Datasets:
mteb
/

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
298
300
id
stringlengths
17
20
text
null
modality
stringclasses
1 value
corpus-wit-test_222
null
image
corpus-wit-test_6929
null
image
corpus-wit-test_1282
null
image
corpus-wit-test_3582
null
image
corpus-wit-test_3092
null
image
corpus-wit-test_2716
null
image
corpus-wit-test_2274
null
image
corpus-wit-test_5434
null
image
corpus-wit-test_2167
null
image
corpus-wit-test_7606
null
image
corpus-wit-test_3514
null
image
corpus-wit-test_1792
null
image
corpus-wit-test_3197
null
image
corpus-wit-test_4010
null
image
corpus-wit-test_2885
null
image
corpus-wit-test_2691
null
image
corpus-wit-test_3788
null
image
corpus-wit-test_3160
null
image
corpus-wit-test_4088
null
image
corpus-wit-test_2433
null
image
corpus-wit-test_6336
null
image
corpus-wit-test_3293
null
image
corpus-wit-test_7236
null
image
corpus-wit-test_8382
null
image
corpus-wit-test_1884
null
image
corpus-wit-test_8101
null
image
corpus-wit-test_2913
null
image
corpus-wit-test_585
null
image
corpus-wit-test_1124
null
image
corpus-wit-test_3689
null
image
corpus-wit-test_4368
null
image
corpus-wit-test_7274
null
image
corpus-wit-test_2869
null
image
corpus-wit-test_4575
null
image
corpus-wit-test_3191
null
image
corpus-wit-test_7545
null
image
corpus-wit-test_5764
null
image
corpus-wit-test_8474
null
image
corpus-wit-test_2990
null
image
corpus-wit-test_6009
null
image
corpus-wit-test_6668
null
image
corpus-wit-test_526
null
image
corpus-wit-test_1441
null
image
corpus-wit-test_2081
null
image
corpus-wit-test_5898
null
image
corpus-wit-test_6664
null
image
corpus-wit-test_1535
null
image
corpus-wit-test_2078
null
image
corpus-wit-test_1073
null
image
corpus-wit-test_5473
null
image
corpus-wit-test_7756
null
image
corpus-wit-test_3701
null
image
corpus-wit-test_2871
null
image
corpus-wit-test_4658
null
image
corpus-wit-test_2695
null
image
corpus-wit-test_2752
null
image
corpus-wit-test_1525
null
image
corpus-wit-test_7776
null
image
corpus-wit-test_2700
null
image
corpus-wit-test_6301
null
image
corpus-wit-test_6414
null
image
corpus-wit-test_1962
null
image
corpus-wit-test_3482
null
image
corpus-wit-test_1464
null
image
corpus-wit-test_8388
null
image
corpus-wit-test_8461
null
image
corpus-wit-test_2263
null
image
corpus-wit-test_5653
null
image
corpus-wit-test_6239
null
image
corpus-wit-test_7069
null
image
corpus-wit-test_1424
null
image
corpus-wit-test_7089
null
image
corpus-wit-test_2294
null
image
corpus-wit-test_3094
null
image
corpus-wit-test_3955
null
image
corpus-wit-test_4956
null
image
corpus-wit-test_570
null
image
corpus-wit-test_1501
null
image
corpus-wit-test_3089
null
image
corpus-wit-test_2619
null
image
corpus-wit-test_7596
null
image
corpus-wit-test_5882
null
image
corpus-wit-test_7949
null
image
corpus-wit-test_3840
null
image
corpus-wit-test_973
null
image
corpus-wit-test_3524
null
image
corpus-wit-test_6825
null
image
corpus-wit-test_7602
null
image
corpus-wit-test_2464
null
image
corpus-wit-test_6262
null
image
corpus-wit-test_401
null
image
corpus-wit-test_7385
null
image
corpus-wit-test_1488
null
image
corpus-wit-test_2277
null
image
corpus-wit-test_6812
null
image
corpus-wit-test_8130
null
image
corpus-wit-test_5721
null
image
corpus-wit-test_1871
null
image
corpus-wit-test_6010
null
image
corpus-wit-test_7209
null
image
End of preview. Expand in Data Studio

WITT2IRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

Retrieve images based on multilingual descriptions.

Task category t2i
Domains Encyclopaedic, Written
Reference https://proceedings.mlr.press/v162/bugliarello22a/bugliarello22a.pdf

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("WITT2IRetrieval")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{bugliarello2022iglue,
  author = {Bugliarello, Emanuele and Liu, Fangyu and Pfeiffer, Jonas and Reddy, Siva and Elliott, Desmond and Ponti, Edoardo Maria and Vuli{\'c}, Ivan},
  booktitle = {International Conference on Machine Learning},
  organization = {PMLR},
  pages = {2370--2392},
  title = {IGLUE: A benchmark for transfer learning across modalities, tasks, and languages},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("WITT2IRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "number_of_characters": 506601,
        "num_samples": 18137,
        "num_queries": 9584,
        "num_documents": 8553,
        "min_document_length": 0,
        "average_document_length": 0,
        "max_document_length": 0,
        "unique_documents": 0,
        "num_document_images": 8553,
        "min_query_length": 9,
        "average_query_length": 52.85903589315526,
        "max_query_length": 779,
        "unique_queries": 9076,
        "num_query_images": 0,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 8553
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
52