Datasets:
Add PEMS-BAY traffic prediction dataset with Parquet files
Browse files- README.md +98 -0
- sensor_graph/README.md +40 -0
- sensor_graph/adj_mx_bay.npy +3 -0
- sensor_graph/adj_mx_bay_mapping.json +341 -0
- sensor_graph/distances_bay_2017.csv +0 -0
- sensor_graph/graph_sensor_locations_bay.csv +325 -0
- test.parquet +3 -0
- test_metadata.json +48 -0
- train.parquet +3 -0
- train_metadata.json +48 -0
- val.parquet +3 -0
- val_metadata.json +48 -0
README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- time-series-forecasting
|
| 5 |
+
- tabular-regression
|
| 6 |
+
tags:
|
| 7 |
+
- traffic-prediction
|
| 8 |
+
- time-series
|
| 9 |
+
- graph-neural-networks
|
| 10 |
+
- transportation
|
| 11 |
+
size_categories:
|
| 12 |
+
- 10M<n<100M
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# PEMS-BAY Traffic Dataset
|
| 16 |
+
|
| 17 |
+
## Dataset Description
|
| 18 |
+
|
| 19 |
+
This dataset contains traffic flow data for time series forecasting tasks, commonly used with Graph Neural Networks and specifically the Diffusion Convolutional Recurrent Neural Network (DCRNN) model.
|
| 20 |
+
|
| 21 |
+
## Dataset Structure
|
| 22 |
+
|
| 23 |
+
### Data Format
|
| 24 |
+
- **Format**: Parquet files for efficient loading and analysis
|
| 25 |
+
- **Splits**: train (70%), validation (10%), test (20%) - **temporal splits** preserving chronological order
|
| 26 |
+
- **Features**: Time series traffic flow data with temporal and spatial dimensions
|
| 27 |
+
|
| 28 |
+
### Split Strategy
|
| 29 |
+
- **Temporal splitting**: Data is split chronologically to prevent data leakage
|
| 30 |
+
- **All sensors included**: Each split contains data for all sensors at each time step
|
| 31 |
+
- **Training period**: Earliest 70% of time samples across all sensors
|
| 32 |
+
- **Validation period**: Next 10% of time samples across all sensors
|
| 33 |
+
- **Test period**: Latest 20% of time samples across all sensors
|
| 34 |
+
- **Graph structure preserved**: Spatial relationships maintained in all splits
|
| 35 |
+
|
| 36 |
+
### Data Schema
|
| 37 |
+
- `node_id`: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY)
|
| 38 |
+
- `x_t*_d*`: Input features at different time offsets and dimensions
|
| 39 |
+
- `x_t-11_d0` to `x_t+0_d0`: Traffic flow values at 12 historical time steps
|
| 40 |
+
- `x_t-11_d1` to `x_t+0_d1`: Time-of-day features (normalized 0-1)
|
| 41 |
+
- `y_t*_d*`: Target values at future time steps and dimensions
|
| 42 |
+
- `y_t+1_d0` to `y_t+12_d0`: Traffic flow predictions for next 12 time steps
|
| 43 |
+
- `y_t+1_d1` to `y_t+12_d1`: Time-of-day features for prediction horizon
|
| 44 |
+
|
| 45 |
+
### Dataset Statistics
|
| 46 |
+
- **Total time series samples**: ~34K (METR-LA) / ~52K (PEMS-BAY)
|
| 47 |
+
- **Total records**: ~7M (METR-LA) / ~17M (PEMS-BAY)
|
| 48 |
+
- **Records per sample**: 207 (METR-LA) / 325 (PEMS-BAY) sensors
|
| 49 |
+
- **Temporal resolution**: 5-minute intervals
|
| 50 |
+
- **Prediction horizon**: 1 hour (12 time steps)
|
| 51 |
+
|
| 52 |
+
## Usage
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from datasets import load_dataset
|
| 56 |
+
import pandas as pd
|
| 57 |
+
|
| 58 |
+
# Load from Hugging Face Hub
|
| 59 |
+
dataset = load_dataset("witgaw/PEMS-BAY")
|
| 60 |
+
|
| 61 |
+
# Or load locally
|
| 62 |
+
train_df = pd.read_parquet("train.parquet")
|
| 63 |
+
val_df = pd.read_parquet("val.parquet")
|
| 64 |
+
test_df = pd.read_parquet("test.parquet")
|
| 65 |
+
|
| 66 |
+
print(f"Train samples: {len(train_df) // 207:,}") # Divide by number of sensors
|
| 67 |
+
print(f"Total records: {len(train_df):,}")
|
| 68 |
+
print(f"Features per record: {len(train_df.columns)}")
|
| 69 |
+
|
| 70 |
+
# Example: Get data for first time sample
|
| 71 |
+
first_sample = train_df[train_df.index < 207] # First 207 records (all sensors)
|
| 72 |
+
print(f"Shape for one time sample: {first_sample.shape}")
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## Citation
|
| 76 |
+
|
| 77 |
+
If you use this dataset, please cite the original DCRNN paper:
|
| 78 |
+
|
| 79 |
+
```bibtex
|
| 80 |
+
@inproceedings{li2018dcrnn,
|
| 81 |
+
title={Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting},
|
| 82 |
+
author={Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan},
|
| 83 |
+
booktitle={International Conference on Learning Representations},
|
| 84 |
+
year={2018}
|
| 85 |
+
}
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## Dataset Generation
|
| 89 |
+
|
| 90 |
+
The code used to generate this Hugging Face-compatible dataset can be found at [witgaw/DCRNN](https://github.com/witgaw/DCRNN), a fork of the original DCRNN repository with enhanced data processing capabilities.
|
| 91 |
+
|
| 92 |
+
## Original Data Source
|
| 93 |
+
|
| 94 |
+
This dataset is derived from the original PEMS-BAY dataset used in the DCRNN paper.
