|
Pt(1 wt%)
| 0.2
|
[5]
|
SrTiO3
| 38.4
| 3.25
|
Solid state reaction
| 1,173
| 12
|
Xe lamp(300W),320 nm <λ<780 nm
|
20% v/v CH3OH
|
Pt(1 wt%)
| 0.2
|
[5]
|
SrTiO3
| null | 3.2
|
Polymerized complex
| 773
| null | null | null | null | null |
[6]
|
SrTi0.99Rh0.01O3
| 962
| null |
Polymerized complex
| 973
| null |
Xe lamp (300 W), 420 nm<λ<800 nm
|
20vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[6]
|
AgTaO3
| null | 3.4
|
Hydrothermal
| 1,123
| 24
| null | null | null | null |
[7]
|
AgTa0.8Nb0.2O3
| null | 3.1
|
Hydrothermal
| 1,123
| 24
| null | null | null | null |
[7]
|
AgTa0.7Nb0.3O3
| null | 2.9
|
Hydrothermal
| 1,123
| 24
| null | null | null | null |
[7]
|
AgTa0.6Nb0.4O3
| null | 2.9
|
Hydrothermal
| 1,123
| 24
| null | null | null | null |
[7]
|
AgNbO3
| null | 2.8
|
Hydrothermal
| 1,123
| 24
| null | null | null | null |
[7]
|
CaTiO3
| null | 3.6
|
Sol-gel
| 1,123
| 10
| null | null | null | null |
[8]
|
Ca0.98Ag0.01La0.01TiO3
| 2.6
| null |
Sol-gel
| 1,123
| 10
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
none
| 0.24
|
[8]
|
Ca0.96Ag0.02La0.02TiO3
| 2.9
| null |
Sol-gel
| 1,123
| 10
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
none
| 0.24
|
[8]
|
Ca0.94Ag0.03La0.03TiO3
| 10.1
| null |
Sol-gel
| 1,123
| 10
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
none
| 0.24
|
[8]
|
Ca0.92Ag0.04La0.04TiO3
| 4.1
| null |
Sol-gel
| 1,123
| 10
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
none
| 0.24
|
[8]
|
BaTiO3
| 8
| 3
|
Polymerized complex
| 823
| 5
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
BaTi0.999Rh0.001O3
| 10
| null |
Polymerized complex
| 823
| 5
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
BaTi0.995Rh0.005O3
| 64
| null |
Polymerized complex
| 823
| 5
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
BaTi0.99Rh0.01O3
| 308
| null |
Polymerized complex
| 823
| 5
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
BaTi0.98Rh0.02O3
| 241
| null |
Polymerized complex
| 823
| 5
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
BaTi0.95Rh0.05O3
| 199
| null |
Polymerized complex
| 823
| 5
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
BaTi0.99Rh0.01O3
| 48
| null |
Solid state reaction
| 1,273
| 10
|
Xe lamp (300 W), λ > 420 nm
|
10vol% CH3OH
|
Pt(0.25 wt%)
| 1
|
[9]
|
SrSnO3
| null | 4.01
|
Solid state reaction
| 1,373
| 6
| null | null | null | null |
[10]
|
SrSnO3
| null | 4.04
|
Wet chemical reaction
| 973
| 6
| null | null | null | null |
[10]
|
CaTi0.99Cu0.01O3
| 6.2
| null |
Sol-gel
| 1,123
| 7
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
NiOx
| 0.24
|
[11]
|
CaTi0.98Cu0.02O3
| 22.7
| null |
Sol-gel
| 1,123
| 7
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
NiOx
| 0.24
|
[11]
|
CaTi0.97Cu0.03O3
| 12.3
| null |
Sol-gel
| 1,123
| 7
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
NiOx
| 0.24
|
[11]
|
CaTi0.96Cu0.04O3
| 8.1
| null |
Sol-gel
| 1,123
| 7
|
Xe lamp (350 W), λ > 400 nm
|
5% v/v CH3OH
|
NiOx
| 0.24
|
[11]
|
Sr2/3Zn1/3TiO3
| null | 3.15
|
Sol-gel
| 1,173
| 5
| null | null | null | null |
[12]
|
Ba5/6Zn1/6TiO3
| null | 3.2
|
Polymerized complex Sol-gel method
| 1,173
| 5
