webxos commited on
Commit
34bdb27
·
verified ·
1 Parent(s): 770ea12

Upload 5 files

Browse files
Files changed (6) hide show
  1. .gitattributes +1 -0
  2. README.md +169 -0
  3. intent_stream.jsonl +0 -0
  4. load_dataset.py +62 -0
  5. metadata.json +63 -0
  6. neural_data.jsonl +3 -0
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ neural_data.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - brain-computer-interface
6
+ - neural-decoding
7
+ - motor-imagery
8
+ - human-computer-interaction
9
+ - neuralink
10
+ task_categories:
11
+ - brain-computer-interface
12
+ task_ids:
13
+ - motor-imagery
14
+ - intent-decoding
15
+ - visual-evoked-potentials
16
+ - handwriting-recognition
17
+ size_categories:
18
+ - 10K<n<100K
19
+ ---
20
+
21
+ # Dataset Card for BCI-FPS MOTOR_IMAGERY Dataset
22
+
23
+ ## Dataset Description
24
+
25
+ This dataset contains high-bandwidth neural training data collected from BCI-FPS, a specialized training platform for brain-computer interface research.
26
+
27
+ ### Dataset Summary
28
+
29
+ - **Training Mode**: MOTOR IMAGERY
30
+ - **Session ID**: bci_fps_motor_imagery_1767171179245
31
+ - **Duration**: 52 seconds
32
+ - **Sampling Rate**: 1000 Hz
33
+ - **Neural Channels**: 32
34
+ - **Data Points**: 11,314
35
+
36
+ ### Supported Tasks
37
+
38
+ - **Motor Imagery Training for prosthetic control**
39
+ - **Neural Decoding**: Training models to decode user intent from neural signals
40
+ - **BCI Calibration**: Providing ground truth data for BCI system calibration
41
+ - **Disability Research**: Supporting development of assistive technologies
42
+
43
+ ### Languages
44
+
45
+ English (interface and documentation)
46
+
47
+ ## Dataset Structure
48
+
49
+ ### Data Instances
50
+
51
+ ```json
52
+ {
53
+ "timestamp": 1767171127035,
54
+ "session_time": 2,
55
+ "channels": {
56
+ "channel_0": 0.7145493839481488,
57
+ "channel_1": 0.6894168445867142,
58
+ "channel_2": 0.08142761930267149,
59
+ "channel_3": -0.4847495027079371,
60
+ "channel_4": -0.7151022782142631,
61
+ "channel_5": -0.30725177077599913,
62
+ "channel_6": 0.41521139153211245,
63
+ "channel_7": 0.8975965762479154,
64
+ "channel_8": 0.40940126876082966,
65
+ "channel_9": -0.4091680578228324,
66
+ "channel_10": -0.8292701881852992,
67
+ "channel_11": -0.5904045145284711,
68
+ "channel_12": 0.12196528544955941,
69
+ "channel_13": 0.7040845591149026,
70
+ "channel_14": 0.5296790688037042,
71
+ "channel_15": 0.018181536760527098,
72
+ "channel_16": -0.6973668262179662,
73
+ "channel_17": -0.7437997196398959,
74
+ "channel_18": -0.10714886215673841,
75
+ "channel_19": 0.6246891444747351,
76
+ "channel_20": 0.8560240877317689,
77
+ "channel_21": 0.155749695078711,
78
+ "channel_22": -0.4754514086663171,
79
+ "channel_23": -0.7632646743624881,
80
+ "channel_24": -0.42658424045199833,
81
+ "channel_25": 0.47380668620054267,
82
+ "channel_26": 0.7558851981047924,
83
+ "channel_27": 0.5145527444334146,
84
+ "channel_28": -0.22899647502709344,
85
+ "channel_29": -0.8498710316208474,
86
+ "channel_30": -0.5816021940073672,
87
+ "channel_31": 0.2096020563849897
88
+ },
89
+ "intent_context": {
90
+ "mouse_movement": [
91
+ 0,
92
+ 0
93
+ ],
94
+ "keyboard_state": {
95
+ "mouse": false
96
+ },
97
+ "camera_rotation": [
98
+ 0,
99
+ 0,
100
+ 0
101
+ ],
102
+ "active_targets": 0
103
+ }
104
+ }
105
+ ```
106
+
107
+ ### Data Fields
108
+
109
+ See `metadata.json` for complete schema documentation.