|
| 95 |
+
|
| 96 |
+
## License
|
| 97 |
+
|
| 98 |
+
MIT License - See LICENSE file for details.
|
sensor_graph/README.md
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Sensor Graph Data for PEMS-BAY
|
| 2 |
+
|
| 3 |
+
This directory contains spatial information about the traffic sensors used in the PEMS-BAY dataset.
|
| 4 |
+
|
| 5 |
+
## Files
|
| 6 |
+
|
| 7 |
+
- `graph_sensor_locations_bay.csv`: Sensor coordinates (latitude, longitude) for 325 sensors
|
| 8 |
+
- `distances_bay_2017.csv`: Pairwise distances between sensors in meters
|
| 9 |
+
- `adj_mx_bay.npy`: Pre-computed adjacency matrix (325×325) for graph neural networks
|
| 10 |
+
- `adj_mx_bay_mapping.json`: Metadata and parameters used to generate the adjacency matrix
|
| 11 |
+
|
| 12 |
+
## Usage
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
# Load sensor locations
|
| 19 |
+
locations = pd.read_csv('sensor_graph/graph_sensor_locations_bay.csv')
|
| 20 |
+
print(f"Dataset has {len(locations)} sensors")
|
| 21 |
+
|
| 22 |
+
# Load distances (for custom graph construction)
|
| 23 |
+
distances = pd.read_csv('sensor_graph/distances_bay_2017.csv')
|
| 24 |
+
|
| 25 |
+
# Load pre-computed adjacency matrix
|
| 26 |
+
adj_matrix = np.load('sensor_graph/adj_mx_bay.npy')
|
| 27 |
+
print(f"Adjacency matrix shape: {adj_matrix.shape}")
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
## Coordinate System
|
| 31 |
+
|
| 32 |
+
- Coordinates are in WGS84 (latitude, longitude)
|
| 33 |
+
- Distances are in meters
|
| 34 |
+
- Use this data to construct the adjacency matrix for graph neural networks
|
| 35 |
+
|
| 36 |
+
## Citation
|
| 37 |
+
|
| 38 |
+
This spatial data is part of the original dataset used in:
|
| 39 |
+
|
| 40 |
+
> Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018). Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018.
|
sensor_graph/adj_mx_bay.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bfe332913480221f0c1e67ff6c7a5ea8896a70a8fc2f6ff04b052842b91072b9
|
| 3 |
+
size 422628
|
sensor_graph/adj_mx_bay_mapping.json
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"sensor_ids": [
|
| 3 |
+
"400001",
|
| 4 |
+
"400017",
|
| 5 |
+
"400030",
|
| 6 |
+
"400040",
|
| 7 |
+
"400045",
|
| 8 |
+
"400052",
|
| 9 |
+
"400057",
|
| 10 |
+
"400059",
|
| 11 |
+
"400065",
|
| 12 |
+
"400069",
|
| 13 |
+
"400073",
|
| 14 |
+
"400084",
|
| 15 |
+
"400085",
|
| 16 |
+
"400088",
|
| 17 |
+
"400096",
|
| 18 |
+
"400097",
|
| 19 |
+
"400100",
|
| 20 |
+
"400104",
|
| 21 |
+
"400109",
|
| 22 |
+
"400122",
|
| 23 |
+
"400147",
|
| 24 |
+
"400148",
|
| 25 |
+
"400149",
|
| 26 |
+
"400158",
|
| 27 |
+
"400160",
|
| 28 |
+
"400168",
|
| 29 |
+
"400172",
|
| 30 |
+
"400174",
|
| 31 |
+
"400178",
|
| 32 |
+
"400185",
|
| 33 |
+
"400201",
|
| 34 |
+
"400206",
|
| 35 |
+
"400209",
|
| 36 |
+
"400213",
|
| 37 |
+
"400221",
|
| 38 |
+
"400222",
|
| 39 |
+
"400227",
|
| 40 |
+
"400236",
|
| 41 |
+
"400238",
|
| 42 |
+
"400240",
|
| 43 |
+
"400246",
|
| 44 |
+
"400253",
|
| 45 |
+
"400257",
|
| 46 |
+
"400258",
|
| 47 |
+
"400268",
|
| 48 |
+
"400274",
|
| 49 |
+
"400278",
|
| 50 |
+
"400280",
|
| 51 |
+
"400292",
|
| 52 |
+
"400296",
|
| 53 |
+
"400298",
|
| 54 |
+
"400330",
|
| 55 |
+
"400336",
|
| 56 |
+
"400343",
|
| 57 |
+
"400353",
|
| 58 |
+
"400372",
|
| 59 |
+
"400394",
|
| 60 |
+
"400400",
|
| 61 |
+
"400414",
|
| 62 |
+
"400418",
|
| 63 |
+
"400429",
|
| 64 |
+
"400435",
|
| 65 |
+
"400436",
|
| 66 |
+
"400440",
|
| 67 |
+
"400449",
|
| 68 |
+
"400457",
|
| 69 |
+
"400461",
|
| 70 |
+
"400464",
|
| 71 |
+
"400479",
|
| 72 |
+
"400485",
|
| 73 |
+
"400499",
|
| 74 |
+
"400507",
|
| 75 |
+
"400508",
|
| 76 |
+
"400514",
|
| 77 |
+
"400519",
|
| 78 |
+
"400528",
|
| 79 |
