Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
efb44bb verified
metadata
annotations_creators:
  - expert-annotated
language:
  - fas
  - rus
  - zho
license: odc-by
multilinguality: multilingual
source_datasets:
  - mteb/neuclir-2022
  - mteb/neuclir-2023-hard-negatives
task_categories:
  - text-retrieval
task_ids: []
dataset_info:
  - config_name: fas-corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 83757983
        num_examples: 15921
    download_size: 38473931
    dataset_size: 83757983
  - config_name: fas-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 1408660
        num_examples: 25612
    download_size: 976032
    dataset_size: 1408660
  - config_name: fas-queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 9573
        num_examples: 74
    download_size: 7005
    dataset_size: 9573
  - config_name: rus-corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 80653243
        num_examples: 16247
    download_size: 40100727
    dataset_size: 80653243
  - config_name: rus-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 1395955
        num_examples: 25381
    download_size: 968631
    dataset_size: 1395955
  - config_name: rus-queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 11051
        num_examples: 75
    download_size: 7939
    dataset_size: 11051
  - config_name: zho-corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 54494878
        num_examples: 17265
    download_size: 37483273
    dataset_size: 54494878
  - config_name: zho-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 1496330
        num_examples: 27206
    download_size: 1038588
    dataset_size: 1496330
  - config_name: zho-queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 5511
        num_examples: 75
    download_size: 5659
    dataset_size: 5511
configs:
  - config_name: fas-corpus
    data_files:
      - split: test
        path: fas-corpus/test-*
  - config_name: fas-qrels
    data_files:
      - split: test
        path: fas-qrels/test-*
  - config_name: fas-queries
    data_files:
      - split: test
        path: fas-queries/test-*
  - config_name: rus-corpus
    data_files:
      - split: test
        path: rus-corpus/test-*
  - config_name: rus-qrels
    data_files:
      - split: test
        path: rus-qrels/test-*
  - config_name: rus-queries
    data_files:
      - split: test
        path: rus-queries/test-*
  - config_name: zho-corpus
    data_files:
      - split: test
        path: zho-corpus/test-*
  - config_name: zho-qrels
    data_files:
      - split: test
        path: zho-qrels/test-*
  - config_name: zho-queries
    data_files:
      - split: test
        path: zho-queries/test-*
tags:
  - mteb
  - text

NeuCLIR2023RetrievalHardNegatives

An MTEB dataset
Massive Text Embedding Benchmark

The task involves identifying and retrieving the documents that are relevant to the queries. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.

Task category t2t
Domains News, Written
Reference https://neuclir.github.io/

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("NeuCLIR2023RetrievalHardNegatives")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{lawrie2024overview,
  archiveprefix = {arXiv},
  author = {Dawn Lawrie and Sean MacAvaney and James Mayfield and Paul McNamee and Douglas W. Oard and Luca Soldaini and Eugene Yang},
  eprint = {2404.08071},
  primaryclass = {cs.IR},
  title = {Overview of the TREC 2023 NeuCLIR Track},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("NeuCLIR2023RetrievalHardNegatives")

desc_stats = task.metadata.descriptive_stats
{}

This dataset card was automatically generated using MTEB