dataset_info:
- config_name: continuation
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 163781224
num_examples: 138384
- name: test
num_bytes: 21361028
num_examples: 17944
download_size: 52682360
dataset_size: 185142252
- config_name: empirical_baselines
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 207372184
num_examples: 138384
- name: test
num_bytes: 27013388
num_examples: 17944
download_size: 56425268
dataset_size: 234385572
- config_name: ling_1s
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 309222808
num_examples: 138384
- name: test
num_bytes: 40220172
num_examples: 17944
download_size: 65291826
dataset_size: 349442980
- config_name: simple_instruct
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 185230744
num_examples: 138384
- name: test
num_bytes: 24142348
num_examples: 17944
download_size: 54649805
dataset_size: 209373092
- config_name: verb_1s_top1
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 289572280
num_examples: 138384
- name: test
num_bytes: 37672124
num_examples: 17944
download_size: 63239849
dataset_size: 327244404
- config_name: verb_1s_topk
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 349492552
num_examples: 138384
- name: test
num_bytes: 45441876
num_examples: 17944
download_size: 68254894
dataset_size: 394934428
- config_name: verb_2s_cot
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 276840952
num_examples: 138384
- name: test
num_bytes: 36021276
num_examples: 17944
download_size: 61791983
dataset_size: 312862228
- config_name: verb_2s_top1
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 207372184
num_examples: 138384
- name: test
num_bytes: 27013388
num_examples: 17944
download_size: 56425268
dataset_size: 234385572
- config_name: verb_2s_topk
features:
- name: input
dtype: string
- name: output
sequence: string
- name: stripped_input
dtype: string
splits:
- name: train
num_bytes: 235048984
num_examples: 138384
- name: test
num_bytes: 30602188
num_examples: 17944
download_size: 58757335
dataset_size: 265651172
configs:
- config_name: continuation
data_files:
- split: train
path: continuation/train-*
- split: test
path: continuation/test-*
- config_name: empirical_baselines
data_files:
- split: train
path: empirical_baselines/train-*
- split: test
path: empirical_baselines/test-*
- config_name: ling_1s
data_files:
- split: train
path: ling_1s/train-*
- split: test
path: ling_1s/test-*
- config_name: simple_instruct
data_files:
- split: train
path: simple_instruct/train-*
- split: test
path: simple_instruct/test-*
- config_name: verb_1s_top1
data_files:
- split: train
path: verb_1s_top1/train-*
- split: test
path: verb_1s_top1/test-*
- config_name: verb_1s_topk
data_files:
- split: train
path: verb_1s_topk/train-*
- split: test
path: verb_1s_topk/test-*
- config_name: verb_2s_cot
data_files:
- split: train
path: verb_2s_cot/train-*
- split: test
path: verb_2s_cot/test-*
- config_name: verb_2s_top1
data_files:
- split: train
path: verb_2s_top1/train-*
- split: test
path: verb_2s_top1/test-*
- config_name: verb_2s_topk
data_files:
- split: train
path: verb_2s_topk/train-*
- split: test
path: verb_2s_topk/test-*
Dataset Card for triviaqa
This is a preprocessed version of triviaqa dataset for benchmarks in LM-Polygraph.
Dataset Details
Dataset Description
- Curated by: https://huggingface.co/LM-Polygraph
- License: https://github.com/IINemo/lm-polygraph/blob/main/LICENSE.md
Dataset Sources [optional]
- Repository: https://github.com/IINemo/lm-polygraph
Uses
Direct Use
This dataset should be used for performing benchmarks on LM-polygraph.
Out-of-Scope Use
This dataset should not be used for further dataset preprocessing.
Dataset Structure
This dataset contains the "continuation" subset, which corresponds to main dataset, used in LM-Polygraph. It may also contain other subsets, which correspond to instruct methods, used in LM-Polygraph.
Each subset contains two splits: train and test. Each split contains two string columns: "input", which corresponds to processed input for LM-Polygraph, and "output", which corresponds to processed output for LM-Polygraph.
Dataset Creation
Curation Rationale
This dataset is created in order to separate dataset creation code from benchmarking code.
Source Data
Data Collection and Processing
Data is collected from https://huggingface.co/datasets/triviaqa and processed by using https://github.com/IINemo/lm-polygraph/blob/main/dataset_builders/build_dataset.py script in repository.
Who are the source data producers?
People who created https://huggingface.co/datasets/triviaqa
Bias, Risks, and Limitations
This dataset contains the same biases, risks, and limitations as its source dataset https://huggingface.co/datasets/triviaqa
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset.