witgaw commited on
Commit
5794ed6
·
verified ·
1 Parent(s): 8372f40

Add PEMS-BAY traffic prediction dataset with Parquet files

Browse files
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - time-series-forecasting
5
+ - tabular-regression
6
+ tags:
7
+ - traffic-prediction
8
+ - time-series
9
+ - graph-neural-networks
10
+ - transportation
11
+ size_categories:
12
+ - 10M<n<100M
13
+ ---
14
+
15
+ # PEMS-BAY Traffic Dataset
16
+
17
+ ## Dataset Description
18
+
19
+ This dataset contains traffic flow data for time series forecasting tasks, commonly used with Graph Neural Networks and specifically the Diffusion Convolutional Recurrent Neural Network (DCRNN) model.
20
+
21
+ ## Dataset Structure
22
+
23
+ ### Data Format
24
+ - **Format**: Parquet files for efficient loading and analysis
25
+ - **Splits**: train (70%), validation (10%), test (20%) - **temporal splits** preserving chronological order
26
+ - **Features**: Time series traffic flow data with temporal and spatial dimensions
27
+
28
+ ### Split Strategy
29
+ - **Temporal splitting**: Data is split chronologically to prevent data leakage
30
+ - **All sensors included**: Each split contains data for all sensors at each time step
31
+ - **Training period**: Earliest 70% of time samples across all sensors
32
+ - **Validation period**: Next 10% of time samples across all sensors
33
+ - **Test period**: Latest 20% of time samples across all sensors
34
+ - **Graph structure preserved**: Spatial relationships maintained in all splits
35
+
36
+ ### Data Schema
37
+ - `node_id`: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY)
38
+ - `x_t*_d*`: Input features at different time offsets and dimensions
39
+ - `x_t-11_d0` to `x_t+0_d0`: Traffic flow values at 12 historical time steps
40
+ - `x_t-11_d1` to `x_t+0_d1`: Time-of-day features (normalized 0-1)
41
+ - `y_t*_d*`: Target values at future time steps and dimensions
42
+ - `y_t+1_d0` to `y_t+12_d0`: Traffic flow predictions for next 12 time steps
43
+ - `y_t+1_d1` to `y_t+12_d1`: Time-of-day features for prediction horizon
44
+
45
+ ### Dataset Statistics
46
+ - **Total time series samples**: ~34K (METR-LA) / ~52K (PEMS-BAY)
47
+ - **Total records**: ~7M (METR-LA) / ~17M (PEMS-BAY)
48
+ - **Records per sample**: 207 (METR-LA) / 325 (PEMS-BAY) sensors
49
+ - **Temporal resolution**: 5-minute intervals
50
+ - **Prediction horizon**: 1 hour (12 time steps)
51
+
52
+ ## Usage
53
+
54
+ ```python
55
+ from datasets import load_dataset
56
+ import pandas as pd
57
+
58
+ # Load from Hugging Face Hub
59
+ dataset = load_dataset("witgaw/PEMS-BAY")
60
+
61
+ # Or load locally
62
+ train_df = pd.read_parquet("train.parquet")
63
+ val_df = pd.read_parquet("val.parquet")
64
+ test_df = pd.read_parquet("test.parquet")
65
+
66
+ print(f"Train samples: {len(train_df) // 207:,}") # Divide by number of sensors
67
+ print(f"Total records: {len(train_df):,}")
68
+ print(f"Features per record: {len(train_df.columns)}")
69
+
70
+ # Example: Get data for first time sample
71
+ first_sample = train_df[train_df.index < 207] # First 207 records (all sensors)
72
+ print(f"Shape for one time sample: {first_sample.shape}")
73
+ ```
74
+
75
+ ## Citation
76
+
77
+ If you use this dataset, please cite the original DCRNN paper:
78
+
79
+ ```bibtex
80
+ @inproceedings{li2018dcrnn,
81
+ title={Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting},
82
+ author={Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan},
83
+ booktitle={International Conference on Learning Representations},
84
+ year={2018}
85
+ }
86
+ ```
87
+
88
+ ## Dataset Generation
89
+
90
+ The code used to generate this Hugging Face-compatible dataset can be found at [witgaw/DCRNN](https://github.com/witgaw/DCRNN), a fork of the original DCRNN repository with enhanced data processing capabilities.
