Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 5 new columns ({'session_info', 'dataset_info', 'research_applications', 'data_schema', 'huggingface'}) and 10 missing columns ({'neural_context', 'environment', 'mouse', 'session_time', 'keyboard', 'camera', 'button', 'target', 'timestamp', 'type'}).

This happened while the json dataset builder was generating data using

hf://datasets/webxos/BCI-FPS/metadata.json (at revision a525e5235955a1c45616f5059a9779483fa6d20d)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              dataset_info: struct<name: string, description: string, version: string, license: string, citation: string>
                child 0, name: string
                child 1, description: string
                child 2, version: string
                child 3, license: string
                child 4, citation: string
              session_info: struct<session_id: string, mode: string, start_time: string, duration_ms: int64, sampling_rate_hz: i (... 29 chars omitted)
                child 0, session_id: string
                child 1, mode: string
                child 2, start_time: string
                child 3, duration_ms: int64
                child 4, sampling_rate_hz: int64
                child 5, neural_channels: int64
              data_schema: struct<neural_data: struct<timestamp: string, session_time: string, channels: string, intent_context (... 184 chars omitted)
                child 0, neural_data: struct<timestamp: string, session_time: string, channels: string, intent_context: string>
                    child 0, timestamp: string
                    child 1, session_time: string
                    child 2, channels: string
                    child 3, intent_context: string
                child 1, intent_stream: struct<timestamp: string, mouse: string, keyboard: string, camera: string, environment: string>
                    child 0, timestamp: string
                    child 1, mouse: string
                    child 2, keyboard: string
                    child 3, camera: string
                    child 4, environment: string
                child 2, handwriting_samples: struct<letter: string, samples: string>
                    child 0, letter: string
                    child 1, samples: string
              research_applications: list<item: string>
                child 0, item: string
              huggingface: struct<compatible: bool, task_categories: list<item: string>, task_ids: list<item: string>, language (... 58 chars omitted)
                child 0, compatible: bool
                child 1, task_categories: list<item: string>
                    child 0, item: string
                child 2, task_ids: list<item: string>
                    child 0, item: string
                child 3, language: list<item: string>
                    child 0, item: string
                child 4, size_categories: list<item: string>
                    child 0, item: string
              to
              {'timestamp': Value('int64'), 'session_time': Value('int64'), 'mouse': {'position': List(Value('float64')), 'delta': List(Value('int64')), 'buttons': Value('int64')}, 'keyboard': {'mouse': Value('bool')}, 'camera': {'position': List(Value('float64')), 'rotation': List(Value('float64'))}, 'environment': {'active_targets': List({'position': List(Value('float64')), 'distance': Value('float64')}), 'fps': Value('int64')}, 'type': Value('string'), 'button': Value('string'), 'target': Value('null'), 'neural_context': {'channel_0': Value('float64'), 'channel_1': Value('float64'), 'channel_2': Value('float64'), 'channel_3': Value('float64'), 'channel_4': Value('float64'), 'channel_5': Value('float64'), 'channel_6': Value('float64'), 'channel_7': Value('float64'), 'channel_8': Value('float64'), 'channel_9': Value('float64'), 'channel_10': Value('float64'), 'channel_11': Value('float64'), 'channel_12': Value('float64'), 'channel_13': Value('float64'), 'channel_14': Value('float64'), 'channel_15': Value('float64'), 'channel_16': Value('float64'), 'channel_17': Value('float64'), 'channel_18': Value('float64'), 'channel_19': Value('float64'), 'channel_20': Value('float64'), 'channel_21': Value('float64'), 'channel_22': Value('float64'), 'channel_23': Value('float64'), 'channel_24': Value('float64'), 'channel_25': Value('float64'), 'channel_26': Value('float64'), 'channel_27': Value('float64'), 'channel_28': Value('float64'), 'channel_29': Value('float64'), 'channel_30': Value('float64'), 'channel_31': Value('float64')}}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 5 new columns ({'session_info', 'dataset_info', 'research_applications', 'data_schema', 'huggingface'}) and 10 missing columns ({'neural_context', 'environment', 'mouse', 'session_time', 'keyboard', 'camera', 'button', 'target', 'timestamp', 'type'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/webxos/BCI-FPS/metadata.json (at revision a525e5235955a1c45616f5059a9779483fa6d20d)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

timestamp
int64
session_time
int64
mouse
dict
keyboard
dict
camera
dict
environment
dict
type
string
button
string
target
null
neural_context
null
1,767,171,126,971
1,767,171,126,971
null
null
null
null
mouse_click
left
null
null
1,767,171,127,074
41
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,089
56
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,105
72
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,122
89
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,138
105
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,155
122
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,181
148
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,195
162
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,214
181
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,234
201
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,251
218
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,292
259
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,310
277
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,338
305
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,355
322
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,380
347
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,398
365
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,414
381
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,430
397
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,447
414
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,463
430
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,479
446
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,495
462
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,512
479
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,529
496
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 35 }
null
null
null
null
1,767,171,127,546
513
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,580
547
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,596
563
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,614
581
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,630
597
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,646
613
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,662
629
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,679
646
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,695
662
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,711
678
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,732
699
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,749
716
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,765
732
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,785
752
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,801
768
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,817
784
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,835
802
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,851
818
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,869
836
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,889
856
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,905
872
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,922
889
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,938
905
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,953
920
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,970
937
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,127,987
954
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,002
969
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,018
985
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,035
1,002
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,051
1,018
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,080
1,047
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,097
1,064
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,116
1,083
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,132
1,099
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,148
1,115
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,164
1,131
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,180
1,147
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,196
1,163
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,214
1,181
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,235
1,202
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,251
1,218
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,270
1,237
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,286
1,253
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,306
1,273
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,323
1,290
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,340
1,307
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,360
1,327
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,377
1,344
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,393
1,360
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,411
1,378
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,427
1,394
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,444
1,411
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,460
1,427
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,476
1,443
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,492
1,459
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,508
1,475
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,529
1,496
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,545
1,512
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,565
1,532
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,581
1,548
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,598
1,565
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,614
1,581
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,631
1,598
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,647
1,614
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,665
1,632
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,684
1,651
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 26 }
null
null
null
null
1,767,171,128,713
1,680
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,729
1,696
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,757
1,724
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,773
1,740
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,790
1,757
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,806
1,773
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,822
1,789
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
1,767,171,128,849
1,816
{ "position": [ 0, 0 ], "delta": [ 0, 0 ], "buttons": 0 }
{ "mouse": false }
{ "position": [ 0, 1.6, 0 ], "rotation": [ 0, 0, 0 ] }
{ "active_targets": [], "fps": 27 }
null
null
null
null
End of preview.
YAML Metadata Warning: The task_categories "brain-computer-interface" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata Warning: The task_ids "motor-imagery" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "intent-decoding" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "visual-evoked-potentials" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "handwriting-recognition" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

Dataset Card for BCI-FPS MOTOR_IMAGERY Dataset

Dataset Description

UNDER DEVELOPMENT

Use Cases: BCI Intent Data Study and Testing (conceptual early design)

Training machine learning models for neural signal decoding without needing large real neural datasets, addressing data scarcity and privacy issues.

Augmenting real-world BCI data with synthetic samples to improve model robustness and diversity, as in GAN-based approaches.

Testing and calibrating BCI systems for motor imagery tasks like prosthetic control before human trials.

Simulating neural responses in assistive technologies for disabled individuals, enabling faster iteration in labs like Neuralink.

Developing predictive models for intent recognition in human-AI interactions and rehabilitative BCIs.

Enhancing clinical research datasets for disease risk assessment and patient outcome prediction in neuroengineering.

Validating algorithms in frontier labs (e.g., Neuralink, Paradromics) for high-data-rate implants by generating idealized signals.

