Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 9 new columns ({'VideoID', 'Source', 'BoxLeft', 'Clip ID', 'IdentityOrText', 'FrameNo', 'BoxRight', 'BoxBottom', 'BoxTop'}) and 2 missing columns ({'RefImage', 'CelebName'}).

This happened while the csv dataset builder was generating data using

hf://datasets/kv1388/FANVID-Face_and_License_Plate_Recognition_in_Low-Resolution_Videos/data/Combined_annotations_LR.csv (at revision 9f78110902e9219614a7ba0d274802bc943abd63)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Clip ID: int64
              Source: string
              IdentityOrText: string
              VideoID: string
              FrameNo: int64
              BoxLeft: double
              BoxRight: double
              BoxTop: double
              BoxBottom: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1303
              to
              {'CelebName': Value('string'), 'RefImage': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 9 new columns ({'VideoID', 'Source', 'BoxLeft', 'Clip ID', 'IdentityOrText', 'FrameNo', 'BoxRight', 'BoxBottom', 'BoxTop'}) and 2 missing columns ({'RefImage', 'CelebName'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/kv1388/FANVID-Face_and_License_Plate_Recognition_in_Low-Resolution_Videos/data/Combined_annotations_LR.csv (at revision 9f78110902e9219614a7ba0d274802bc943abd63)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

CelebName
string
RefImage
string
Chiwetel Ejiofor
https://resizing.flixste…247378_v9_bc.jpg
Deepika Padukone
https://media.themoviedb…BeLPK1ON7NBY.jpg
Priyanka Chopra
https://cdn.britannica.c…a-2020.jpg?w=300
Skai Jackson
https://cdn.24.co.za/fil…9e64ac7a0bf7.jpg
Roger Federer
https://a.espncdn.com/combiner/i?img=%2Fi%2Fheadshots%2Ftennis%2Fplayers%2Ffull%2F425.png
Coco Gauff
https://img.olympics.com/images/image/private/t_1-1_300/f_auto/primary/dmlz3iti2v60n27qqvpp
Naomi Osaka
https://asiasociety.org/…ka_Naomi_AGC.jpg
Anya Taylor-Joy
https://media.themoviedb…6JGAZqAVU4PL.jpg
Rihanna
https://cdn.britannica.c…-Fenty.jpg?w=300
Malala Yousafzai
https://alchetron.com/cd…-resize-750.jpeg
Elle Fanning
https://www.hollywoodrep…296&h=730&crop=1
Mohamed Salah
https://s.hs-data.com/bi…jpg?fallback=png
Keanu Reeves
https://i.guim.co.uk/img…s=none&crop=none
Michelle Yeoh
https://cdn.britannica.c…le-Yeoh-2022.jpg
Lupita Nyong'o
https://static.wikia.nocookie.net/headhuntershorrorhouse/images/a/a9/Lupita_Nyong%27o.jpg/revision/latest?cb=20200125181009
Hailee Steinfeld
https://upload.wikimedia…28cropped%29.jpg
Hasan Minhaj
https://www.harrywalker.…3746781858830000
Anggun
https://media.themoviedb…kGomZKLVXOp6.jpg
Chimamanda Ngozi Adichie
https://upload.wikimedia…e_%282015%29.png
Trevor Noah
https://www.speakersla.c…/Trevor-Noah.jpg
Idris Elba
https://d1nslcd7m2225b.c…s_94915_crop.jpg
Yara Shahidi
https://www.bringyourown…hidi-500x475.png
Angelique Kidjo
https://eteme5j4z9y.exac…&ssl=1&strip=all
Iman Vellani
https://i.pinimg.com/736…4aee2d57964e.jpg
Mahershala Ali
https://hips.hearstapps.…getty_images.jpg
Jungkook
https://i.pinimg.com/736…f399cac8809f.jpg
Scarlett Johansson
https://m.media-amazon.c…Mjpg_UX1000_.jpg
Jackie Chan
https://www.hollywoodrep…00&h=1126&crop=1
Dev Patel
https://resizing.flixste…518408_v9_bc.jpg
Lionel Messi
https://b.fssta.com/uplo…04.medium.74.png
Cristiano Ronaldo
https://img.a.transferma…4609670.jpg?lm=1
Barack Obama
https://upload.wikimedia…rack_Obama-2.jpg
Aishwarya Rai Bachchan
https://cdn.britannica.c…an-Rai.jpg?w=300
Awkwafina
https://cdn.britannica.c…a-2023.jpg?w=400
Salma Hayek
https://www.beautycrew.c…-p.jpg?width=450
Zayn Malik
https://pbs.twimg.com/media/GAXOl_6WcAAtMJv?format=jpg&name=small
Smriti Mandhana
https://upload.wikimedia…28cropped%29.jpg
Dwayne Johnson
https://media.themoviedb…pIK3Ew6cqotq.jpg
Avan Jogia
https://ntvb.tmsimg.com/….jpg?w=360&h=480
Daniel Kaluuya
https://image.tmdb.org/t…lhlYhc38nTwN.jpg
Emma Watson
https://media.vanityfair…on-new-cause.jpg
Simu Liu
https://cdn.britannica.c…r-2022.jpg?w=400
Will Smith
https://static.wikia.nocookie.net/disney/images/7/79/Will_Smith.jpg/revision/latest/scale-to-width-down/500?cb=20230822013430
Henry Cavill
https://hips.hearstapps.…top&resize=500:*
Zendaya
https://media.themoviedb…VOhFRRCcYSwq.jpg
Taika Waititi
https://cdn.britannica.c…i-2020.jpg?w=400
Tan France
https://hips.hearstapps.…g-1650640325.jpg
Henry Golding
https://ntvb.tmsimg.com/….jpg?w=400&h=533
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