| null | null | null | null |
[12]
|
NaTaO3
| null | 3.94
|
Solvo-combustion
| 453
| 2
| null | null | null | null |
[13]
|
NaTaO3
| null | 3.98
|
Solvo-combustion
| 673
| 2
| null | null | null | null |
[13]
|
NaTaO3
| null | 4.01
|
Solvo-combustion
| 873
| 2
| null | null | null | null |
[13]
|
NaTaO3
| null | 4
|
Solvo-combustion
| 973
| 2
| null | null | null | null |
[13]
|
SrTiO3
| null | 3.22
|
Sol-gel
| 1,173
| 4
| null | null | null | null |
[14]
|
NaTaO3
| null | 3.97
|
Molten salt method
| 1,023
| 2
| null | null | null | null |
[15]
|
NaNb0.5Ta0.5O3
| null | 3.43
|
Molten salt method
| 1,023
| 2
| null | null | null | null |
[15]
|
Ca0.9La0.1Ti0.9Cr0.1O3
| null | 2.49
|
Hydrothermal
| 473
| 48
| null | null | null | null |
[16]
|
Sr0.9La0.1Ti0.9Cr0.1O3
| 28.8
| 2.31
|
Hydrothermal
| 473
| 48
|
Xe lamp (300 W),λ ≥ 400 nm
|
10%v/v CH3OH+4g NaOH
|
Pt(1 wt%)
| 1
|
[16]
|
Ba0.9La0.1Ti0.9Cr0.1O3
| null | 2.52
|
Hydrothermal
| 473
| 48
| null | null | null | null |
[16]
|
c-NaNbO3
| 423.3
| 3.29
|
Furfural alcohol derived polymerization-oxidation
| 873
| 5
|
Xe lamp (300 W), λ > 300 nm
|
5/22 v/v CH3OH
|
Pt(1 wt%)
| 1.1
|
[17]
|
o-NaNbO3
| 241
| 3.45
|
Polymerized complex
| 873
| 2
|
Xe lamp (300 W), λ > 300 nm
|
5/22 v/v CH3OH
|
Pt(1 wt%)
| 1.1
|
[17]
|
NaTaO3
| null | 4.01
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
NaTa0.975Bi0.025O3
| null | 3.65
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
NaTa0.95Bi0.05O3
| null | 3.05
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
NaTa0.925Bi0.075O3
| null | 2.95
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
Na0.975Bi0.025TaO3
| null | 3.75
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
Na0.95Bi0.05TaO3
| null | 3.65
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
Na0.925Bi0.075TaO3
| null | 3.65
|
Solid state reaction
| 1,173
| 10
| null | null | null | null |
[18]
|
Sr0.95Cr0.05TiO3
| 84
| 2.3
|
Solid state reaction
| 1,373
| 24
|
Xe lamp (300 W), λ≥420 nm
|
5/22 v/v CH3OH
|
Pt(0.6 wt%)
| 0.93
|
[19]
|
Sr0.95Cr0.05TiO3
| 26.8
| 2.3
|
Sol-gel hydrothermal method
| 353
| 24
|
Xe lamp (300 W), λ≥420 nm
|
5/22 v/v CH3OH
|
Pt(0.6 wt%)
| 0.93
|
[19]
|
Sr0.95Cr0.05TiO3
| 101.6
| 2.3
|
Sol-gel hydrothermal method
| 393
| 24
|
Xe lamp (300 W), λ≥420 nm
|
5/22 v/v CH3OH
|
Pt(0.6 wt%)
| 0.93
|
[19]
|
Sr0.95Cr0.05TiO3
| 137.2
| 2.3
|
Sol-gel hydrothermal method
| 433
| 24
|
Xe lamp (300 W), λ≥420 nm
|
5/22 v/v CH3OH
|
Pt(0.6 wt%)
| 0.93
|
[19]
|
Sr0.95Cr0.05TiO3
| 160.4
| 2.3
|
Sol-gel hydrothermal method
| 473
| 24
|
Xe lamp (300 W), λ≥420 nm
|
5/22 v/v CH3OH
|
Pt(0.6 wt%)
| 0.93
|
[19]
|
Sr0.95Cr0.05TiO3
| 330.4
| 2.3
|
Sol-gel hydrothermal method
| 473
| 24
|
Xe lamp (300 W), λ≥420 nm
|
5/22 v/v CH3OH
|
Pt(0.6 wt%)
| 0.93
|
[19]
|
SrTiO3
| null | 3.23
|
Sol-gel
| 973
| 4
| null | null | null | null |
[20]
|
SrTiO3
| null | 3.1
|
Polymerized complex
| 773
| 5
| null | null | null | null |
[21]
|
SrTiO3
| null | 3.1
|
Polymerized complex
| 873
| 5
| null | null | null | null |
[21]
|
SrTiO3
| null | 3.1
|
Polymerized complex
| 973
| 5
| null | null | null | null |
[21]
|
SrTiO3
| null | 3.1
|