+
"400545",
|
| 80 |
+
"400560",
|
| 81 |
+
"400563",
|
| 82 |
+
"400567",
|
| 83 |
+
"400581",
|
| 84 |
+
"400582",
|
| 85 |
+
"400586",
|
| 86 |
+
"400637",
|
| 87 |
+
"400643",
|
| 88 |
+
"400648",
|
| 89 |
+
"400649",
|
| 90 |
+
"400654",
|
| 91 |
+
"400664",
|
| 92 |
+
"400665",
|
| 93 |
+
"400668",
|
| 94 |
+
"400673",
|
| 95 |
+
"400677",
|
| 96 |
+
"400687",
|
| 97 |
+
"400688",
|
| 98 |
+
"400690",
|
| 99 |
+
"400700",
|
| 100 |
+
"400709",
|
| 101 |
+
"400713",
|
| 102 |
+
"400714",
|
| 103 |
+
"400715",
|
| 104 |
+
"400717",
|
| 105 |
+
"400723",
|
| 106 |
+
"400743",
|
| 107 |
+
"400750",
|
| 108 |
+
"400760",
|
| 109 |
+
"400772",
|
| 110 |
+
"400790",
|
| 111 |
+
"400792",
|
| 112 |
+
"400794",
|
| 113 |
+
"400799",
|
| 114 |
+
"400804",
|
| 115 |
+
"400822",
|
| 116 |
+
"400823",
|
| 117 |
+
"400828",
|
| 118 |
+
"400832",
|
| 119 |
+
"400837",
|
| 120 |
+
"400842",
|
| 121 |
+
"400863",
|
| 122 |
+
"400869",
|
| 123 |
+
"400873",
|
| 124 |
+
"400895",
|
| 125 |
+
"400904",
|
| 126 |
+
"400907",
|
| 127 |
+
"400911",
|
| 128 |
+
"400916",
|
| 129 |
+
"400922",
|
| 130 |
+
"400934",
|
| 131 |
+
"400951",
|
| 132 |
+
"400952",
|
| 133 |
+
"400953",
|
| 134 |
+
"400964",
|
| 135 |
+
"400965",
|
| 136 |
+
"400970",
|
| 137 |
+
"400971",
|
| 138 |
+
"400973",
|
| 139 |
+
"400995",
|
| 140 |
+
"400996",
|
| 141 |
+
"401014",
|
| 142 |
+
"401129",
|
| 143 |
+
"401154",
|
| 144 |
+
"401163",
|
| 145 |
+
"401167",
|
| 146 |
+
"401210",
|
| 147 |
+
"401224",
|
| 148 |
+
"401327",
|
| 149 |
+
"401351",
|
| 150 |
+
"401388",
|
| 151 |
+
"401391",
|
| 152 |
+
"401400",
|
| 153 |
+
"401403",
|
| 154 |
+
"401440",
|
| 155 |
+
"401457",
|
| 156 |
+
"401464",
|
| 157 |
+
"401489",
|
| 158 |
+
"401495",
|
| 159 |
+
"401507",
|
| 160 |
+
"401534",
|
| 161 |
+
"401541",
|
| 162 |
+
"401555",
|
| 163 |
+
"401560",
|
| 164 |
+
"401567",
|
| 165 |
+
"401597",
|
| 166 |
+
"401606",
|
| 167 |
+
"401611",
|
| 168 |
+
"401655",
|
| 169 |
+
"401808",
|
| 170 |
+
"401809",
|
| 171 |
+
"401810",
|
| 172 |
+
"401811",
|
| 173 |
+
"401816",
|
| 174 |
+
"401817",
|
| 175 |
+
"401845",
|
| 176 |
+
"401846",
|
| 177 |
+
"401890",
|
| 178 |
+
"401891",
|
| 179 |
+
"401906",
|
| 180 |
+
"401908",
|
| 181 |
+
"401926",
|
| 182 |
+
"401936",
|
| 183 |
+
"401937",
|
| 184 |
+
"401942",
|
| 185 |
+
"401943",
|
| 186 |
+
"401948",
|
| 187 |
+
"401957",
|
| 188 |
+
"401958",
|
| 189 |
+
"401994",
|
| 190 |
+
"401996",
|
| 191 |
+
"401997",
|
| 192 |
+
"401998",
|
| 193 |
+
"402056",
|
| 194 |
+
"402057",
|
| 195 |
+
"402058",
|
| 196 |
+
"402059",
|
| 197 |
+
"402060",
|
| 198 |
+
"402061",
|
| 199 |
+
"402067",
|
| 200 |
+
"402117",
|
| 201 |
+
"402118",
|
| 202 |
+
"402119",
|
| 203 |
+
"402120",
|
| 204 |
+
"402121",
|
| 205 |
+
"402281",
|
| 206 |
+
"402282",
|
| 207 |
+
"402283",
|
| 208 |
+
"402284",
|
| 209 |
+
"402285",
|
| 210 |
+
"402286",
|
| 211 |
+
"402287",
|
| 212 |
+
"402288",
|
| 213 |
+
"402289",
|
| 214 |
+
"402359",
|
| 215 |
+
"402360",
|
| 216 |
+
"402361",
|
| 217 |
+
"402362",
|
| 218 |
+
"402363",
|
| 219 |
+
"402364",
|
| 220 |
+
"402365",
|
| 221 |
+
"402366",
|
| 222 |
+
"402367",
|
| 223 |
+
"402368",
|
| 224 |
+
"402369",
|
| 225 |
+
"402370",
|
| 226 |
+
"402371",
|
| 227 |
+
"402372",
|
| 228 |
+
"402373",
|
| 229 |
+
"403225",
|
| 230 |
+
"403265",
|
| 231 |
+
"403329",
|
| 232 |
+
"403401",
|
| 233 |
+
"403402",
|
| 234 |
+
"403404",
|
| 235 |
+
"403406",
|
| 236 |
+
"403409",
|
| 237 |
+
"403412",
|
| 238 |
+
"403414",
|
| 239 |
+
"403419",
|
| 240 |
+
"404370",
|
| 241 |
+
"404434",
|
| 242 |
+
"404435",
|
| 243 |
+
"404444",
|
| 244 |
+
"404451",
|
| 245 |
+
"404452",
|
| 246 |
+
"404453",
|
| 247 |
+
"404461",
|
| 248 |
+
"404462",
|
| 249 |
+