110
+
111
+ ## Dataset Creation
112
+
113
+ ### Source Data
114
+
115
+ - **Platform**: Web-based BCI-FPS Training Environment
116
+ - **Sampling Rate**: 1000 Hz
117
+ - **Collection Method**: Real-time telemetry during BCI training tasks
118
+ - **Neural Simulation**: Synthetic neural data representing ideal BCI signals
119
+
120
+ ### Annotations
121
+
122
+ - **Annotation process**: Automatic intent labeling during gameplay
123
+ - **Annotation types**: Motor imagery, visual stimuli, handwriting intent
124
+ - **Who annotated**: System automatically labels based on game state
125
+
126
+ ### Personal and Sensitive Information
127
+
128
+ No personal information is collected. All data is synthetic/anonymous.
129
+
130
+ ## Considerations for Using the Data
131
+
132
+ ### Social Impact
133
+
134
+ This dataset enables research in:
135
+ - Neuralink-style brain-computer interfaces
136
+ - Assistive technologies for disabled individuals
137
+ - Human-AI interaction systems
138
+ - Neural decoding algorithms
139
+
140
+ ### Discussion of Biases
141
+
142
+ Synthetic neural data may not perfectly represent biological signals. Results should be validated with real neural recordings.
143
+
144
+ ### Other Known Limitations
145
+
146
+ - Simulated neural signals
147
+ - Idealized game environment
148
+ - Limited to specific training tasks
149
+
150
+ ## Additional Information
151
+
152
+ ### Dataset Curators
153
+
154
+ BCI-FPS Research Team
155
+
156
+ ### Licensing Information
157
+
158
+ MIT License
159
+
160
+ ### Citation Information
161
+
162
+ ```bibtex
163
+ @misc{bci_fps_motor_imagery_2024,
164
+ title={BCI-FPS motor_imagery Training Dataset},
165
+ author={Neuralink Research},
166
+ year={2024},
167
+ note={High-frequency intent decoding data for brain-computer interface development}
168
+ }
169
+ ```
intent_stream.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
load_dataset.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import pandas as pd
3
+ from datasets import Dataset, DatasetDict
4
+
5
+ def load_bci_fps_dataset(data_dir):
6
+ """
7
+ Load BCI-FPS dataset for Hugging Face.
