|  | --- | 
					
						
						|  | license: other | 
					
						
						|  | license_name: deepseek | 
					
						
						|  | license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- markdownlint-disable first-line-h1 --> | 
					
						
						|  | <!-- markdownlint-disable html --> | 
					
						
						|  | <!-- markdownlint-disable no-duplicate-header --> | 
					
						
						|  |  | 
					
						
						|  | <div align="center"> | 
					
						
						|  | <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" /> | 
					
						
						|  | </div> | 
					
						
						|  | <hr> | 
					
						
						|  | <div align="center" style="line-height: 1;"> | 
					
						
						|  | <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> | 
					
						
						|  | <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> | 
					
						
						|  | <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> | 
					
						
						|  | <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | </div> | 
					
						
						|  |  | 
					
						
						|  | <div align="center" style="line-height: 1;"> | 
					
						
						|  | <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> | 
					
						
						|  | <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> | 
					
						
						|  | <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> | 
					
						
						|  | <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | </div> | 
					
						
						|  |  | 
					
						
						|  | <div align="center" style="line-height: 1;"> | 
					
						
						|  | <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;"> | 
					
						
						|  | <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;"> | 
					
						
						|  | <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  | </div> | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <a href="#2-model-downloads">Model Download</a> | | 
					
						
						|  | <a href="#3-evaluation-results">Evaluation Results</a> | | 
					
						
						|  | <a href="#4-model-architecture">Model Architecture</a> | | 
					
						
						|  | <a href="#6-api-platform">API Platform</a> | | 
					
						
						|  | <a href="#8-license">License</a> | | 
					
						
						|  | <a href="#9-citation">Citation</a> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/deepseek-v2-tech-report.pdf"><b>Paper Link</b>👁️</a> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | # DeepSeek-V2:  A Strong, Economical, and Efficient Mixture-of-Experts Language Model | 
					
						
						|  |  | 
					
						
						|  | ## 1. Introduction | 
					
						
						|  | Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  |  | 
					
						
						|  | <div style="display: flex; justify-content: center;"> | 
					
						
						|  | <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/activationparameters.png?raw=true" style="height:300px; width:auto; margin-right:10px"> | 
					
						
						|  | <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/trainingcost.png?raw=true" style="height:300px; width:auto; margin-left:10px"> | 
					
						
						|  | </div> | 
					
						
						|  | </p> | 
					
						
						|  | We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation. | 
					
						
						|  |  | 
					
						
						|  | ## 2. Model Downloads | 
					
						
						|  |  | 
					
						
						|  | <div align="center"> | 
					
						
						|  |  | 
					
						
						|  | | **Model** | **Context Length** | **Download** | | 
					
						
						|  | | :------------: | :------------: | :------------: | | 
					
						
						|  | | DeepSeek-V2   | 128k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2)   | | 
					
						
						|  | | DeepSeek-V2-Chat (RL)   | 128k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat)   | | 
					
						
						|  |  | 
					
						
						|  | </div> | 
					
						
						|  |  | 
					
						
						|  | Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively. | 
					
						
						|  |  | 
					
						
						|  | ## 3. Evaluation Results | 
					
						
						|  | ### Base Model | 
					
						
						|  | #### Standard Benchmark | 
					
						
						|  |  | 
					
						
						|  | <div align="center"> | 
					
						
						|  |  | 
					
						
						|  | | **Benchmark** | **Domain** | **LLaMA3 70B** | **Mixtral 8x22B** | **DeepSeek-V1 (Dense-67B)** | **DeepSeek-V2 (MoE-236B)** | | 
					
						
						|  | |:-----------:|:--------:|:------------:|:---------------:|:-------------------------:|:------------------------:| | 
					
						
						|  | | **MMLU** | English | 78.9 | 77.6 | 71.3 | 78.5 | | 
					
						
						|  | | **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 | | 
					
						
						|  | | **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 | | 
					
						
						|  | | **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 | | 
					
						
						|  | | **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 | | 
					
						
						|  | | **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 | | 
					
						
						|  | | **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 | | 
					
						
						|  | | **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 | | 
					
						
						|  |  | 
					
						
						|  | </div> | 
					
						
						|  | For more evaluation details, such as few-shot settings and prompts, please check our paper. | 
					