"404521",
|
| 250 |
+
"404522",
|
| 251 |
+
"404553",
|
| 252 |
+
"404554",
|
| 253 |
+
"404585",
|
| 254 |
+
"404586",
|
| 255 |
+
"404640",
|
| 256 |
+
"404753",
|
| 257 |
+
"404759",
|
| 258 |
+
"405613",
|
| 259 |
+
"405619",
|
| 260 |
+
"405701",
|
| 261 |
+
"407150",
|
| 262 |
+
"407151",
|
| 263 |
+
"407152",
|
| 264 |
+
"407153",
|
| 265 |
+
"407155",
|
| 266 |
+
"407157",
|
| 267 |
+
"407161",
|
| 268 |
+
"407165",
|
| 269 |
+
"407172",
|
| 270 |
+
"407173",
|
| 271 |
+
"407174",
|
| 272 |
+
"407176",
|
| 273 |
+
"407177",
|
| 274 |
+
"407179",
|
| 275 |
+
"407180",
|
| 276 |
+
"407181",
|
| 277 |
+
"407184",
|
| 278 |
+
"407185",
|
| 279 |
+
"407186",
|
| 280 |
+
"407187",
|
| 281 |
+
"407190",
|
| 282 |
+
"407191",
|
| 283 |
+
"407194",
|
| 284 |
+
"407200",
|
| 285 |
+
"407202",
|
| 286 |
+
"407204",
|
| 287 |
+
"407206",
|
| 288 |
+
"407207",
|
| 289 |
+
"407321",
|
| 290 |
+
"407323",
|
| 291 |
+
"407325",
|
| 292 |
+
"407328",
|
| 293 |
+
"407331",
|
| 294 |
+
"407332",
|
| 295 |
+
"407335",
|
| 296 |
+
"407336",
|
| 297 |
+
"407337",
|
| 298 |
+
"407339",
|
| 299 |
+
"407341",
|
| 300 |
+
"407342",
|
| 301 |
+
"407344",
|
| 302 |
+
"407348",
|
| 303 |
+
"407352",
|
| 304 |
+
"407359",
|
| 305 |
+
"407360",
|
| 306 |
+
"407361",
|
| 307 |
+
"407364",
|
| 308 |
+
"407367",
|
| 309 |
+
"407370",
|
| 310 |
+
"407372",
|
| 311 |
+
"407373",
|
| 312 |
+
"407374",
|
| 313 |
+
"407710",
|
| 314 |
+
"407711",
|
| 315 |
+
"408907",
|
| 316 |
+
"408911",
|
| 317 |
+
"409524",
|
| 318 |
+
"409525",
|
| 319 |
+
"409526",
|
| 320 |
+
"409528",
|
| 321 |
+
"409529",
|
| 322 |
+
"413026",
|
| 323 |
+
"413845",
|
| 324 |
+
"413877",
|
| 325 |
+
"413878",
|
| 326 |
+
"414284",
|
| 327 |
+
"414694"
|
| 328 |
+
],
|
| 329 |
+
"description": "Adjacency matrix for PEMS-BAY",
|
| 330 |
+
"shape": [
|
| 331 |
+
325,
|
| 332 |
+
325
|
| 333 |
+
],
|
| 334 |
+
"non_zero_entries": 2694,
|
| 335 |
+
"sparsity": 0.974494674556213,
|
| 336 |
+
"parameters": {
|
| 337 |
+
"normalized_k": 0.1,
|
| 338 |
+
"method": "gaussian_kernel_exp(-d\u00b2/\u03c3\u00b2)",
|
| 339 |
+
"distance_threshold": "values < 0.1 set to 0"
|
| 340 |
+
}
|
| 341 |
+
}
|
sensor_graph/distances_bay_2017.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
sensor_graph/graph_sensor_locations_bay.csv
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
400001,37.364085,-121.901149
|
| 2 |
+
400017,37.253303,-121.945440
|
| 3 |
+
400030,37.359087,-121.906538
|
| 4 |
+
400040,37.294949,-121.873109
|
| 5 |
+
400045,37.363402,-121.902233
|
| 6 |
+
400052,37.255791,-121.875479
|
| 7 |
+
400057,37.335022,-121.935522
|
| 8 |
+
400059,37.250481,-121.907735
|
| 9 |
+
400065,37.320292,-121.890281
|
| 10 |
+
400069,37.385758,-121.977493
|
| 11 |
+
400073,37.256300,-121.955559
|
| 12 |
+
400084,37.329258,-122.012053
|
| 13 |
+
400085,37.255594,-121.874710
|
| 14 |
+
400088,37.414988,-121.912685
|
| 15 |
+
400096,37.417981,-121.972547
|
| 16 |
+
400097,37.279012,-122.010614
|
| 17 |
+
400100,37.295052,-121.938872
|
| 18 |
+
400104,37.419313,-121.955480
|
| 19 |
+
400109,37.362706,-121.889426
|
| 20 |
+
400122,37.366140,-121.901132
|
| 21 |
+
400147,37.342210,-121.926305
|
| 22 |
+
400148,37.250664,-121.912479
|
| 23 |
+
400149,37.411800,-122.077964
|
| 24 |
+
400158,37.421059,-121.936780
|
| 25 |
+
400160,37.348392,-121.860589
|
| 26 |
+
400168,37.391166,-121.995524
|
| 27 |
+
400172,37.376264,-121.939712
|
| 28 |
+
400174,37.403686,-122.069760
|
| 29 |
+
400178,37.276874,-121.863698
|
| 30 |
+
400185,37.303131,-122.034527
|
| 31 |
+
400201,37.419186,-121.962831
|
| 32 |
+
400206,37.381356,-121.962110
|
| 33 |
+
400209,37.319961,-122.049031
|
| 34 |
+
400213,37.259192,-121.967128
|
| 35 |
+
400221,37.293614,-121.937899
