Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
720
720
label
class label
20 classes
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
0block_alternate_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
1block_grayANDstaggered_cm
End of preview. Expand in Data Studio

LM2rulers38squarified

Squarified (720 px) variant of LM2rulers38. Images are organized by ruler_class and split into train / val / test.

Structure

This repository uses the imagefolder format:

LM2rulers38squarified/
└─ train/
    └─ <ruler_class>/*.jpg

└─ val/
    └─ <ruler_class>/*.jpg

└─ test/
    └─ <ruler_class>/*.jpg
  • Classes with fewer than 10 images were skipped.
  • For all included classes, an 80/10/10 split is created with at least 1 image per split per class (deterministic shuffling).

Stats

  • Classes included: 20
  • Images: train 8,478, val 1,052, test 1,077 (total 10,607)

Loading

from datasets import load_dataset

ds = load_dataset("phyloforfun/LM2rulers38squarified")
print(ds)
Downloads last month
50