metadata
language: en
tags:
- image-retrieval
- oxford5k
- paris6k
- revisitop1m
Dataset Card for RevisitOP (Oxford5k, Paris6k, RevisitOP1M)
Dataset Description
RevisitOP provides popular benchmark datasets for large-scale image retrieval research:
- roxford5k: Oxford 5k buildings dataset containing ~5,000 images.
- rparis6k: Paris 6k buildings dataset with ~6,000 images.
- revisitop1m: RevisitOP 1M distractor dataset with ~1 million distractor images.
- oxfordparis: Combination of Oxford 5k and Paris 6k datasets.
These datasets are widely used for evaluating image retrieval algorithms and contain real-world building photographs and distractors.
Dataset Features
Each example contains:
image(Image): An image file (JPEG or PNG).filename(string): The original filename of the image.dataset(string): The source dataset the image belongs to (roxford5k,rparis6k, orrevisitop1m).query_id(int32): Query ID for query images (-1 for database images).bbx(Sequence[float32]): Bounding box coordinates [x1, y1, x2, y2] for query images.easy(Sequence[int32]): Easy relevant images for queries.hard(Sequence[int32]): Hard relevant images for queries.junk(Sequence[int32]): Junk images for queries.
Dataset Splits
- qimlist: Query images with ground truth annotations (bounding boxes and relevance labels).
- imlist: Database images for retrieval.
Dataset Versions
- Version 1.0.0
Example Usage
Use the Hugging Face datasets library to load one of the configs:
import datasets
from aiohttp import ClientTimeout
dataset_name = "randall-lab/revisitop"
timeout_period = 500000 # very long timeout to prevent timeouts
storage_options = {"client_kwargs": {"timeout": ClientTimeout(total=timeout_period)}}
# These are the config names defined in the script
dataset_configs = ["roxford5k", "rparis6k", "oxfordparis"] # "revisitop1m" is large and may take a long time to load
# Load query split for evaluation
for i, config_name in enumerate(dataset_configs, start=1):
# Load query images
query_dataset = datasets.load_dataset(
path=dataset_name,
name=config_name,
split="qimlist",
trust_remote_code=True,
storage_options=storage_options,
)
# Load database images
db_dataset = datasets.load_dataset(
path=dataset_name,
name=config_name,
split="imlist",
trust_remote_code=True,
storage_options=storage_options,
)
# Example query image
query_example = query_dataset[0]
Dataset Structure
- The datasets consist of images downloaded and extracted from official URLs hosted by the Oxford Visual Geometry Group and the RevisitOP project.
- The
roxford5kandrparis6kdatasets come from.tgzarchives with corresponding.pklground truth files. - The
revisitop1mdataset consists of 100.tar.gzarchives with JPEG images as distractors. - The combined
oxfordparisdataset merges the Oxford and Paris sets. - Ground truth files contain query lists, database lists, and annotations (bounding boxes, easy/hard/junk labels).
Dataset Citation
If you use this dataset, please cite the original paper:
@inproceedings{Radenovic2018RevisitingOP,
title={Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking},
author={Filip Radenovic and Ahmet Iscen and Giorgos Tolias and Yannis Avrithis and Ondrej Chum},
year={2018}
}