Upload 5 files
Browse files- .gitattributes +1 -0
- README.md +169 -0
- intent_stream.jsonl +0 -0
- load_dataset.py +62 -0
- metadata.json +63 -0
- neural_data.jsonl +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
neural_data.jsonl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- brain-computer-interface
|
| 6 |
+
- neural-decoding
|
| 7 |
+
- motor-imagery
|
| 8 |
+
- human-computer-interaction
|
| 9 |
+
- neuralink
|
| 10 |
+
task_categories:
|
| 11 |
+
- brain-computer-interface
|
| 12 |
+
task_ids:
|
| 13 |
+
- motor-imagery
|
| 14 |
+
- intent-decoding
|
| 15 |
+
- visual-evoked-potentials
|
| 16 |
+
- handwriting-recognition
|
| 17 |
+
size_categories:
|
| 18 |
+
- 10K<n<100K
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# Dataset Card for BCI-FPS MOTOR_IMAGERY Dataset
|
| 22 |
+
|
| 23 |
+
## Dataset Description
|
| 24 |
+
|
| 25 |
+
This dataset contains high-bandwidth neural training data collected from BCI-FPS, a specialized training platform for brain-computer interface research.
|
| 26 |
+
|
| 27 |
+
### Dataset Summary
|
| 28 |
+
|
| 29 |
+
- **Training Mode**: MOTOR IMAGERY
|
| 30 |
+
- **Session ID**: bci_fps_motor_imagery_1767171179245
|
| 31 |
+
- **Duration**: 52 seconds
|
| 32 |
+
- **Sampling Rate**: 1000 Hz
|
| 33 |
+
- **Neural Channels**: 32
|
| 34 |
+
- **Data Points**: 11,314
|
| 35 |
+
|
| 36 |
+
### Supported Tasks
|
| 37 |
+
|
| 38 |
+
- **Motor Imagery Training for prosthetic control**
|
| 39 |
+
- **Neural Decoding**: Training models to decode user intent from neural signals
|
| 40 |
+
- **BCI Calibration**: Providing ground truth data for BCI system calibration
|
| 41 |
+
- **Disability Research**: Supporting development of assistive technologies
|
| 42 |
+
|
| 43 |
+
### Languages
|
| 44 |
+
|
| 45 |
+
English (interface and documentation)
|
| 46 |
+
|
| 47 |
+
## Dataset Structure
|
| 48 |
+
|
| 49 |
+
### Data Instances
|
| 50 |
+
|
| 51 |
+
```json
|
| 52 |
+
{
|
| 53 |
+
"timestamp": 1767171127035,
|
| 54 |
+
"session_time": 2,
|
| 55 |
+
"channels": {
|
| 56 |
+
"channel_0": 0.7145493839481488,
|
| 57 |
+
"channel_1": 0.6894168445867142,
|
| 58 |
+
"channel_2": 0.08142761930267149,
|
| 59 |
+
"channel_3": -0.4847495027079371,
|
| 60 |
+
"channel_4": -0.7151022782142631,
|
| 61 |
+
"channel_5": -0.30725177077599913,
|
| 62 |
+
"channel_6": 0.41521139153211245,
|
| 63 |
+
"channel_7": 0.8975965762479154,
|
| 64 |
+
"channel_8": 0.40940126876082966,
|
| 65 |
+
"channel_9": -0.4091680578228324,
|
| 66 |
+
"channel_10": -0.8292701881852992,
|
| 67 |
+
"channel_11": -0.5904045145284711,
|
| 68 |
+
"channel_12": 0.12196528544955941,
|
| 69 |
+
"channel_13": 0.7040845591149026,
|
| 70 |
+
"channel_14": 0.5296790688037042,
|
| 71 |
+
"channel_15": 0.018181536760527098,
|
| 72 |
+
"channel_16": -0.6973668262179662,
|
| 73 |
+
"channel_17": -0.7437997196398959,
|
| 74 |
+
"channel_18": -0.10714886215673841,
|
| 75 |
+
"channel_19": 0.6246891444747351,
|
| 76 |
+
"channel_20": 0.8560240877317689,
|
| 77 |
+
"channel_21": 0.155749695078711,
|
| 78 |
+
"channel_22": -0.4754514086663171,
|
| 79 |
+
"channel_23": -0.7632646743624881,
|
| 80 |
+
"channel_24": -0.42658424045199833,
|
| 81 |
+
"channel_25": 0.47380668620054267,
|
| 82 |
+
"channel_26": 0.7558851981047924,
|
| 83 |
+
"channel_27": 0.5145527444334146,
|
| 84 |
+
"channel_28": -0.22899647502709344,
|
| 85 |
+
"channel_29": -0.8498710316208474,
|
| 86 |
+
"channel_30": -0.5816021940073672,
|
| 87 |
+
"channel_31": 0.2096020563849897
|
| 88 |
+
},
|
| 89 |
+
"intent_context": {
|
| 90 |
+
"mouse_movement": [
|
| 91 |
+
0,
|
| 92 |
+
0
|
| 93 |
+
],
|
| 94 |
+
"keyboard_state": {
|
| 95 |
+
"mouse": false
|
| 96 |
+
},
|
| 97 |
+
"camera_rotation": [
|
| 98 |
+
0,
|
| 99 |
+
0,
|
| 100 |
+
0
|
| 101 |
+
],
|
| 102 |
+
"active_targets": 0
|
| 103 |
+
}
|
| 104 |
+
}
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
### Data Fields
|
| 108 |
+
|
| 109 |
+
See `metadata.json` for complete schema documentation.
