Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
TopiOCQA / README.md
Samoed's picture
Add dataset card
8d826e3 verified
|
raw
history blame
9.02 kB
metadata
annotations_creators:
  - human-annotated
language:
  - eng
license: cc-by-nc-sa-4.0
multilinguality: monolingual
source_datasets:
  - McGill-NLP/TopiOCQA
task_categories:
  - text-retrieval
  - conversational
  - utterance-retrieval
task_ids:
  - conversational
  - utterance-retrieval
dataset_info:
  - config_name: corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: validation
        num_bytes: 12968260233
        num_examples: 25700592
      - name: train
        num_bytes: 12968260233
        num_examples: 25700592
    download_size: 14919230284
    dataset_size: 25936520466
  - config_name: qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: validation
        num_bytes: 83677
        num_examples: 2514
      - name: train
        num_bytes: 1571297
        num_examples: 45450
    download_size: 579306
    dataset_size: 1654974
  - config_name: queries
    features:
      - name: id
        dtype: string
      - name: text
        sequence: string
    splits:
      - name: validation
        num_bytes: 1726530
        num_examples: 2514
      - name: train
        num_bytes: 34196732
        num_examples: 45450
    download_size: 4060070
    dataset_size: 35923262
configs:
  - config_name: corpus
    data_files:
      - split: validation
        path: corpus/validation-*
      - split: train
        path: corpus/train-*
  - config_name: qrels
    data_files:
      - split: validation
        path: qrels/validation-*
      - split: train
        path: qrels/train-*
  - config_name: queries
    data_files:
      - split: validation
        path: queries/validation-*
      - split: train
        path: queries/train-*
tags:
  - mteb
  - text

TopiOCQA

An MTEB dataset
Massive Text Embedding Benchmark

TopiOCQA (Human-in-the-loop Attributable Generative Retrieval for Information-seeking Dataset) is information-seeking conversational dataset with challenging topic switching phenomena. It consists of conversation histories along with manually labelled relevant/gold passage.

Task category t2t
Domains Encyclopaedic, Written
Reference https://mcgill-nlp.github.io/topiocqa

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("TopiOCQA")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{adlakha2022topiocqa,
  archiveprefix = {arXiv},
  author = {Vaibhav Adlakha and Shehzaad Dhuliawala and Kaheer Suleman and Harm de Vries and Siva Reddy},
  eprint = {2110.00768},
  primaryclass = {cs.CL},
  title = {TopiOCQA: Open-domain Conversational Question Answering with Topic Switching},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("TopiOCQA")

desc_stats = task.metadata.descriptive_stats
{
    "validation": {
        "num_samples": 25703106,
        "number_of_characters": 12335256444,
        "documents_text_statistics": {
            "total_text_length": 12333632081,
            "min_text_length": 13,
            "average_text_length": 479.8968086416064,
            "max_text_length": 28111,
            "unique_texts": 25700581
        },
        "documents_image_statistics": null,
        "queries_text_statistics": {
            "total_text_length": 1624363,
            "min_text_length": 14,
            "average_text_length": 646.1268894192522,
            "max_text_length": 2602,
            "unique_texts": 2514
        },
        "queries_image_statistics": null,
        "relevant_docs_statistics": {
            "num_relevant_docs": 2514,
            "min_relevant_docs_per_query": 1,
            "average_relevant_docs_per_query": 1.0,
            "max_relevant_docs_per_query": 1,
            "unique_relevant_docs": 1940
        },
        "top_ranked_statistics": null
    },
    "train": {
        "num_samples": 25746042,
        "number_of_characters": 12365824509,
        "documents_text_statistics": {
            "total_text_length": 12333632081,
            "min_text_length": 13,
            "average_text_length": 479.8968086416064,
            "max_text_length": 28111,
            "unique_texts": 25700581
        },
        "documents_image_statistics": null,
        "queries_text_statistics": {
            "total_text_length": 32192428,
            "min_text_length": 11,
            "average_text_length": 708.3042464246424,
            "max_text_length": 4668,
            "unique_texts": 45305
        },
        "queries_image_statistics": null,
        "relevant_docs_statistics": {
            "num_relevant_docs": 45450,
            "min_relevant_docs_per_query": 1,
            "average_relevant_docs_per_query": 1.0,
            "max_relevant_docs_per_query": 1,
            "unique_relevant_docs": 29788
        },
        "top_ranked_statistics": null
    }
}

This dataset card was automatically generated using MTEB