|
| 36 |
+
400222,37.275395,-122.004702
|
| 37 |
+
400227,37.377237,-121.943586
|
| 38 |
+
400236,37.325009,-121.892984
|
| 39 |
+
400238,37.413256,-121.912324
|
| 40 |
+
400240,37.258184,-121.953853
|
| 41 |
+
400246,37.386551,-121.979462
|
| 42 |
+
400253,37.342957,-121.925721
|
| 43 |
+
400257,37.291715,-121.871799
|
| 44 |
+
400258,37.313462,-121.886197
|
| 45 |
+
400268,37.255651,-121.858078
|
| 46 |
+
400274,37.409627,-121.997252
|
| 47 |
+
400278,37.266561,-121.948692
|
| 48 |
+
400280,37.261980,-121.858479
|
| 49 |
+
400292,37.316378,-121.972052
|
| 50 |
+
400296,37.420359,-121.939150
|
| 51 |
+
400298,37.293047,-121.937861
|
| 52 |
+
400330,37.398628,-122.026802
|
| 53 |
+
400336,37.250624,-121.928209
|
| 54 |
+
400343,37.348907,-121.917833
|
| 55 |
+
400353,37.383125,-121.967496
|
| 56 |
+
400372,37.384820,-121.974251
|
| 57 |
+
400394,37.364382,-121.902692
|
| 58 |
+
400400,37.342410,-121.854543
|
| 59 |
+
400414,37.317942,-121.977301
|
| 60 |
+
400418,37.291828,-121.871836
|
| 61 |
+
400429,37.319424,-121.993175
|
| 62 |
+
400435,37.403153,-122.047463
|
| 63 |
+
400436,37.271687,-121.947037
|
| 64 |
+
400440,37.353727,-121.865827
|
| 65 |
+
400449,37.419452,-121.955498
|
| 66 |
+
400457,37.276763,-121.863661
|
| 67 |
+
400461,37.254781,-121.878917
|
| 68 |
+
400464,37.258029,-121.962211
|
| 69 |
+
400479,37.362439,-121.903211
|
| 70 |
+
400485,37.254231,-121.949216
|
| 71 |
+
400499,37.331068,-122.014931
|
| 72 |
+
400507,37.298931,-122.029806
|
| 73 |
+
400508,37.347660,-121.919969
|
| 74 |
+
400514,37.334602,-121.936288
|
| 75 |
+
400519,37.255257,-121.852560
|
| 76 |
+
400528,37.388893,-122.068829
|
| 77 |
+
400545,37.400130,-122.033628
|
| 78 |
+
400560,37.324839,-122.002891
|
| 79 |
+
400563,37.325124,-121.893062
|
| 80 |
+
400567,37.418931,-121.962821
|
| 81 |
+
400581,37.402668,-122.029069
|
| 82 |
+
400582,37.275212,-122.004898
|
| 83 |
+
400586,37.376835,-121.942537
|
| 84 |
+
400637,37.255322,-121.855765
|
| 85 |
+
400643,37.390763,-121.994912
|
| 86 |
+
400648,37.303016,-122.034801
|
| 87 |
+
400649,37.251741,-121.958118
|
| 88 |
+
400654,37.297486,-121.874117
|
| 89 |
+
400664,37.303458,-121.878143
|
| 90 |
+
400665,37.341439,-121.849299
|
| 91 |
+
400668,37.355120,-121.866967
|
| 92 |
+
400673,37.329972,-122.013423
|
| 93 |
+
400677,37.320010,-122.048757
|
| 94 |
+
400687,37.408833,-122.000989
|
| 95 |
+
400688,37.259412,-121.966974
|
| 96 |
+
400690,37.255184,-121.876817
|
| 97 |
+
400700,37.251345,-121.934089
|
| 98 |
+
400709,37.341275,-121.927699
|
| 99 |
+
400713,37.251585,-121.934046
|
| 100 |
+
400714,37.316788,-121.953512
|
| 101 |
+
400715,37.256205,-121.955355
|
| 102 |
+
400717,37.250424,-121.912467
|
| 103 |
+
400723,37.334296,-121.936706
|
| 104 |
+
400743,37.398989,-122.028373
|
| 105 |
+
400750,37.250746,-121.907763
|
| 106 |
+
400760,37.374628,-121.931055
|
| 107 |
+
400772,37.250448,-121.928226
|
| 108 |
+
400790,37.391922,-121.998077
|
| 109 |
+
400792,37.255491,-121.955543
|
| 110 |
+
400794,37.390422,-121.993716
|
| 111 |
+
400799,37.327927,-121.876137
|
| 112 |
+
400804,37.336089,-121.848437
|
| 113 |
+
400822,37.255715,-121.955375
|
| 114 |
+
400823,37.334249,-122.030111
|
| 115 |
+
400828,37.298804,-122.030071
|
| 116 |
+
400832,37.254601,-121.956775
|
| 117 |
+
400837,37.303359,-121.878066
|
| 118 |
+
400842,37.261849,-121.859205
|
| 119 |
+
400863,37.371809,-121.916550
|
| 120 |
+
400869,37.403673,-122.069953
|
| 121 |
+
400873,37.420927,-121.936740
|
| 122 |
+
400895,37.380958,-121.960741
|
| 123 |
+
400904,37.395067,-122.010518
|
| 124 |
+
400907,37.257815,-121.962370
|
| 125 |
+
400911,37.372674,-121.922087
|
| 126 |
+
400916,37.320404,-121.890310
|
| 127 |
+
400922,37.363644,-121.899535
|
| 128 |