|
| 110 |
+
|
| 111 |
+
## Dataset Creation
|
| 112 |
+
|
| 113 |
+
### Source Data
|
| 114 |
+
|
| 115 |
+
- **Platform**: Web-based BCI-FPS Training Environment
|
| 116 |
+
- **Sampling Rate**: 1000 Hz
|
| 117 |
+
- **Collection Method**: Real-time telemetry during BCI training tasks
|
| 118 |
+
- **Neural Simulation**: Synthetic neural data representing ideal BCI signals
|
| 119 |
+
|
| 120 |
+
### Annotations
|
| 121 |
+
|
| 122 |
+
- **Annotation process**: Automatic intent labeling during gameplay
|
| 123 |
+
- **Annotation types**: Motor imagery, visual stimuli, handwriting intent
|
| 124 |
+
- **Who annotated**: System automatically labels based on game state
|
| 125 |
+
|
| 126 |
+
### Personal and Sensitive Information
|
| 127 |
+
|
| 128 |
+
No personal information is collected. All data is synthetic/anonymous.
|
| 129 |
+
|
| 130 |
+
## Considerations for Using the Data
|
| 131 |
+
|
| 132 |
+
### Social Impact
|
| 133 |
+
|
| 134 |
+
This dataset enables research in:
|
| 135 |
+
- Neuralink-style brain-computer interfaces
|
| 136 |
+
- Assistive technologies for disabled individuals
|
| 137 |
+
- Human-AI interaction systems
|
| 138 |
+
- Neural decoding algorithms
|
| 139 |
+
|
| 140 |
+
### Discussion of Biases
|
| 141 |
+
|
| 142 |
+
Synthetic neural data may not perfectly represent biological signals. Results should be validated with real neural recordings.
|
| 143 |
+
|
| 144 |
+
### Other Known Limitations
|
| 145 |
+
|
| 146 |
+
- Simulated neural signals
|
| 147 |
+
- Idealized game environment
|
| 148 |
+
- Limited to specific training tasks
|
| 149 |
+
|
| 150 |
+
## Additional Information
|
| 151 |
+
|
| 152 |
+
### Dataset Curators
|
| 153 |
+
|
| 154 |
+
BCI-FPS Research Team
|
| 155 |
+
|
| 156 |
+
### Licensing Information
|
| 157 |
+
|
| 158 |
+
MIT License
|
| 159 |
+
|
| 160 |
+
### Citation Information
|
| 161 |
+
|
| 162 |
+
```bibtex
|
| 163 |
+
@misc{bci_fps_motor_imagery_2024,
|
| 164 |
+
title={BCI-FPS motor_imagery Training Dataset},
|
| 165 |
+
author={Neuralink Research},
|
| 166 |
+
year={2024},
|
| 167 |
+
note={High-frequency intent decoding data for brain-computer interface development}
|
| 168 |
+
}
|
| 169 |
+
```
|
intent_stream.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
load_dataset.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import Dataset, DatasetDict
|
| 4 |
+
|
| 5 |
+
def load_bci_fps_dataset(data_dir):
|
| 6 |
+
"""
|
| 7 |
+
Load BCI-FPS dataset for Hugging Face.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
data_dir (str): Path to dataset directory
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
DatasetDict: Hugging Face dataset
|
| 14 |
+
"""
|
| 15 |
+
# Load neural data
|
| 16 |
+
neural_data = []
|
| 17 |
+
with open(f"{data_dir}/neural_data.jsonl", 'r') as f:
|
| 18 |
+
for line in f:
|
| 19 |
+
if line.strip():
|
| 20 |
+
neural_data.append(json.loads(line))
|
| 21 |
+
|
| 22 |
+
# Load intent stream
|
| 23 |
+
intent_stream = []
|
| 24 |
+
with open(f"{data_dir}/intent_stream.jsonl", 'r') as f:
|
| 25 |
+
for line in f:
|
| 26 |
+
if line.strip():
|
| 27 |
+
intent_stream.append(json.loads(line))
|
| 28 |
+
|
| 29 |
+
# Create datasets
|
| 30 |
+
datasets = {
|
| 31 |
+
"neural_data": Dataset.from_list(neural_data),
|
| 32 |
+
"intent_stream": Dataset.from_list(intent_stream)
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Load handwriting samples if exists
|
| 36 |
+
try:
|
| 37 |
+
with open(f"{data_dir}/handwriting_samples.json", 'r') as f:
|
| 38 |
+
handwriting = json.load(f)
|
| 39 |
+
datasets["handwriting"] = Dataset.from_list(handwriting)
|
| 40 |
+
except:
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