91
+
92
+ ## Original Data Source
93
+
94
+ This dataset is derived from the original PEMS-BAY dataset used in the DCRNN paper.
95
+
96
+ ## License
97
+
98
+ MIT License - See LICENSE file for details.
sensor_graph/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sensor Graph Data for PEMS-BAY
2
+
3
+ This directory contains spatial information about the traffic sensors used in the PEMS-BAY dataset.
4
+
5
+ ## Files
6
+
7
+ - `graph_sensor_locations_bay.csv`: Sensor coordinates (latitude, longitude) for 325 sensors
8
+ - `distances_bay_2017.csv`: Pairwise distances between sensors in meters
9
+ - `adj_mx_bay.npy`: Pre-computed adjacency matrix (325×325) for graph neural networks
10
+ - `adj_mx_bay_mapping.json`: Metadata and parameters used to generate the adjacency matrix
11
+
12
+ ## Usage
13
+
14
+ ```python
15
+ import pandas as pd
16
+ import numpy as np
17
+
18
+ # Load sensor locations
19
+ locations = pd.read_csv('sensor_graph/graph_sensor_locations_bay.csv')
20
+ print(f"Dataset has {len(locations)} sensors")
21
+
22
+ # Load distances (for custom graph construction)
23
+ distances = pd.read_csv('sensor_graph/distances_bay_2017.csv')
24
+
25
+ # Load pre-computed adjacency matrix
26
+ adj_matrix = np.load('sensor_graph/adj_mx_bay.npy')
27
+ print(f"Adjacency matrix shape: {adj_matrix.shape}")
28
+ ```
29
+
30
+ ## Coordinate System
31
+
32
+ - Coordinates are in WGS84 (latitude, longitude)
33
+ - Distances are in meters
34
+ - Use this data to construct the adjacency matrix for graph neural networks
35
+
36
+ ## Citation
37
+
38
+ This spatial data is part of the original dataset used in:
39
+
40
+ > Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018). Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018.
sensor_graph/adj_mx_bay.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfe332913480221f0c1e67ff6c7a5ea8896a70a8fc2f6ff04b052842b91072b9
3
+ size 422628
sensor_graph/adj_mx_bay_mapping.json ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sensor_ids": [
3
+ "400001",
4
+ "400017",
5
+ "400030",
6
+ "400040",
7
+ "400045",
8
+ "400052",
9
+ "400057",
10
+ "400059",
11
+ "400065",
12
+ "400069",
13
+ "400073",
14
+ "400084",
15
+ "400085",
16
+ "400088",
17
+ "400096",
18
+ "400097",
19
+ "400100",
20
+ "400104",
21
+ "400109",
22
+ "400122",
23
+ "400147",
24
+ "400148",
25
+ "400149",
26
+ "400158",
27
+ "400160",
28
+ "400168",
29
+ "400172",
30
+ "400174",
31
+ "400178",
32
+ "400185",
33
+ "400201",
34
+ "400206",
35
+ "400209",
36
+ "400213",
37
+ "400221",
38
+ "400222",
39
+ "400227",
40
+ "400236",
41
+ "400238",
42
+ "400240",
43
+ "400246",
44
+ "400253",
45
+ "400257",
46
+ "400258",
47
+ "400268",
48
+ "400274",
49
+ "400278",
50
+ "400280",
51
+ "400292",
52
+ "400296",
53
+ "400298",
54
+ "400330",
55
+ "400336",
56
+ "400343",
57
+ "400353",
58
+ "400372",
59
+ "400394",
60
+ "400400",
61
+ "400414",
62
+ "400418",
63
+ "400429",
64
+ "400435",
65
+ "400436",
66
+ "400440",
67
+ "400449",
68
+ "400457",
69
+ "400461",
70
