Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
23
4.02k
label
class label
33 classes
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
0block_alternate_black_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
1block_alternate_white_cm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
2block_black_cm_halfcm_mm
End of preview. Expand in Data Studio

LM2rulers38

The LM2rulers38 dataset contains cropped rulers from lots of herbarium specimens. Images are organized by ruler_class and split into train / val / test.

Structure

This repository uses the imagefolder format:

LM2rulers38/
└─ train/
    └─ <ruler_class>/*.jpg

└─ val/
    └─ <ruler_class>/*.jpg

└─ test/
    └─ <ruler_class>/*.jpg
  • Classes with fewer than 10 images were skipped.
  • For all included classes, an 80/10/10 split is created with at least 1 image per split per class (deterministic shuffling).

Stats

  • Classes included: 33
  • Images: train 9463, val 1171, test 1213

Loading

from datasets import load_dataset

ds = load_dataset("phyloforfun/LM2rulers38")
print(ds)
Downloads last month
21