Polymerized complex
| 1,073
| 5
| null | null | null | null |
[21]
|
SrTiO3
| null | 3.1
|
Polymerized complex
| 1,273
| 5
| null | null | null | null |
[21]
|
SrTiO3
| null | 3.1
|
Solid state reaction
| 1,073
| 5
| null | null | null | null |
[21]
|
SrTiO3
| null | 2
|
Milling assistant method
| 1,073
| 2
| null | null | null | null |
[21]
|
SrTi0.99Al0.01O3
| 347
| 3.45
|
Solid state reaction
| 1,273
| 10
|
Xe lamp (150 W), UV visible
|
30%vol CH3CHOHCH3
|
Au(0.25%)
| 2.5
|
[22]
|
SrTiO3
| null | 3.3
|
Solid state reaction
| 1,273
| 10
| null | null | null | null |
[22]
|
SrTi0.995Al0.005O3
| null | 3.4
|
Solid state reaction
| 1,273
| 10
| null | null | null | null |
[22]
|
SrTi0.985Al0.015O3
| null | 3.45
|
Solid state reaction
| 1,273
| 10
| null | null | null | null |
[22]
|
SrTiO3
| 188
| 3.16
|
Sol-gel
| 973
| 4
|
Xe lamp (300 W), λ≥400 nm
|
50vol% CH3OH
|
Pt(0.5 wt%)
| 1
|
[23]
|
SrTi0.9Cr0.1O3−δ
| null | 2.31
|
Solid state reaction
| 1,573
| 20
| null | null | null | null |
[24]
|
La0.1Sr0.9Ti0.9Cr0.1O3
| null | 2.11
|
Solid state reaction
| 1,573
| 20
| null | null | null | null |
[24]
|
SrTiO3
| null | 3.25
|
Solid state reaction
| 1,573
| 20
| null | null | null | null |
[24]
|
LaFeO3
| 8,600
| 2.11
|
Sol-gel auto-combustion
| 773
| 2
|
Hg visible lamp(120W),(λ >> 420 nm)
|
10vol% CH3OH
| null | 2.5
|
[25]
|
LaFeO3
| 7,866.7
| 2.1
|
Sol-gel auto-combustion
| 873
| 2
|
Hg visible lamp(120W),(λ >> 420 nm)
|
10vol% CH3OH
| null | 2.5
|
[25]
|
LaFeO3
| 6,933.3
| 2.09
|
Sol-gel auto-combustion
| 973
| 2
|
Hg visible lamp(120W),(λ >> 420 nm)
|
10vol% CH3OH
| null | 2.5
|
[25]
|
LaFeO3
| 6,066.7
| 2.08
|
Sol-gel auto-combustion
| 1,073
| 2
|
Hg visible lamp(120W),(λ >> 420 nm)
|
10vol% CH3OH
| null | 2.5
|
[25]
|
LaFeO3
| 5,466.7
| 2.07
|
Sol-gel auto-combustion
| 1,173
| 2
|
Hg visible lamp(120W),(λ >> 420 nm)
|
10vol% CH3OH
| null | 2.5
|
[25]
|
CaZrO3
| 12.4
| 4
|
Polymerized complex
| 923
| 6
|
Xe lamp (300 W), λ > 420 nm
|
12.5%v/v HCOOH
|
Pt(1 wt%)
| 0.56
|
[26]
|
CaTiO3
| null | 3.52
|
Template-free hydrothermal method
| 453
| 15
| null | null | null | null |
[27]
|
Ca0.95La0.05Ti0.95Cr0.05O3
| 98
| 2.49
|
Template-free hydrothermal method
| 453
| 15
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[27]
|
Ca0.9La0.1Ti0.9Cr0.1O3
| 110
| 2.48
|
Template-free hydrothermal method
| 453
| 15
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[27]
|
Ca0.8La0.2Ti0.8Cr0.2O3
| 164
| 2.5
|
Template-free hydrothermal method
| 453
| 15
|
Hg lamp (500 W),λ ≥ 400 nm
|
0.05M Na2SO3
|
Pt(1 wt%)
| 1
|
[27]
|
NaTaO3
| null | 3.96
|
Spray pyrolysis
| 1,173
| null | null | null | null | null |
[28]
|
NaBi0.06Ta0.94O3
| null | 2.96
|
Spray pyrolysis
| 1,173
| null | null | null | null | null |
[28]
|
End of preview.
CataTQA metadata info
| Domain | Dataset or Paper Name | Access URL | DOI | Rename in Our Dataset |
|---|---|---|---|---|
| photocatalysis | Machine learning aided design of perovskite oxide materials for photocatalytic water splitting | https://www.sciencedirect.com/science/article/pii/S2095495621000644#s0090 | 10.1016/j.jechem.2021.01.035 | table1 table2 table3 |