+ "400464",
71
+ "400479",
72
+ "400485",
73
+ "400499",
74
+ "400507",
75
+ "400508",
76
+ "400514",
77
+ "400519",
78
+ "400528",
79
+ "400545",
80
+ "400560",
81
+ "400563",
82
+ "400567",
83
+ "400581",
84
+ "400582",
85
+ "400586",
86
+ "400637",
87
+ "400643",
88
+ "400648",
89
+ "400649",
90
+ "400654",
91
+ "400664",
92
+ "400665",
93
+ "400668",
94
+ "400673",
95
+ "400677",
96
+ "400687",
97
+ "400688",
98
+ "400690",
99
+ "400700",
100
+ "400709",
101
+ "400713",
102
+ "400714",
103
+ "400715",
104
+ "400717",
105
+ "400723",
106
+ "400743",
107
+ "400750",
108
+ "400760",
109
+ "400772",
110
+ "400790",
111
+ "400792",
112
+ "400794",
113
+ "400799",
114
+ "400804",
115
+ "400822",
116
+ "400823",
117
+ "400828",
118
+ "400832",
119
+ "400837",
120
+ "400842",
121
+ "400863",
122
+ "400869",
123
+ "400873",
124
+ "400895",
125
+ "400904",
126
+ "400907",
127
+ "400911",
128
+ "400916",
129
+ "400922",
130
+ "400934",
131
+ "400951",
132
+ "400952",
133
+ "400953",
134
+ "400964",
135
+ "400965",
136
+ "400970",
137
+ "400971",
138
+ "400973",
139
+ "400995",
140
+ "400996",
141
+ "401014",
142
+ "401129",
143
+ "401154",
144
+ "401163",
145
+ "401167",
146
+ "401210",
147
+ "401224",
148
+ "401327",
149
+ "401351",
150
+ "401388",
151
+ "401391",
152
+ "401400",
153
+ "401403",
154
+ "401440",
155
+ "401457",
156
+ "401464",
157
+ "401489",
158
+ "401495",
159
+ "401507",
160
+ "401534",
161
+ "401541",
162
+ "401555",
163
+ "401560",
164
+ "401567",
165
+ "401597",
166
+ "401606",
167
+ "401611",
168
+ "401655",
169
+ "401808",
170
+ "401809",
171
+ "401810",
172
+ "401811",
173
+ "401816",
174
+ "401817",
175
+ "401845",
176
+ "401846",
177
+ "401890",
178
+ "401891",
179
+ "401906",
180
+ "401908",
181
+ "401926",
182
+ "401936",
183
+ "401937",
184
+ "401942",
185
+ "401943",
186
+ "401948",
187
+ "401957",
188
+ "401958",
189
+ "401994",
190
+ "401996",
191
+ "401997",
192
+ "401998",
193
+ "402056",
194
+ "402057",
195
+ "402058",
196
+ "402059",
197
+ "402060",
198
+ "402061",
199
+ "402067",
200
+ "402117",
201
+ "402118",
202
+ "402119",
203
+ "402120",
204
+ "402121",
205
+ "402281",
206
+ "402282",
207
+ "402283",
208
+ "402284",
209
+ "402285",
210
+ "402286",
211
+ "402287",
212
+ "402288",
213
+ "402289",
214
+ "402359",
215
+ "402360",
216
+ "402361",
217
+ "402362",
218
+ "402363",
219
+ "402364",
220
+ "402365",
221
+ "402366",
222
+ "402367",
223
+ "402368",
224
+ "402369",
225
+ "402370",
226
+ "402371",
227
+ "402372",
228
+ "402373",
229
+ "403225",
230
+ "403265",
231
+ "403329",
232
+ "403401",
233
+ "403402",
234
+ "403404",
235
+ "403406",
236
+ "403409",
237
+ "403412",
238
+ "403414",
239
+ "403419",
240
+ "404370",
241
+ "404434",
242
+ "404435",
243
+ "404444",
244
+ "404451",
245
+ "404452",
246
+ "404453",
247
+ "404461",
248
+ "404462",
249
+ "404521",
250
+ "404522",
251
+ "404553",
252
+ "404554",
253
+ "404585",
254
+ "404586",
255
+ "404640",
256
+ "404753",
257
+ "404759",
258
+ "405613",
259
+ "405619",
260
+ "405701",
261
+ "407150",
262
+ "407151",
263
+ "407152",
264
+ "407153",
265
+ "407155",
266
+ "407157",
267
+ "407161",
268
+ "407165",
269
+ "407172",
270
+ "407173",
271
+ "407174",
272
+ "407176",
273
+ "407177",
274
+ "407179",
275
+ "407180",
276
+ "407181",
277
+ "407184",
278
+ "407185",
279
+ "407186",
280
+ "407187",
281
+ "407190",
282
+ "407191",
283
+ "407194",
284
+ "407200",
285
+ "407202",
286
+ "407204",
287
+ "407206",
288
+ "407207",
289
+ "407321",
290
+ "407323",
291
+ "407325",
292
+ "407328",
293
+ "407331",
294
+ "407332",
295
+ "407335",
296
+ "407336",
297
+ "407337",
298
+ "407339",
299
+ "407341",
300
+ "407342",
301
+ "407344",
302
+ "407348",
303
+ "407352",
304
+ "407359",
305
+ "407360",
306
+ "407361",
307
+ "407364",
308
+ "407367",
309
+ "407370",
310
+ "407372",
311
+ "407373",
312
+ "407374",
313
+ "407710",
314
+ "407711",
315
+ "408907",
316
+ "408911",
317
+ "409524",
318
+ "409525",
319
+ "409526",
320
+ "409528",
321
+ "409529",
322
+ "413026",
323
+ "413845",
324
+ "413877",
325
+ "413878",
326
+ "414284",
327
+ "414694"
328
+ ],
329
+ "description": "Adjacency matrix for PEMS-BAY",
330
+ "shape": [
331
+ 325,
332
+ 325
333
+ ],
334
+ "non_zero_entries": 2694,
335
+ "sparsity": 0.974494674556213,
336
+ "parameters": {
337
+ "normalized_k": 0.1,
338
+ "method": "gaussian_kernel_exp(-d\u00b2/\u03c3\u00b2)",
339
+ "distance_threshold": "values < 0.1 set to 0"
340
+ }
341
+ }
sensor_graph/distances_bay_2017.csv ADDED
The diff for this file is too large to render. See raw diff
 
sensor_graph/graph_sensor_locations_bay.csv ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 400001,37.364085,-121.901149
2
+ 400017,37.253303,-121.945440
3
+ 400030,37.359087,-121.906538
4
+ 400040,37.294949,-121.873109
5
+ 400045,37.363402,-121.902233
6
+ 400052,37.255791,-121.875479
7
+ 400057,37.335022,-121.935522
8
+ 400059,37.250481,-121.907735
9
+ 400065,37.320292,-121.890281
10
+ 400069,37.385758,-121.977493
11
+ 400073,37.256300,-121.955559
12
+ 400084,37.329258,-122.012053
13
+ 400085,37.255594,-121.874710
14
+ 400088,37.414988,-121.912685
15
+ 400096,37.417981,-121.972547
16
+ 400097,37.279012,-122.010614
17
+ 400100,37.295052,-121.938872
18
+ 400104,37.419313,-121.955480
19
+ 400109,37.362706,-121.889426
20
+ 400122,37.366140,-121.901132
21
+ 400147,37.342210,-121.926305
22
+ 400148,37.250664,-121.912479
23
+ 400149,37.411800,-122.077964
24
+ 400158,37.421059,-121.936780
25
+ 400160,37.348392,-121.860589
26
+ 400168,37.391166,-121.995524
27
+ 400172,37.376264,-121.939712
28
+ 400174,37.403686,-122.069760
29
+ 400178,37.276874,-121.863698
30
+ 400185,37.303131,-122.034527
31
+ 400201,37.419186,-121.962831
32
+ 400206,37.381356,-121.962110
33
+ 400209,37.319961,-122.049031
34
+ 400213,37.259192,-121.967128
35
+ 400221,37.293614,-121.937899
36
+ 400222,37.275395,-122.004702
37
+ 400227,37.377237,-121.943586
38
+ 400236,37.325009,-121.892984
39
+ 400238,37.413256,-121.912324
40
+ 400240,37.258184,-121.953853
41
+ 400246,37.386551,-121.979462
42
+ 400253,37.342957,-121.925721
43
+ 400257,37.291715,-121.871799
44
+ 400258,37.313462,-121.886197
45
+ 400268,37.255651,-121.858078
46
+ 400274,37.409627,-121.997252
47
+ 400278,37.266561,-121.948692
48
+ 400280,37.261980,-121.858479
49
+ 400292,37.316378,-121.972052
50
+ 400296,37.420359,-121.939150
51
+ 400298,37.293047,-121.937861
52
+ 400330,37.398628,-122.026802
53
+ 400336,37.250624,-121.928209
54
+ 400343,37.348907,-121.917833
55
+ 400353,37.383125,-121.967496
56
+ 400372,37.384820,-121.974251
57
+ 400394,37.364382,-121.902692
58
+ 400400,37.342410,-121.854543
59
+ 400414,37.317942,-121.977301
60
+ 400418,37.291828,-121.871836
61
+ 400429,37.319424,-121.993175
62
+ 400435,37.403153,-122.047463
63
+ 400436,37.271687,-121.947037
64
+ 400440,37.353727,-121.865827
65
+ 400449,37.419452,-121.955498
66
+ 400457,37.276763,-121.863661
67
+ 400461,37.254781,-121.878917
68
+ 400464,37.258029,-121.962211
69
+ 400479,37.362439,-121.903211
70
+ 400485,37.254231,-121.949216
71
+ 400499,37.331068,-122.014931
72
+ 400507,37.298931,-122.029806
73
+ 400508,37.347660,-121.919969
74
+ 400514,37.334602,-121.936288
75
+ 400519,37.255257,-121.852560
76
+ 400528,37.388893,-122.068829
77
+ 400545,37.400130,-122.033628
78
+ 400560,37.324839,-122.002891
79
+ 400563,37.325124,-121.893062
80
+ 400567,37.418931,-121.962821
81
+ 400581,37.402668,-122.029069
82
+ 400582,37.275212,-122.004898
83
+ 400586,37.376835,-121.942537
84
+ 400637,37.255322,-121.855765
85
+ 400643,37.390763,-121.994912
86
+ 400648,37.303016,-122.034801
87
+ 400649,37.251741,-121.958118
88
+ 400654,37.297486,-121.874117
89
+ 400664,37.303458,-121.878143
90
+ 400665,37.341439,-121.849299
91
+ 400668,37.355120,-121.866967
92
+ 400673,37.329972,-122.013423
93
+ 400677,37.320010,-122.048757
94
+ 400687,37.408833,-122.000989
95
+ 400688,37.259412,-121.966974
96
+ 400690,37.255184,-121.876817
97
+ 400700,37.251345,-121.934089
98
+ 400709,37.341275,-121.927699
99
+ 400713,37.251585,-121.934046
100
+ 400714,37.316788,-121.953512
101
+ 400715,37.256205,-121.955355
102
+ 400717,37.250424,-121.912467
103
+ 400723,37.334296,-121.936706
104
+ 400743,37.398989,-122.028373
105
+ 400750,37.250746,-121.907763
106
+ 400760,37.374628,-121.931055
107
+ 400772,37.250448,-121.928226
108
+ 400790,37.391922,-121.998077
109
+ 400792,37.255491,-121.955543
110
+ 400794,37.390422,-121.993716
111
+ 400799,37.327927,-121.876137
112
+ 400804,37.336089,-121.848437
113
+ 400822,37.255715,-121.955375
114
+ 400823,37.334249,-122.030111
115
+ 400828,37.298804,-122.030071
116
+ 400832,37.254601,-121.956775
117
+ 400837,37.303359,-121.878066
118
+ 400842,37.261849,-121.859205
119
+ 400863,37.371809,-121.916550
120
+ 400869,37.403673,-122.069953
121
+ 400873,37.420927,-121.936740
122
+ 400895,37.380958,-121.960741
123
+ 400904,37.395067,-122.010518
124
+ 400907,37.257815,-121.962370
125
+ 400911,37.372674,-121.922087
126
+ 400916,37.320404,-121.890310
127
+ 400922,37.363644,-121.899535
128
+ 400934,37.254002,-121.949365
129
+ 400951,37.325151,-121.940679
130
+ 400952,37.279234,-122.010350
131
+ 400953,37.327241,-121.880760
132
+ 400964,37.376685,-121.940750
133
+ 400965,37.363311,-121.893592
134
+ 400970,37.409675,-121.996301
135
+ 400971,37.368669,-121.901336
136
+ 400973,37.417735,-121.972451
137
+ 400995,37.313375,-121.886106
138
+ 400996,37.350928,-121.862378
139
+ 401014,37.420505,-121.939200
140
+ 401129,37.266722,-121.859225
141
+ 401154,37.266658,-121.859210
142
+ 401163,37.316756,-121.923186
143
+ 401167,37.316984,-121.923208
144
+ 401210,37.291198,-122.023391
145
+ 401224,37.291054,-122.023638
146
+ 401327,37.315095,-121.914498
147
+ 401351,37.401701,-122.032879
148
+ 401388,37.316628,-121.952438
149
+ 401391,37.337881,-121.854670
150
+ 401400,37.316841,-121.952427
151
+ 401403,37.338232,-121.854583
152
+ 401440,37.356826,-121.908804
153
+ 401457,37.279515,-121.864784
154
+ 401464,37.424833,-121.916049
155
+ 401489,37.427486,-121.916962
156
+ 401495,37.255346,-121.858980
157
+ 401507,37.412677,-122.079539
158
+ 401534,37.407511,-122.065278
159
+ 401541,37.370203,-121.901514
160
+ 401555,37.255657,-121.858984
161
+ 401560,37.357526,-121.907884
162
+ 401567,37.279628,-121.864838
163
+ 401597,37.287400,-121.869623
164
+ 401606,37.287298,-121.869548
165
+ 401611,37.318919,-121.940307
166
+ 401655,37.335596,-121.858919
167
+ 401808,37.334883,-121.860066
168
+ 401809,37.334524,-121.860098
169
+ 401810,37.325920,-121.883989
170
+ 401811,37.325651,-121.883953
171
+ 401816,37.371160,-121.926885
172
+ 401817,37.371274,-121.926917
173
+ 401845,37.332668,-122.060628
174
+ 401846,37.332482,-122.060617
175
+ 401890,37.343447,-121.855539
176
+ 401891,37.343293,-121.855795
177
+ 401906,37.335259,-121.848031
178
+ 401908,37.335284,-121.847662
179
+ 401926,37.411999,-122.078452
180
+ 401936,37.407282,-122.065150
181
+ 401937,37.411338,-122.076826
182
+ 401942,37.322594,-121.897858
183
+ 401943,37.322361,-121.897800
184
+ 401948,37.409514,-122.071728
185
+ 401957,37.270311,-121.861079
186
+ 401958,37.270209,-121.860998
187
+ 401994,37.385523,-121.975872
188
+ 401996,37.396411,-122.015716
189
+ 401997,37.398597,-122.025693
190
+ 401998,37.404178,-122.051070
191
+ 402056,37.328954,-121.895643
192
+ 402057,37.336401,-121.897563
193
+ 402058,37.337137,-121.897741
194
+ 402059,37.337479,-121.897848
195
+ 402060,37.356655,-122.062397
196
+ 402061,37.356616,-122.062620
197
+ 402067,37.321367,-121.899571
198
+ 402117,37.344302,-121.902123
199
+ 402118,37.344411,-121.902181
200
+ 402119,37.421182,-121.915036
201
+ 402120,37.399227,-121.908515
202
+ 402121,37.380274,-121.904061
203
+ 402281,37.384490,-121.904845
204
+ 402282,37.384485,-121.905044
205
+ 402283,37.391595,-121.906506
206
+ 402284,37.391557,-121.906710
207
+ 402285,37.398698,-121.908172
208
+ 402286,37.405824,-121.909842
209
+ 402287,37.405777,-121.910072
210
+ 402288,37.419153,-121.914103
211
+ 402289,37.419106,-121.914308
212
+ 402359,37.329728,-121.842102
213
+ 402360,37.329591,-121.842361
214
+ 402361,37.336549,-121.848881
215
+ 402362,37.358996,-121.871981
216
