warrormac/autotrain-my-train-2209070896
Translation
•
Updated
•
1
Error code: DatasetGenerationError
Exception: ArrowNotImplementedError
Message: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field.
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 583, in write_table
self._build_writer(inferred_schema=pa_table.schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 404, in _build_writer
self.pa_writer = self._WRITER_CLASS(self.stream, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
self.writer = _parquet.ParquetWriter(
File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2027, in _prepare_split_single
num_examples, num_bytes = writer.finalize()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 602, in finalize
self._build_writer(self.schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 404, in _build_writer
self.pa_writer = self._WRITER_CLASS(self.stream, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
self.writer = _parquet.ParquetWriter(
File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the datasetNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
_data_files
list | _fingerprint
string | _format_columns
sequence | _format_kwargs
dict | _format_type
null | _indexes
dict | _output_all_columns
bool | _split
null |
|---|---|---|---|---|---|---|---|
[
{
"filename": "dataset.arrow"
}
] |
d503b16b396aaeac
|
[
"feat_Unnamed: 10",
"feat_Unnamed: 11",
"feat_Unnamed: 12",
"feat_Unnamed: 13",
"feat_Unnamed: 14",
"feat_Unnamed: 15",
"feat_Unnamed: 16",
"feat_Unnamed: 17",
"feat_Unnamed: 4",
"feat_Unnamed: 5",
"feat_Unnamed: 6",
"feat_Unnamed: 7",
"feat_Unnamed: 8",
"feat_Unnamed: 9",
"feat_eng",
"feat_spa",
"source",
"target"
] |
{}
| null |
{}
| false
| null |
This dataset has been automatically processed by AutoTrain for project my-train.
The BCP-47 code for the dataset's language is en2es.
A sample from this dataset looks as follows:
[
{
"feat_eng": "eng",
"feat_spa": "spa",
"source": "Can you remember the first time you heard the Beatles?",
"target": "\u00bfRecuerdas la primera vez que escuchaste a los Beatles?",
"feat_Unnamed: 4": null,
"feat_Unnamed: 5": null,
"feat_Unnamed: 6": null,
"feat_Unnamed: 7": null,
"feat_Unnamed: 8": null,
"feat_Unnamed: 9": null,
"feat_Unnamed: 10": null,
"feat_Unnamed: 11": null,
"feat_Unnamed: 12": null,
"feat_Unnamed: 13": null,
"feat_Unnamed: 14": null,
"feat_Unnamed: 15": null,
"feat_Unnamed: 16": null,
"feat_Unnamed: 17": null
},
{
"feat_eng": "eng",
"feat_spa": "spa",
"source": "He is always talking big.",
"target": "\u00c9l siempre est\u00e1 alardeando.",
"feat_Unnamed: 4": null,
"feat_Unnamed: 5": null,
"feat_Unnamed: 6": null,
"feat_Unnamed: 7": null,
"feat_Unnamed: 8": null,
"feat_Unnamed: 9": null,
"feat_Unnamed: 10": null,
"feat_Unnamed: 11": null,
"feat_Unnamed: 12": null,
"feat_Unnamed: 13": null,
"feat_Unnamed: 14": null,
"feat_Unnamed: 15": null,
"feat_Unnamed: 16": null,
"feat_Unnamed: 17": null
}
]
The dataset has the following fields (also called "features"):
{
"feat_eng": "Value(dtype='string', id=None)",
"feat_spa": "Value(dtype='string', id=None)",
"source": "Value(dtype='string', id=None)",
"target": "Value(dtype='string', id=None)",
"feat_Unnamed: 4": "Value(dtype='string', id=None)",
"feat_Unnamed: 5": "Value(dtype='string', id=None)",
"feat_Unnamed: 6": "Value(dtype='string', id=None)",
"feat_Unnamed: 7": "Value(dtype='string', id=None)",
"feat_Unnamed: 8": "Value(dtype='string', id=None)",
"feat_Unnamed: 9": "Value(dtype='string', id=None)",
"feat_Unnamed: 10": "Value(dtype='string', id=None)",
"feat_Unnamed: 11": "Value(dtype='string', id=None)",
"feat_Unnamed: 12": "Value(dtype='string', id=None)",
"feat_Unnamed: 13": "Value(dtype='string', id=None)",
"feat_Unnamed: 14": "Value(dtype='string', id=None)",
"feat_Unnamed: 15": "Value(dtype='string', id=None)",
"feat_Unnamed: 16": "Value(dtype='string', id=None)",
"feat_Unnamed: 17": "Value(dtype='string', id=None)"
}
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
|---|---|
| train | 2028 |
| valid | 507 |