| photocatalysis | Data mining in photocatalytic water splitting over perovskites literature for higher hydrogen production | https://www.sciencedirect.com/science/article/pii/S0926337318309470#sec0130 | 10.1016/j.apcatb.2018.09.104 | table4 table5 |
| photocatalysis | An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique | https://www.nature.com/articles/s41598-022-10563-8#Sec10 | 10.1038/s41598-022-10563-8 | table6 |
| photocatalysis | Analysis of photocatalytic CO2 reduction over MOFs using machine learning | https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07001h | 10.1039/D3TA07001H | table7 |
| photocatalysis | Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst | https://www.sciencedirect.com/science/article/pii/S2214714422005700#s0055 | 10.1016/j.jwpe.2022.103126 | table8 |
| photocatalysis | A generalized predictive model for TiO2–Catalyzed photo-degradation rate constants of water contaminants through ANN | https://www.sciencedirect.com/science/article/pii/S0013935120305909 | 10.1016/j.envres.2020.109697 | table9 |
| photocatalysis | Statistical information review of CO2 photocatalytic reduction via bismuth-based photocatalysts using ANN | https://www.sciencedirect.com/science/article/pii/S1110016824008640?via%3Dihub | 10.1016/j.aej.2024.07.120 | table10 |
| photocatalysis | Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques | https://www.mdpi.com/1996-1944/17/12/3026 | 10.3390/ma17123026 | table11 |
| electrocatalysis | Building Blocks for High Performance in Electrocatalytic CO2 Reduction | https://acs.figshare.com/articles/dataset/Building_Blocks_for_High_Performance_in_Electrocatalytic_CO_sub_2_sub_Reduction/5293804 | 10.1021/acs.jpclett.7b01380 | table12 |
| electrocatalysis | Unlocking New Insights for Electrocatalyst Design: A Unique Data Science Workflow | https://github.com/ruiding-uchicago/InCrEDible-MaT-GO | 10.1021/acscatal.3c01914 | table13 |
| electrocatalysis | Perovskite-based electrocatalyst discovery and design using word embeddings from retrained SciBERT | https://github.com/arunm917/Perovskite-based-electrocatalyst-design-and-discovery | - | table14 |
| electrocatalysis | Exploring the Composition Space of High-Entropy Alloy Nanoparticles with Bayesian Optimization | https://github.com/vamints/Scripts_BayesOpt_PtRuPdRhAu_paper | 10.1021/acscatal.2c02563 | table15 |
| electrocatalysis | High Throughput Discovery of Complex Metal Oxide Electrocatalysts for Oxygen Reduction Reaction | https://data.caltech.edu/records/1km87-52j70 | 10.1007/s12678-021-00694-3 | table16 |
| photoelectrocatalysis | High-thoughput OCM data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/21010bbe-0a5c-4d12-a5fa-84eea540e4be/ | 10.1021/acscatal.9b04293 | table17 |
| photoelectrocatalysis | CatApp Data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/20de069b-53cf-4310-9090-1738f53231e2/ | 10.1002/anie.201107947 | table18 |
| photoelectrocatalysis | Oxidative Coupling of Methane | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/9436f770-a7e2-4e87-989b-c5a9ce2312bf/ | 10.1002/cctc.202001032 | table19 |
| photoelectrocatalysis | ChemCatChem | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/224dd7ad-7677-4161-b744-a0c796bf5347/ | 10.1002/cctc.201100186 | table20 |
| photoelectrocatalysis | HTP OCM data obtained with catalysts designed on the basis of heuristics derived from random catalyst data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/92200ba4-7644-44ca-9801-ed3cc52fc32f/ | 10.1002/cctc.202100460 | table21 |
| photoelectrocatalysis | Perovskite Data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f1b42c58-a423-4ec2-8bcf-e66c6470ff7d/ | 10.1039/C2EE22341D | table22 |
| photoelectrocatalysis | Random catalyst OCM data by HTE | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f7e30001-e440-4c1a-be64-ea866b2f77cb/ | 10.1021/acscatal.0c04629 | table23 |
| photoelectrocatalysis | Synthesis of Heterogeneous Catalysts in Catalyst Informatics to Bridge Experiment and High-Throughput Calculation | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/f2a6d4f2-91be-48ba-bf13-ffebbd90f6ee/ | 10.1021/jacs.2c06143 | table24 |
| photoelectrocatalysis | Multi-component La2O3- based catalysts in OCM | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/d6347fc1-e4d7-412e-aed5-a8ffa415a703/ | 10.1039/D1CY02206G | table25 |
| photoelectrocatalysis | Catalyst Modification in OCM via Manganese Promoter | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/32dbec2c-c3d5-43ec-962a-90dba719bb44/ | 10.1021/acs.iecr.1c05079 | table26 |
| photoelectrocatalysis | Leveraging Machine Learning Engineering to Uncover Insights in Heterogeneous Catalyst Design for OCM | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/d84c1e22-ceb9-488a-8d45-4c7cf1c603b5/ | 10.1039/D3CY00596H | table27 |
| photoelectrocatalysis | Oxidative of Coupling Literature and Highthroughput Data | https://cads.eng.hokudai.ac.jp/datamanagement/datasources/adb27910-d0e5-4a22-9415-580bf597035a/ | 10.1021/acscatal.0c04629, 10.1002/cctc.201100186 | table28 |
| photoelectrocatalysis | Catalytic Material Database | http://cmd.us.edu.pl/catalog/ | - | table29 |
| photoelectrocatalysis | Catalyst Hub | http://www.catalysthub.net/ | - | table31 |
| magnetic material | Magnetic Database | https://doi.org/10.15131/shef.data.24008055.v1 | 10.1063/9.0000657 | table32 |
| magnetic material | Materials database of Curie and Néel magnetic phase transition temperatures | https://doi.org/10.6084/m9.figshare.5702740.v1 | 10.1038/sdata.2018.111 | table33 |
| magnetic material | Data-driven design of molecular nanomagnets | https://go.uv.es/rosaleny/SIMDAVIS | 10.1038/s41467-022-35336-9 | table34 |
| perovskite | Predicting the thermodynamic stability of perovskite oxides using machine learning models | https://doi.org/10.1016/j.dib.2018.05.007 | - | table35 table36 table37 |
| others | Crystallography Open Database(COD) | http://www.crystallography.net/cod/ | - | table38 |
| others | Alloy synthesis and processing by semi-supervised text mining | https://www.nature.com/articles/s41524-023-01138-w | 10.1038/s41524-023-01138-w | table39 |
| others | A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction | https://github.com/olivettigroup/table_extractor | 10.1021/acscentsci.9b00193 | table40 |
