The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'VideoID', 'Source', 'BoxLeft', 'Clip ID', 'IdentityOrText', 'FrameNo', 'BoxRight', 'BoxBottom', 'BoxTop'}) and 2 missing columns ({'RefImage', 'CelebName'}).
This happened while the csv dataset builder was generating data using
hf://datasets/kv1388/FANVID-Face_and_License_Plate_Recognition_in_Low-Resolution_Videos/data/Combined_annotations_LR.csv (at revision 9f78110902e9219614a7ba0d274802bc943abd63)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Clip ID: int64
Source: string
IdentityOrText: string
VideoID: string
FrameNo: int64
BoxLeft: double
BoxRight: double
BoxTop: double
BoxBottom: double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1303
to
{'CelebName': Value('string'), 'RefImage': Value('string')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'VideoID', 'Source', 'BoxLeft', 'Clip ID', 'IdentityOrText', 'FrameNo', 'BoxRight', 'BoxBottom', 'BoxTop'}) and 2 missing columns ({'RefImage', 'CelebName'}).
This happened while the csv dataset builder was generating data using
hf://datasets/kv1388/FANVID-Face_and_License_Plate_Recognition_in_Low-Resolution_Videos/data/Combined_annotations_LR.csv (at revision 9f78110902e9219614a7ba0d274802bc943abd63)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
CelebName
string | RefImage
string |
|---|---|
Chiwetel Ejiofor
| |
Deepika Padukone
| |
Priyanka Chopra
| |
Skai Jackson
| |
Roger Federer
|
https://a.espncdn.com/combiner/i?img=%2Fi%2Fheadshots%2Ftennis%2Fplayers%2Ffull%2F425.png
|
Coco Gauff
|
https://img.olympics.com/images/image/private/t_1-1_300/f_auto/primary/dmlz3iti2v60n27qqvpp
|
Naomi Osaka
| |
Anya Taylor-Joy
| |
Rihanna
| |
Malala Yousafzai
| |
Elle Fanning
| |
Mohamed Salah
| |
Keanu Reeves
| |
Michelle Yeoh
| |
Lupita Nyong'o
|
https://static.wikia.nocookie.net/headhuntershorrorhouse/images/a/a9/Lupita_Nyong%27o.jpg/revision/latest?cb=20200125181009
|
Hailee Steinfeld
| |
Hasan Minhaj
| |
Anggun
| |
Chimamanda Ngozi Adichie
| |
Trevor Noah
| |
Idris Elba
| |
Yara Shahidi
| |
Angelique Kidjo
| |
Iman Vellani
| |
Mahershala Ali
| |
Jungkook
| |
Scarlett Johansson
| |
Jackie Chan
| |
Dev Patel
| |
Lionel Messi
| |
Cristiano Ronaldo
| |
Barack Obama
| |
Aishwarya Rai Bachchan
| |
Awkwafina
| |
Salma Hayek
| |
Zayn Malik
|
https://pbs.twimg.com/media/GAXOl_6WcAAtMJv?format=jpg&name=small
|
Smriti Mandhana
| |
Dwayne Johnson
| |
Avan Jogia
| |
Daniel Kaluuya
| |
Emma Watson
| |
Simu Liu
| |
Will Smith
|
https://static.wikia.nocookie.net/disney/images/7/79/Will_Smith.jpg/revision/latest/scale-to-width-down/500?cb=20230822013430
|
Henry Cavill
| |
Zendaya
| |
Taika Waititi
| |
Tan France
| |
Henry Golding
| |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
null | null |
FANVID: Face and License Plate Recognition in Low-Resolution Videos
Overview
FANVID is a benchmark dataset designed to advance research in face detection and matching and license plate recognition under challenging low-resolution surveillance video conditions. Unlike existing datasets, FANVID features faces and license plates that are unrecognizable in individual frames, encouraging models to leverage temporal context across video sequences for improved recognition.
Dataset Composition
Face Detection and Matching
- Videos with low-resolution faces.
- Task: Detect faces in video clips and match to high-resolution gallery mugshots.
- Contains distractor faces to simulate real-world surveillance challenges.
License Plate Recognition
- Vehicle videos with low-resolution license plates.
- Task: Detect plates and transcribe text without prior knowledge of plate numbers.
- Includes distractor license plates.
Annotations
- Bounding boxes per frame for faces and license plates.
- Frame-level indexing.
- Identity labels for faces and ground-truth text for license plates.
- All annotations are manually verified on high-resolution source videos, then downsampled to ensure targets are not clearly visible in any single frame.
Evaluation Metrics
- Intersection-over-Union (IoU): Measures detection accuracy for bounding boxes.
- Edit Distance: Evaluates OCR accuracy on license plate text.
- Metrics are designed to prioritize accurate recognition while tolerating minor bounding box misalignments.
π Quickstart
You can programmatically download and set up the FANVID dataset using the Hugging Face Hub:
from huggingface_hub import snapshot_download
import shutil
# Step 1: Download the dataset repository
repo_dir = snapshot_download(
repo_id="kv1388/FANVID-Face_and_License_Plate_Recognition_in_Low-Resolution_Videos",
repo_type="dataset"
)
# Step 2: Zip it (optional)
shutil.make_archive("FANVID_dataset", 'zip', repo_dir)
Then, from your terminal or notebook:
# Step 3: Unzip the dataset
unzip -q FANVID_dataset.zip -d FANVID_dataset
# Step 4: List extracted contents
ls FANVID_dataset
# Step 5: Install required tools
pip install yt_dlp
# Step 6: Download videos and metadata
python FANVID_dataset/assets/dataset_script_celebs.py
python FANVID_dataset/assets/download_script_lp.py
If there are any failed downloads logged, re-run:
python FANVID_dataset/assets/failed_LP_download.py
You can now begin using the dataset and verifying annotations:
- Annotation files are stored in the
FANVID_dataset/data/folder. - Visualize and inspect using the Jupyter notebook:
jupyter notebook FANVID_dataset/assets/FaceTextRecBox.ipynb
Usage
- Develop and benchmark video-based face and license plate recognition algorithms that utilize temporal context.
- Test super-resolution, detection, and recognition models under real-world surveillance conditions.
Baselines
We provide baseline results using a pipeline combining state-of-the-art video super-resolution, detection, and recognition models. Code for evaluation and baseline implementation will be released shortly alongside the dataset.
License and Citation
- License: [CC BY 4.0]
- Citation:
If you use this dataset, please cite:
@misc{viswanathan2025fanvidbenchmarkfacelicense,
title={FANVID: A Benchmark for Face and License Plate Recognition in Low-Resolution Videos},
author={Kavitha Viswanathan and Vrinda Goel and Shlesh Gholap and Devayan Ghosh and Madhav Gupta and Dhruvi Ganatra and Sanket Potdar and Amit Sethi},
year={2025},
eprint={2506.07304},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2506.07304}
}
Contact
For questions or collaboration, please contact: [[email protected]]
- Downloads last month
- 48