+
400934,37.254002,-121.949365
|
| 129 |
+
400951,37.325151,-121.940679
|
| 130 |
+
400952,37.279234,-122.010350
|
| 131 |
+
400953,37.327241,-121.880760
|
| 132 |
+
400964,37.376685,-121.940750
|
| 133 |
+
400965,37.363311,-121.893592
|
| 134 |
+
400970,37.409675,-121.996301
|
| 135 |
+
400971,37.368669,-121.901336
|
| 136 |
+
400973,37.417735,-121.972451
|
| 137 |
+
400995,37.313375,-121.886106
|
| 138 |
+
400996,37.350928,-121.862378
|
| 139 |
+
401014,37.420505,-121.939200
|
| 140 |
+
401129,37.266722,-121.859225
|
| 141 |
+
401154,37.266658,-121.859210
|
| 142 |
+
401163,37.316756,-121.923186
|
| 143 |
+
401167,37.316984,-121.923208
|
| 144 |
+
401210,37.291198,-122.023391
|
| 145 |
+
401224,37.291054,-122.023638
|
| 146 |
+
401327,37.315095,-121.914498
|
| 147 |
+
401351,37.401701,-122.032879
|
| 148 |
+
401388,37.316628,-121.952438
|
| 149 |
+
401391,37.337881,-121.854670
|
| 150 |
+
401400,37.316841,-121.952427
|
| 151 |
+
401403,37.338232,-121.854583
|
| 152 |
+
401440,37.356826,-121.908804
|
| 153 |
+
401457,37.279515,-121.864784
|
| 154 |
+
401464,37.424833,-121.916049
|
| 155 |
+
401489,37.427486,-121.916962
|
| 156 |
+
401495,37.255346,-121.858980
|
| 157 |
+
401507,37.412677,-122.079539
|
| 158 |
+
401534,37.407511,-122.065278
|
| 159 |
+
401541,37.370203,-121.901514
|
| 160 |
+
401555,37.255657,-121.858984
|
| 161 |
+
401560,37.357526,-121.907884
|
| 162 |
+
401567,37.279628,-121.864838
|
| 163 |
+
401597,37.287400,-121.869623
|
| 164 |
+
401606,37.287298,-121.869548
|
| 165 |
+
401611,37.318919,-121.940307
|
| 166 |
+
401655,37.335596,-121.858919
|
| 167 |
+
401808,37.334883,-121.860066
|
| 168 |
+
401809,37.334524,-121.860098
|
| 169 |
+
401810,37.325920,-121.883989
|
| 170 |
+
401811,37.325651,-121.883953
|
| 171 |
+
401816,37.371160,-121.926885
|
| 172 |
+
401817,37.371274,-121.926917
|
| 173 |
+
401845,37.332668,-122.060628
|
| 174 |
+
401846,37.332482,-122.060617
|
| 175 |
+
401890,37.343447,-121.855539
|
| 176 |
+
401891,37.343293,-121.855795
|
| 177 |
+
401906,37.335259,-121.848031
|
| 178 |
+
401908,37.335284,-121.847662
|
| 179 |
+
401926,37.411999,-122.078452
|
| 180 |
+
401936,37.407282,-122.065150
|
| 181 |
+
401937,37.411338,-122.076826
|
| 182 |
+
401942,37.322594,-121.897858
|
| 183 |
+
401943,37.322361,-121.897800
|
| 184 |
+
401948,37.409514,-122.071728
|
| 185 |
+
401957,37.270311,-121.861079
|
| 186 |
+
401958,37.270209,-121.860998
|
| 187 |
+
401994,37.385523,-121.975872
|
| 188 |
+
401996,37.396411,-122.015716
|
| 189 |
+
401997,37.398597,-122.025693
|
| 190 |
+
401998,37.404178,-122.051070
|
| 191 |
+
402056,37.328954,-121.895643
|
| 192 |
+
402057,37.336401,-121.897563
|
| 193 |
+
402058,37.337137,-121.897741
|
| 194 |
+
402059,37.337479,-121.897848
|
| 195 |
+
402060,37.356655,-122.062397
|
| 196 |
+
402061,37.356616,-122.062620
|
| 197 |
+
402067,37.321367,-121.899571
|
| 198 |
+
402117,37.344302,-121.902123
|
| 199 |
+
402118,37.344411,-121.902181
|
| 200 |
+
402119,37.421182,-121.915036
|
| 201 |
+
402120,37.399227,-121.908515
|
| 202 |
+
402121,37.380274,-121.904061
|
| 203 |
+
402281,37.384490,-121.904845
|
| 204 |
+
402282,37.384485,-121.905044
|
| 205 |
+
402283,37.391595,-121.906506
|
| 206 |
+
402284,37.391557,-121.906710
|
| 207 |
+
402285,37.398698,-121.908172
|
| 208 |
+
402286,37.405824,-121.909842
|
| 209 |
+
402287,37.405777,-121.910072
|
| 210 |
+
402288,37.419153,-121.914103
|
| 211 |
+
402289,37.419106,-121.914308
|
| 212 |
+
402359,37.329728,-121.842102
|
| 213 |
+
402360,37.329591,-121.842361
|
| 214 |
+
402361,37.336549,-121.848881
|
| 215 |
+
402362,37.358996,-121.871981
|
| 216 |
+
402363,37.358800,-121.872094
|
| 217 |
+
402364,37.368104,-121.907880
|
| 218 |
+
402365,37.367859,-121.907971
|