8
+
9
+ Args:
10
+ data_dir (str): Path to dataset directory
11
+
12
+ Returns:
13
+ DatasetDict: Hugging Face dataset
14
+ """
15
+ # Load neural data
16
+ neural_data = []
17
+ with open(f"{data_dir}/neural_data.jsonl", 'r') as f:
18
+ for line in f:
19
+ if line.strip():
20
+ neural_data.append(json.loads(line))
21
+
22
+ # Load intent stream
23
+ intent_stream = []
24
+ with open(f"{data_dir}/intent_stream.jsonl", 'r') as f:
25
+ for line in f:
26
+ if line.strip():
27
+ intent_stream.append(json.loads(line))
28
+
29
+ # Create datasets
30
+ datasets = {
31
+ "neural_data": Dataset.from_list(neural_data),
32
+ "intent_stream": Dataset.from_list(intent_stream)
33
+ }
34
+
35
+ # Load handwriting samples if exists
36
+ try:
37
+ with open(f"{data_dir}/handwriting_samples.json", 'r') as f:
38
+ handwriting = json.load(f)
39
+ datasets["handwriting"] = Dataset.from_list(handwriting)
40
+ except:
41
+ pass
42
+
43
+ # Load metadata
44
+ with open(f"{data_dir}/metadata.json", 'r') as f:
45
+ metadata = json.load(f)
46
+
47
+ dataset_dict = DatasetDict(datasets)
48
+ dataset_dict.info.metadata = metadata
49
+
50
+ return dataset_dict
51
+
52
+ # Example usage for Neuralink research
53
+ if __name__ == "__main__":
54
+ dataset = load_bci_fps_dataset("./bci_data")
55
+
56
+ print(f"Dataset keys: {list(dataset.keys())}")
57
+ print(f"Neural data samples: {len(dataset['neural_data'])}")
58
+ print(f"Intent stream samples: {len(dataset['intent_stream'])}")
59
+
60
+ # Example: Extract motor imagery trials
61
+ motor_trials = [d for d in dataset['neural_data'] if d.get('type') == 'motor_imagery_trial']
62
+ print(f"Motor imagery trials: {len(motor_trials)}")
metadata.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_info": {
3
+ "name": "BCI-FPS_MOTOR_IMAGERY_Dataset",
4
+ "description": "High-bandwidth neural training data for BCI research. Mode: motor_imagery",
5
+ "version": "1.0.0",
6
+ "license": "MIT",
7
+ "citation": "@misc{bci_fps_motor_imagery_2024,\n title={BCI-FPS motor_imagery Training Dataset},\n author={Neuralink Research},\n year={2024},\n note={High-frequency intent decoding data for brain-computer interface development}\n}"
8
+ },
9
+ "session_info": {
10
+ "session_id": "bci_fps_motor_imagery_1767171179245",
11
+ "mode": "motor_imagery",
12
+ "start_time": "2025-12-31T08:52:07.033Z",
13
+ "duration_ms": 52212,
14
+ "sampling_rate_hz": 1000,
15
+ "neural_channels": 32
16
+ },
17
+ "data_schema": {
18
+ "neural_data": {
19
+ "timestamp": "UNIX timestamp in milliseconds",
20
+ "session_time": "Time since session start in milliseconds",
21
+ "channels": "Object mapping channel names to neural signal values",
22
+ "intent_context": "Contextual information about user intent"
23
+ },
24
+ "intent_stream": {
25
+ "timestamp": "UNIX timestamp in milliseconds",
26
+ "mouse": "Mouse position and movement data",
27
+ "keyboard": "Keyboard state",
28
+ "camera": "Camera position and rotation",
29
+ "environment": "Game environment state"
30
+ },
31
+ "handwriting_samples": {
32
+ "letter": "Letter being traced",
33
+ "samples": "Array of handwriting samples with position and pressure data"
34
+ }
35
+ },
36
+ "research_applications": [
37
+ "Motor imagery decoding for prosthetic control",
38
+ "Simultaneous intent decoding for fluid BCI interfaces",
39
+ "Visual evoked potential (c-VEP) calibration",
40
+ "Handwriting intent recognition for text entry",
41
+ "Neural network training for brain-computer interfaces"
42
+ ],
43
+ "huggingface": {
44
+ "compatible": true,
45
+ "task_categories": [
46
+ "brain-computer-interface",
47
+ "neural-decoding",
48
+ "human-computer-interaction"
49
+ ],
50
+ "task_ids": [
51
+ "motor-imagery",
52
+ "intent-decoding",
53
+ "visual-evoked-potentials",
54
+ "handwriting-recognition"
55
+ ],
56
+ "language": [
57
+ "en"
58
+ ],
59
+ "size_categories": [
60
+ "10K<n<100K"
61
+ ]
62
+ }
63
+ }
neural_data.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ae7c2b819e02a8cefdb00ce3ccd3fd06abb80aeecb455a6879709ba6290274a
3
+ size 10683612