This dataset contains high-bandwidth neural training data collected from BCI-FPS, a specialized training platform for brain-computer interface research.

Dataset Summary

  • Training Mode: MOTOR IMAGERY
  • Session ID: bci_fps_motor_imagery_1767171179245
  • Duration: 52 seconds
  • Sampling Rate: 1000 Hz
  • Neural Channels: 32
  • Data Points: 11,314

Supported Tasks

  • Motor Imagery Training for prosthetic control
  • Neural Decoding: Training models to decode user intent from neural signals
  • BCI Calibration: Providing ground truth data for BCI system calibration
  • Disability Research: Supporting development of assistive technologies

Languages

English (interface and documentation)

Dataset Structure

Data Instances

{
  "timestamp": 1767171127035,
  "session_time": 2,
  "channels": {
    "channel_0": 0.7145493839481488,
    "channel_1": 0.6894168445867142,
    "channel_2": 0.08142761930267149,
    "channel_3": -0.4847495027079371,
    "channel_4": -0.7151022782142631,
    "channel_5": -0.30725177077599913,
    "channel_6": 0.41521139153211245,
    "channel_7": 0.8975965762479154,
    "channel_8": 0.40940126876082966,
    "channel_9": -0.4091680578228324,
    "channel_10": -0.8292701881852992,
    "channel_11": -0.5904045145284711,
    "channel_12": 0.12196528544955941,
    "channel_13": 0.7040845591149026,
    "channel_14": 0.5296790688037042,
    "channel_15": 0.018181536760527098,
    "channel_16": -0.6973668262179662,
    "channel_17": -0.7437997196398959,
    "channel_18": -0.10714886215673841,
    "channel_19": 0.6246891444747351,
    "channel_20": 0.8560240877317689,
    "channel_21": 0.155749695078711,
    "channel_22": -0.4754514086663171,
    "channel_23": -0.7632646743624881,
    "channel_24": -0.42658424045199833,
    "channel_25": 0.47380668620054267,
    "channel_26": 0.7558851981047924,
    "channel_27": 0.5145527444334146,
    "channel_28": -0.22899647502709344,
    "channel_29": -0.8498710316208474,
    "channel_30": -0.5816021940073672,
    "channel_31": 0.2096020563849897
  },
  "intent_context": {
    "mouse_movement": [
      0,
      0
    ],
    "keyboard_state": {
      "mouse": false
    },
    "camera_rotation": [
      0,
      0,
      0
    ],
    "active_targets": 0
  }
}

Data Fields

See metadata.json for complete schema documentation.

Dataset Creation

Source Data

  • Platform: Web-based BCI-FPS Training Environment
  • Sampling Rate: 1000 Hz
  • Collection Method: Real-time telemetry during BCI training tasks
  • Neural Simulation: Synthetic neural data representing ideal BCI signals

Annotations

  • Annotation process: Automatic intent labeling during gameplay
  • Annotation types: Motor imagery, visual stimuli, handwriting intent
  • Who annotated: System automatically labels based on game state

Personal and Sensitive Information

No personal information is collected. All data is synthetic/anonymous.

Considerations for Using the Data

Social Impact

This dataset enables research in:

  • Neuralink-style brain-computer interfaces
  • Assistive technologies for disabled individuals
  • Human-AI interaction systems
  • Neural decoding algorithms

Discussion of Biases

Synthetic neural data may not perfectly represent biological signals. Results should be validated with real neural recordings.

Other Known Limitations

  • Simulated neural signals
  • Idealized game environment
  • Limited to specific training tasks

Additional Information

Dataset Curators

BCI-FPS Research Team

Licensing Information

MIT License

Citation Information

@misc{bci_fps_motor_imagery_2024,
  title={BCI-FPS motor_imagery Training Dataset},
  author={Neuralink Research},
  year={2024},
  note={High-frequency intent decoding data for brain-computer interface development}
}
Downloads last month
-