+ 402363,37.358800,-121.872094
217
+ 402364,37.368104,-121.907880
218
+ 402365,37.367859,-121.907971
219
+ 402366,37.388542,-121.986478
220
+ 402367,37.388372,-121.986538
221
+ 402368,37.393954,-122.005269
222
+ 402369,37.393755,-122.005329
223
+ 402370,37.395920,-122.013438
224
+ 402371,37.396611,-122.017518
225
+ 402372,37.405470,-122.055924
226
+ 402373,37.405335,-122.056343
227
+ 403225,37.349517,-121.917280
228
+ 403265,37.349229,-121.917686
229
+ 403329,37.270267,-121.947353
230
+ 403401,37.328484,-121.870843
231
+ 403402,37.328720,-121.870796
232
+ 403404,37.327807,-121.874899
233
+ 403406,37.325920,-121.883314
234
+ 403409,37.324015,-121.890673
235
+ 403412,37.322430,-121.897640
236
+ 403414,37.314844,-121.913648
237
+ 403419,37.316766,-121.921548
238
+ 404370,37.296028,-121.939132
239
+ 404434,37.265521,-121.981540
240
+ 404435,37.326592,-122.050852
241
+ 404444,37.265311,-121.981694
242
+ 404451,37.272630,-121.862544
243
+ 404452,37.284773,-121.867709
244
+ 404453,37.309111,-121.882596
245
+ 404461,37.309012,-121.882518
246
+ 404462,37.272658,-121.862556
247
+ 404521,37.382586,-121.965617
248
+ 404522,37.402071,-122.041627
249
+ 404553,37.395734,-122.013489
250
+ 404554,37.401893,-122.041683
251
+ 404585,37.406298,-122.011605
252
+ 404586,37.406475,-122.011621
253
+ 404640,37.333614,-122.049627
254
+ 404753,37.364689,-121.902989
255
+ 404759,37.365167,-121.901551
256
+ 405613,37.262704,-121.858533
257
+ 405619,37.284665,-121.867631
258
+ 405701,37.316969,-121.924481
259
+ 407150,37.427274,-121.884436
260
+ 407151,37.420741,-121.882093
261
+ 407152,37.416073,-121.880751
262
+ 407153,37.398059,-121.875211
263
+ 407155,37.391513,-121.870376
264
+ 407157,37.385475,-121.863839
265
+ 407161,37.407770,-121.878234
266
+ 407165,37.344023,-121.845368
267
+ 407172,37.341738,-121.848369
268
+ 407173,37.342007,-121.847982
269
+ 407174,37.400880,-121.876103
270
+ 407176,37.358523,-121.840267
271
+ 407177,37.360223,-121.841285
272
+ 407179,37.368611,-121.846609
273
+ 407180,37.372785,-121.850839
274
+ 407181,37.379684,-121.857783
275
+ 407184,37.427403,-121.884848
276
+ 407185,37.420881,-121.882423
277
+ 407186,37.391614,-121.870798
278
+ 407187,37.383139,-121.861675
279
+ 407190,37.412704,-121.880023
280
+ 407191,37.407919,-121.878542
281
+ 407194,37.344191,-121.845564
282
+ 407200,37.398207,-121.875543
283
+ 407202,37.360613,-121.841794
284
+ 407204,37.366097,-121.845103
285
+ 407206,37.372897,-121.851246
286
+ 407207,37.379794,-121.858188
287
+ 407321,37.333648,-122.056851
288
+ 407323,37.396419,-122.068661
289
+ 407325,37.383707,-122.068108
290
+ 407328,37.377217,-122.067542
291
+ 407331,37.335431,-122.058337
292
+ 407332,37.407311,-122.069566
293
+ 407335,37.373213,-122.067368
294
+ 407336,37.363146,-122.062707
295
+ 407337,37.353092,-122.060900
296
+ 407339,37.351571,-122.060285
297
+ 407341,37.344713,-122.059766
298
+ 407342,37.379094,-122.067604
299
+ 407344,37.331501,-122.054687
300
+ 407348,37.384273,-122.068412
301
+ 407352,37.377057,-122.067805
302
+ 407359,37.407147,-122.070055