# Load metadata
|
| 44 |
+
with open(f"{data_dir}/metadata.json", 'r') as f:
|
| 45 |
+
metadata = json.load(f)
|
| 46 |
+
|
| 47 |
+
dataset_dict = DatasetDict(datasets)
|
| 48 |
+
dataset_dict.info.metadata = metadata
|
| 49 |
+
|
| 50 |
+
return dataset_dict
|
| 51 |
+
|
| 52 |
+
# Example usage for Neuralink research
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
dataset = load_bci_fps_dataset("./bci_data")
|
| 55 |
+
|
| 56 |
+
print(f"Dataset keys: {list(dataset.keys())}")
|
| 57 |
+
print(f"Neural data samples: {len(dataset['neural_data'])}")
|
| 58 |
+
print(f"Intent stream samples: {len(dataset['intent_stream'])}")
|
| 59 |
+
|
| 60 |
+
# Example: Extract motor imagery trials
|
| 61 |
+
motor_trials = [d for d in dataset['neural_data'] if d.get('type') == 'motor_imagery_trial']
|
| 62 |
+
print(f"Motor imagery trials: {len(motor_trials)}")
|
metadata.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dataset_info": {
|
| 3 |
+
"name": "BCI-FPS_MOTOR_IMAGERY_Dataset",
|
| 4 |
+
"description": "High-bandwidth neural training data for BCI research. Mode: motor_imagery",
|
| 5 |
+
"version": "1.0.0",
|
| 6 |
+
"license": "MIT",
|
| 7 |
+
"citation": "@misc{bci_fps_motor_imagery_2024,\n title={BCI-FPS motor_imagery Training Dataset},\n author={Neuralink Research},\n year={2024},\n note={High-frequency intent decoding data for brain-computer interface development}\n}"
|
| 8 |
+
},
|
| 9 |
+
"session_info": {
|
| 10 |
+
"session_id": "bci_fps_motor_imagery_1767171179245",
|
| 11 |
+
"mode": "motor_imagery",
|
| 12 |
+
"start_time": "2025-12-31T08:52:07.033Z",
|
| 13 |
+
"duration_ms": 52212,
|
| 14 |
+
"sampling_rate_hz": 1000,
|
| 15 |
+
"neural_channels": 32
|
| 16 |
+
},
|
| 17 |
+
"data_schema": {
|
| 18 |
+
"neural_data": {
|
| 19 |
+
"timestamp": "UNIX timestamp in milliseconds",
|
| 20 |
+
"session_time": "Time since session start in milliseconds",
|
| 21 |
+
"channels": "Object mapping channel names to neural signal values",
|
| 22 |
+
"intent_context": "Contextual information about user intent"
|
| 23 |
+
},
|
| 24 |
+
"intent_stream": {
|
| 25 |
+
"timestamp": "UNIX timestamp in milliseconds",
|
| 26 |
+
"mouse": "Mouse position and movement data",
|
| 27 |
+
"keyboard": "Keyboard state",
|
| 28 |
+
"camera": "Camera position and rotation",
|
| 29 |
+
"environment": "Game environment state"
|
| 30 |
+
},
|
| 31 |
+
"handwriting_samples": {
|
| 32 |
+
"letter": "Letter being traced",
|
| 33 |
+
"samples": "Array of handwriting samples with position and pressure data"
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
"research_applications": [
|
| 37 |
+
"Motor imagery decoding for prosthetic control",
|
| 38 |
+
"Simultaneous intent decoding for fluid BCI interfaces",
|
| 39 |
+
"Visual evoked potential (c-VEP) calibration",
|
| 40 |
+
"Handwriting intent recognition for text entry",
|
| 41 |
+
"Neural network training for brain-computer interfaces"
|
| 42 |
+
],
|
| 43 |
+
"huggingface": {
|
| 44 |
+
"compatible": true,
|
| 45 |
+
"task_categories": [
|
| 46 |
+
"brain-computer-interface",
|
| 47 |
+
"neural-decoding",
|
| 48 |
+
"human-computer-interaction"
|
| 49 |
+
],
|
| 50 |
+
"task_ids": [
|
| 51 |
+
"motor-imagery",
|
| 52 |
+
"intent-decoding",
|
| 53 |
+
"visual-evoked-potentials",
|
| 54 |
+
"handwriting-recognition"
|
| 55 |
+
],
|
| 56 |
+
"language": [
|
| 57 |
+
"en"
|
| 58 |
+
],
|
| 59 |
+
"size_categories": [
|
| 60 |
+
"10K<n<100K"
|
| 61 |
+
]
|
| 62 |
+
}
|
| 63 |
+
}
|
neural_data.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ae7c2b819e02a8cefdb00ce3ccd3fd06abb80aeecb455a6879709ba6290274a
|
| 3 |
+
size 10683612
|