| others | ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters | https://github.com/eltonpan/zeosyn_dataset | 10.1021/acscentsci.3c01615 | table41 |
| others | Unveiling the Potential of AI for Nanomaterial Morphology Prediction | https://github.com/acid-design-lab/Nanomaterial_Morphology_Prediction | 预印本:10.48550/arXiv.2406.02591 | table42 |
| others | AFLOW-2 CFID dataset 400k | https://doi.org/10.1016/j.commatsci.2012.02.005 | 10.1016/j.commatsci.2012.02.005 | table43 |
| others | Alexandria_DB PBE 3D all 5 million | https://alexandria.icams.rub.de/ | - | table44 |
| others | arXiv dataset 1.8 million | https://www.kaggle.com/Cornell-University/arxiv | - | table45 |
| others | CCCBDB dataset 1333 | https://cccbdb.nist.gov/ | - | table46 |
| others | 3D dataset 55k | https://www.nature.com/articles/s41524-020-00440-1 | 10.1038/s41524-020-00440-1 | table47 |
| others | 2D dataset 1.1k | https://www.nature.com/articles/s41524-020-00440-1 | 10.1038/s41524-020-00440-1 | table48 |
| others | halide perovskite dataset229 | https://doi.org/10.1039/D1EE02971A | 10.1039/D1EE02971A | table49 |
| others | hMOF dataset 137k | https://doi.org/10.1021/acs.jpcc.6b08729 | 10.1021/acs.jpcc.6b08729 | table50 |
| others | HOPV15 dataset 4.5k | https://www.nature.com/articles/sdata201686 | 10.1038/sdata.2016.86 | table51 |
| others | Surface property dataset 607 | https://doi.org/10.1039/D4DD00031E | 10.1039/D4DD00031E | table52 |
| others | JARVIS-FF 2k | https://www.nature.com/articles/s41524-020-00440-1 | 10.1038/s41524-020-00440-1 | table53 |
| others | MEGNET-3D CFID dataset 69k | - | - | table54 |
| others | Materials Project-3D CFID dataset 127k | https://next-gen.materialsproject.org/ | 10.1063/1.4812323 | table55 |
| others | Materials Project-3D CFID dataset 84k | - | - | table56 |
| others | OQMD-3D dataset 800k | https://www.oqmd.org/download/ | 10.1038/npjcompumats.2015.10 | table57 |
| others | Polymer genome 1k | https://datadryad.org/dataset/doi:10.5061/dryad.5ht3n | 10.1038/sdata.2016.12 | table58 |
| others | QETB dataset 860k | https://arxiv.org/abs/2112.11585 | 预印本:10.48550/arXiv.2112.11585 | table59 |
| others | QM9 dataset 130k, from DGL | https://www.nature.com/articles/sdata201422 | 10.1038/sdata.2014.22 | table60 |
| others | QM9 standardized dataset 130k | - | - | table61 |
| others | QMOF dataset 20k | https://www.cell.com/matter/fulltext/S2590-2385(21)00070-9 | 10.1016/j.matt.2021.02.015 | table62 |
| others | SNUMAT Hybrid functional dataset 10k | https://www.nature.com/articles/s41597-020-00723-8 | 10.1038/s41597-020-00723-8 | table63 |
| others | SSUB dataset 1726 | https://github.com/wolverton-research-group/qmpy | - | table64 |
| others | chem dataset 16414 | https://www.nature.com/articles/s41524-018-0085-8 | 10.1038/s41524-018-0085-8 | table65 |
| others | dataset 607 | https://doi.org/10.1039/D4DD00031E | 10.1039/D4DD00031E | table66 |
| others | 2DMatPedia dataset 6k | http://www.2dmatpedia.org/ | 10.1038/s41597-019-0097-3 | table67 |
| others | vacancy dataset 464 | https://doi.org/10.1063/5.0135382 | 10.1063/5.0135382 | table68 |
- Downloads last month
- 19