303
+ 407360,37.373187,-122.067646
304
+ 407361,37.363107,-122.063006
305
+ 407364,37.351529,-122.060518
306
+ 407367,37.379368,-122.067871
307
+ 407370,37.333574,-122.057007
308
+ 407372,37.344708,-122.059991
309
+ 407373,37.337629,-122.059717
310
+ 407374,37.395123,-122.068612
311
+ 407710,37.317459,-121.938793
312
+ 407711,37.317112,-121.941507
313
+ 408907,37.321822,-121.940425
314
+ 408911,37.325153,-121.940859
315
+ 409524,37.348448,-121.907247
316
+ 409525,37.362566,-121.917493
317
+ 409526,37.366737,-121.921627
318
+ 409528,37.362467,-121.917418
319
+ 409529,37.366662,-121.921519
320
+ 413026,37.421232,-121.914808
321
+ 413845,37.422887,-121.925747
322
+ 413877,37.321613,-121.899642
323
+ 413878,37.324641,-121.888603
324
+ 414284,37.323066,-121.896538
325
+ 414694,37.315051,-121.913497
test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddf020cb2a19c4cc80ab94e2fe3939f6657981d01d887d1407ff67d5dfc4e216
3
+ size 102987287
test_metadata.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "x_offsets": [
3
+ -11,
4
+ -10,
5
+ -9,
6
+ -8,
7
+ -7,
8
+ -6,
9
+ -5,
10
+ -4,
11
+ -3,
12
+ -2,
13
+ -1,
14
+ 0
15
+ ],
16
+ "y_offsets": [
17
+ 1,
18
+ 2,
19
+ 3,
20
+ 4,
21
+ 5,
22
+ 6,
23
+ 7,
24
+ 8,
25
+ 9,
26
+ 10,
27
+ 11,
28
+ 12
29
+ ],
30
+ "x_shape": [
31
+ 10419,
32
+ 12,
33
+ 325,
34
+ 2
35
+ ],
36
+ "y_shape": [
37
+ 10419,
38
+ 12,
39
+ 325,
40
+ 2
41
+ ],
42
+ "num_samples": 10419,
43
+ "input_length": 12,
44
+ "output_length": 12,
45
+ "num_nodes": 325,
46
+ "input_dim": 2,
47
+ "output_dim": 2
48
+ }
train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eab67fe5f0f8dd357db67d6b2345a6194b927b088a7e4f890668687f9987ee2
3
+ size 360120466
train_metadata.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "x_offsets": [
3
+ -11,
4
+ -10,
5
+ -9,
6
+ -8,
7
+ -7,
8
+ -6,
9
+ -5,
10
+ -4,
11
+ -3,
12
+ -2,
13
+ -1,
14
+ 0
15
+ ],
16
+ "y_offsets": [
17
+ 1,
18
+ 2,
19
+ 3,
20
+ 4,
21
+ 5,
22
+ 6,
23
+ 7,
24
+ 8,
25
+ 9,
26
+ 10,
27
+ 11,
28
+ 12
29
+ ],
30
+ "x_shape": [
31
+ 36465,
32
+ 12,
33
+ 325,
34
+ 2
35
+ ],
36
+ "y_shape": [
37
+ 36465,
38
+ 12,
39
+ 325,
40
+ 2
41
+ ],
42
+ "num_samples": 36465,
43
+ "input_length": 12,
44
+ "output_length": 12,
45
+ "num_nodes": 325,
46
+ "input_dim": 2,
47
+ "output_dim": 2
48
+ }
val.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1f12d7a8d640a7567c58795180e930ce1b19bd0509ef615f1448578b531ba57
3
+ size 51480390
val_metadata.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "x_offsets": [
3
+ -11,
4
+ -10,
5
+ -9,
6
+ -8,
7
+ -7,
8
+ -6,
9
+ -5,
10
+ -4,
11
+ -3,
12
+ -2,
13
+ -1,
14
+ 0
15
+ ],
16
+ "y_offsets": [
17
+ 1,
18
+ 2,
19
+ 3,
20
+ 4,
21
+ 5,
22
+ 6,
23
+ 7,
24
+ 8,
25
+ 9,
26
+ 10,
27
+ 11,
28
+ 12
29
+ ],
30
+ "x_shape": [
31
+ 5209,
32
+ 12,
33
+ 325,
34
+ 2
35
+ ],
36
+ "y_shape": [
37
+ 5209,
38
+ 12,
39
+ 325,
40
+ 2
41
+ ],
42
+ "num_samples": 5209,
43
+ "input_length": 12,
44
+ "output_length": 12,
45
+ "num_nodes": 325,
46
+ "input_dim": 2,
47
+ "output_dim": 2
48
+ }