| 219 |
+
402366,37.388542,-121.986478
|
| 220 |
+
402367,37.388372,-121.986538
|
| 221 |
+
402368,37.393954,-122.005269
|
| 222 |
+
402369,37.393755,-122.005329
|
| 223 |
+
402370,37.395920,-122.013438
|
| 224 |
+
402371,37.396611,-122.017518
|
| 225 |
+
402372,37.405470,-122.055924
|
| 226 |
+
402373,37.405335,-122.056343
|
| 227 |
+
403225,37.349517,-121.917280
|
| 228 |
+
403265,37.349229,-121.917686
|
| 229 |
+
403329,37.270267,-121.947353
|
| 230 |
+
403401,37.328484,-121.870843
|
| 231 |
+
403402,37.328720,-121.870796
|
| 232 |
+
403404,37.327807,-121.874899
|
| 233 |
+
403406,37.325920,-121.883314
|
| 234 |
+
403409,37.324015,-121.890673
|
| 235 |
+
403412,37.322430,-121.897640
|
| 236 |
+
403414,37.314844,-121.913648
|
| 237 |
+
403419,37.316766,-121.921548
|
| 238 |
+
404370,37.296028,-121.939132
|
| 239 |
+
404434,37.265521,-121.981540
|
| 240 |
+
404435,37.326592,-122.050852
|
| 241 |
+
404444,37.265311,-121.981694
|
| 242 |
+
404451,37.272630,-121.862544
|
| 243 |
+
404452,37.284773,-121.867709
|
| 244 |
+
404453,37.309111,-121.882596
|
| 245 |
+
404461,37.309012,-121.882518
|
| 246 |
+
404462,37.272658,-121.862556
|
| 247 |
+
404521,37.382586,-121.965617
|
| 248 |
+
404522,37.402071,-122.041627
|
| 249 |
+
404553,37.395734,-122.013489
|
| 250 |
+
404554,37.401893,-122.041683
|
| 251 |
+
404585,37.406298,-122.011605
|
| 252 |
+
404586,37.406475,-122.011621
|
| 253 |
+
404640,37.333614,-122.049627
|
| 254 |
+
404753,37.364689,-121.902989
|
| 255 |
+
404759,37.365167,-121.901551
|
| 256 |
+
405613,37.262704,-121.858533
|
| 257 |
+
405619,37.284665,-121.867631
|
| 258 |
+
405701,37.316969,-121.924481
|
| 259 |
+
407150,37.427274,-121.884436
|
| 260 |
+
407151,37.420741,-121.882093
|
| 261 |
+
407152,37.416073,-121.880751
|
| 262 |
+
407153,37.398059,-121.875211
|
| 263 |
+
407155,37.391513,-121.870376
|
| 264 |
+
407157,37.385475,-121.863839
|
| 265 |
+
407161,37.407770,-121.878234
|
| 266 |
+
407165,37.344023,-121.845368
|
| 267 |
+
407172,37.341738,-121.848369
|
| 268 |
+
407173,37.342007,-121.847982
|
| 269 |
+
407174,37.400880,-121.876103
|
| 270 |
+
407176,37.358523,-121.840267
|
| 271 |
+
407177,37.360223,-121.841285
|
| 272 |
+
407179,37.368611,-121.846609
|
| 273 |
+
407180,37.372785,-121.850839
|
| 274 |
+
407181,37.379684,-121.857783
|
| 275 |
+
407184,37.427403,-121.884848
|
| 276 |
+
407185,37.420881,-121.882423
|
| 277 |
+
407186,37.391614,-121.870798
|
| 278 |
+
407187,37.383139,-121.861675
|
| 279 |
+
407190,37.412704,-121.880023
|
| 280 |
+
407191,37.407919,-121.878542
|
| 281 |
+
407194,37.344191,-121.845564
|
| 282 |
+
407200,37.398207,-121.875543
|
| 283 |
+
407202,37.360613,-121.841794
|
| 284 |
+
407204,37.366097,-121.845103
|
| 285 |
+
407206,37.372897,-121.851246
|
| 286 |
+
407207,37.379794,-121.858188
|
| 287 |
+
407321,37.333648,-122.056851
|
| 288 |
+
407323,37.396419,-122.068661
|
| 289 |
+
407325,37.383707,-122.068108
|
| 290 |
+
407328,37.377217,-122.067542
|
| 291 |
+
407331,37.335431,-122.058337
|
| 292 |
+
407332,37.407311,-122.069566
|
| 293 |
+
407335,37.373213,-122.067368
|
| 294 |
+
407336,37.363146,-122.062707
|
| 295 |
+
407337,37.353092,-122.060900
|
| 296 |
+
407339,37.351571,-122.060285
|
| 297 |
+
407341,37.344713,-122.059766
|
| 298 |
+
407342,37.379094,-122.067604
|
| 299 |
+
407344,37.331501,-122.054687
|
| 300 |
+
407348,37.384273,-122.068412
|
| 301 |
+
407352,37.377057,-122.067805
|
| 302 |
+
407359,37.407147,-122.070055
|
| 303 |
+
407360,37.373187,-122.067646
|
| 304 |
+
407361,37.363107,-122.063006
|
| 305 |
+
407364,37.351529,-122.060518
|
| 306 |
+
407367,37.379368,-122.067871
|
| 307 |
+
407370,37.333574,-122.057007
|
| 308 |
+
407372,37.344708,-122.059991
|
| 309 |
+
407373,37.337629,-122.059717