FANVID: Face and License Plate Recognition in Low-Resolution Videos

Overview

FANVID is a benchmark dataset designed to advance research in face detection and matching and license plate recognition under challenging low-resolution surveillance video conditions. Unlike existing datasets, FANVID features faces and license plates that are unrecognizable in individual frames, encouraging models to leverage temporal context across video sequences for improved recognition.


Dataset Composition

  • Face Detection and Matching

    • Videos with low-resolution faces.
    • Task: Detect faces in video clips and match to high-resolution gallery mugshots.
    • Contains distractor faces to simulate real-world surveillance challenges.
  • License Plate Recognition

    • Vehicle videos with low-resolution license plates.
    • Task: Detect plates and transcribe text without prior knowledge of plate numbers.
    • Includes distractor license plates.

Annotations

  • Bounding boxes per frame for faces and license plates.
  • Frame-level indexing.
  • Identity labels for faces and ground-truth text for license plates.
  • All annotations are manually verified on high-resolution source videos, then downsampled to ensure targets are not clearly visible in any single frame.

Evaluation Metrics

  • Intersection-over-Union (IoU): Measures detection accuracy for bounding boxes.
  • Edit Distance: Evaluates OCR accuracy on license plate text.
  • Metrics are designed to prioritize accurate recognition while tolerating minor bounding box misalignments.

πŸš€ Quickstart

You can programmatically download and set up the FANVID dataset using the Hugging Face Hub:

from huggingface_hub import snapshot_download
import shutil

# Step 1: Download the dataset repository
repo_dir = snapshot_download(
    repo_id="kv1388/FANVID-Face_and_License_Plate_Recognition_in_Low-Resolution_Videos",
    repo_type="dataset"
)

# Step 2: Zip it (optional)
shutil.make_archive("FANVID_dataset", 'zip', repo_dir)

Then, from your terminal or notebook:

# Step 3: Unzip the dataset
unzip -q FANVID_dataset.zip -d FANVID_dataset

# Step 4: List extracted contents
ls FANVID_dataset

# Step 5: Install required tools
pip install yt_dlp

# Step 6: Download videos and metadata
python FANVID_dataset/assets/dataset_script_celebs.py
python FANVID_dataset/assets/download_script_lp.py

If there are any failed downloads logged, re-run:

python FANVID_dataset/assets/failed_LP_download.py

You can now begin using the dataset and verifying annotations:

  • Annotation files are stored in the FANVID_dataset/data/ folder.
  • Visualize and inspect using the Jupyter notebook:
jupyter notebook FANVID_dataset/assets/FaceTextRecBox.ipynb

Usage

  • Develop and benchmark video-based face and license plate recognition algorithms that utilize temporal context.
  • Test super-resolution, detection, and recognition models under real-world surveillance conditions.

Baselines

We provide baseline results using a pipeline combining state-of-the-art video super-resolution, detection, and recognition models. Code for evaluation and baseline implementation will be released shortly alongside the dataset.


License and Citation

  • License: [CC BY 4.0]
  • Citation:

If you use this dataset, please cite:

@misc{viswanathan2025fanvidbenchmarkfacelicense,
  title={FANVID: A Benchmark for Face and License Plate Recognition in Low-Resolution Videos},
  author={Kavitha Viswanathan and Vrinda Goel and Shlesh Gholap and Devayan Ghosh and Madhav Gupta and Dhruvi Ganatra and Sanket Potdar and Amit Sethi},
  year={2025},
  eprint={2506.07304},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2506.07304}
}

Contact

For questions or collaboration, please contact: [[email protected]]

Downloads last month
48