|
| 310 |
+
407374,37.395123,-122.068612
|
| 311 |
+
407710,37.317459,-121.938793
|
| 312 |
+
407711,37.317112,-121.941507
|
| 313 |
+
408907,37.321822,-121.940425
|
| 314 |
+
408911,37.325153,-121.940859
|
| 315 |
+
409524,37.348448,-121.907247
|
| 316 |
+
409525,37.362566,-121.917493
|
| 317 |
+
409526,37.366737,-121.921627
|
| 318 |
+
409528,37.362467,-121.917418
|
| 319 |
+
409529,37.366662,-121.921519
|
| 320 |
+
413026,37.421232,-121.914808
|
| 321 |
+
413845,37.422887,-121.925747
|
| 322 |
+
413877,37.321613,-121.899642
|
| 323 |
+
413878,37.324641,-121.888603
|
| 324 |
+
414284,37.323066,-121.896538
|
| 325 |
+
414694,37.315051,-121.913497
|
test.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddf020cb2a19c4cc80ab94e2fe3939f6657981d01d887d1407ff67d5dfc4e216
|
| 3 |
+
size 102987287
|
test_metadata.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"x_offsets": [
|
| 3 |
+
-11,
|
| 4 |
+
-10,
|
| 5 |
+
-9,
|
| 6 |
+
-8,
|
| 7 |
+
-7,
|
| 8 |
+
-6,
|
| 9 |
+
-5,
|
| 10 |
+
-4,
|
| 11 |
+
-3,
|
| 12 |
+
-2,
|
| 13 |
+
-1,
|
| 14 |
+
0
|
| 15 |
+
],
|
| 16 |
+
"y_offsets": [
|
| 17 |
+
1,
|
| 18 |
+
2,
|
| 19 |
+
3,
|
| 20 |
+
4,
|
| 21 |
+
5,
|
| 22 |
+
6,
|
| 23 |
+
7,
|
| 24 |
+
8,
|
| 25 |
+
9,
|
| 26 |
+
10,
|
| 27 |
+
11,
|
| 28 |
+
12
|
| 29 |
+
],
|
| 30 |
+
"x_shape": [
|
| 31 |
+
10419,
|
| 32 |
+
12,
|
| 33 |
+
325,
|
| 34 |
+
2
|
| 35 |
+
],
|
| 36 |
+
"y_shape": [
|
| 37 |
+
10419,
|
| 38 |
+
12,
|
| 39 |
+
325,
|
| 40 |
+
2
|
| 41 |
+
],
|
| 42 |
+
"num_samples": 10419,
|
| 43 |
+
"input_length": 12,
|
| 44 |
+
"output_length": 12,
|
| 45 |
+
"num_nodes": 325,
|
| 46 |
+
"input_dim": 2,
|
| 47 |
+
"output_dim": 2
|
| 48 |
+
}
|
train.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8eab67fe5f0f8dd357db67d6b2345a6194b927b088a7e4f890668687f9987ee2
|
| 3 |
+
size 360120466
|
train_metadata.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"x_offsets": [
|
| 3 |
+
-11,
|
| 4 |
+
-10,
|
| 5 |
+
-9,
|
| 6 |
+
-8,
|
| 7 |
+
-7,
|
| 8 |
+
-6,
|
| 9 |
+
-5,
|
| 10 |
+
-4,
|
| 11 |
+
-3,
|
| 12 |
+
-2,
|
| 13 |
+
-1,
|
| 14 |
+
0
|
| 15 |
+
],
|
| 16 |
+
"y_offsets": [
|
| 17 |
+
1,
|
| 18 |
+
2,
|
| 19 |
+
3,
|
| 20 |
+
4,
|
| 21 |
+
5,
|
| 22 |
+
6,
|
| 23 |
+
7,
|
| 24 |
+
8,
|
| 25 |
+
9,
|
| 26 |
+
10,
|
| 27 |
+
11,
|
| 28 |
+
12
|
| 29 |
+
],
|
| 30 |
+
"x_shape": [
|
| 31 |
+
36465,
|
| 32 |
+
12,
|
| 33 |
+
325,
|
| 34 |
+
2
|
| 35 |
+
],
|
| 36 |
+
"y_shape": [
|
| 37 |
+
36465,
|
| 38 |
+
12,
|
| 39 |
+
325,
|
| 40 |
+
2
|
| 41 |
+
],
|
| 42 |
+
"num_samples": 36465,
|
| 43 |
+
"input_length": 12,
|
| 44 |
+
"output_length": 12,
|
| 45 |
+
"num_nodes": 325,
|
| 46 |
+
"input_dim": 2,
|
| 47 |
+
"output_dim": 2
|
| 48 |
+
}
|
val.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1f12d7a8d640a7567c58795180e930ce1b19bd0509ef615f1448578b531ba57
|
| 3 |
+
size 51480390
|
val_metadata.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"x_offsets": [
|
| 3 |
+
-11,
|
| 4 |
+
-10,
|
| 5 |
+
-9,
|
| 6 |
+
-8,
|
| 7 |
+
-7,
|
| 8 |
+
-6,
|
| 9 |
+
-5,
|
| 10 |
+
-4,
|
| 11 |
+
-3,
|
| 12 |
+
-2,
|
| 13 |
+
-1,
|
| 14 |
+
0
|
| 15 |
+
],
|
| 16 |
+
"y_offsets": [
|
| 17 |
+
1,
|
| 18 |
+
2,
|
| 19 |
+
3,
|
| 20 |
+
4,
|
| 21 |
+
5,
|
| 22 |
+
6,
|
| 23 |
+
7,
|
| 24 |
+
8,
|
| 25 |
+
9,
|
| 26 |
+
10,
|
| 27 |
+
11,
|
| 28 |
+
12
|
| 29 |
+
],
|
| 30 |
+
"x_shape": [
|
| 31 |
+
5209,
|
| 32 |
+
12,
|
| 33 |
+
325,
|
| 34 |
+
2
|
| 35 |
+
],
|
| 36 |
+
"y_shape": [
|
| 37 |
+
5209,
|
| 38 |
+
12,
|
| 39 |
+
325,
|
| 40 |
+
2
|
| 41 |
+
],
|
| 42 |
+
"num_samples": 5209,
|
| 43 |
+
"input_length": 12,
|
| 44 |
+
"output_length": 12,
|
| 45 |
+
"num_nodes": 325,
|
| 46 |
+
"input_dim": 2,
|
| 47 |
+
"output_dim": 2
|
| 48 |
+
}
|