						
						|  |  | 
					
						
						|  | #### Context Window | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <img width="80%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/niah.png?raw=true"> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | Evaluation results on the ``Needle In A Haystack`` (NIAH) tests.  DeepSeek-V2 performs well across all context window lengths up to **128K**. | 
					
						
						|  |  | 
					
						
						|  | ### Chat Model | 
					
						
						|  | #### Standard Benchmark | 
					
						
						|  | <div align="center"> | 
					
						
						|  |  | 
					
						
						|  | | Benchmark | Domain         | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) | | 
					
						
						|  | |:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|:-------------:|:-----------------------:|:----------------------:| | 
					
						
						|  | | **MMLU**      | English        | 76.2             | 77.8          | 80.3                | 71.1        | 78.4                 | 77.8                 | | 
					
						
						|  | | **BBH**       | English        | 65.9             | 78.4          | 80.1                | 71.7        | 81.3                 | 79.7                 | | 
					
						
						|  | | **C-Eval**    | Chinese        | 82.2             | 60.0          | 67.9                | 65.2        | 80.9                 | 78.0                 | | 
					
						
						|  | | **CMMLU**     | Chinese        | 82.9             | 61.0          | 70.7                | 67.8        | 82.4                 | 81.6                 | | 
					
						
						|  | | **HumanEval** | Code           | 68.9             | 75.0          | 76.2                | 73.8        | 76.8                 | 81.1                 | | 
					
						
						|  | | **MBPP**      | Code           | 52.2             | 64.4          | 69.8                | 61.4        | 70.4                 | 72.0                 | | 
					
						
						|  | |   **LiveCodeBench  (0901-0401)**     | Code           | 18.8             | 25.0          | 30.5                | 18.3        | 28.7                 | 32.5                 | | 
					
						
						|  | | **GSM8K**     | Math           | 81.9             | 87.9          | 93.2                | 84.1        | 90.8                 | 92.2                 | | 
					
						
						|  | | **Math**      | Math           | 40.6             | 49.8          | 48.5                | 32.6        | 52.7                 | 53.9                 | | 
					
						
						|  |  | 
					
						
						|  | </div> | 
					
						
						|  |  | 
					
						
						|  | #### English Open Ended Generation Evaluation | 
					
						
						|  | We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation. | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/mtbench.png?raw=true" /> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | #### Chinese Open Ended Generation Evaluation | 
					
						
						|  | **Alignbench** (https://arxiv.org/abs/2311.18743) | 
					
						
						|  | <div align="center"> | 
					
						
						|  |  | 
					
						
						|  | | **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** | | 
					
						
						|  | | :---: | :---: | :---: | :---: | :---: | | 
					
						
						|  | | gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 | | 
					
						
						|  | | DeepSeek-V2 Chat (RL) | 开源 | 7.91 | 7.45 | 8.35 | | 
					
						
						|  | | erniebot-4.0-202404 (文心一言) | 闭源 | 7.89 | 7.61 | 8.17 | | 
					
						
						|  | | DeepSeek-V2 Chat (SFT) | 开源 | 7.74 | 7.30 | 8.17 | | 
					
						
						|  | | gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 | | 
					
						
						|  | | erniebot-4.0-202312 (文心一言) | 闭源 | 7.36 | 6.84 | 7.88 | | 
					
						
						|  | | moonshot-v1-32k-202404 (月之暗面) | 闭源 | 7.22 | 6.42 | 8.02 | | 
					
						
						|  | | Qwen1.5-72B-Chat (通义千问) | 开源 | 7.19 | 6.45 | 7.93 | | 
					
						
						|  | | DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 | | 
					
						
						|  | | Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 | | 
					
						
						|  | | gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 | | 
					
						
						|  |  | 
					
						
						|  | </div> | 
					
						
						|  |  | 
					
						
						|  | #### Coding Benchmarks | 
					
						
						|  | We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for live coding challenges. As illustrated, DeepSeek-V2 demonstrates considerable proficiency in LiveCodeBench, achieving a Pass@1 score that surpasses several other sophisticated models. This performance highlights the model's effectiveness in tackling live coding tasks. | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true"> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | ## 4. Model Architecture | 
					
						
						|  | DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference: | 
					
						
						|  | - For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. | 
					
						
						|  | - For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs. | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" /> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | ## 5. Chat Website | 
					
						
						|  | You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in) | 
					
						
						|  |  | 
					
						
						|  | ## 6. API Platform | 
					
						
						|  | We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true"> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## 7. How to run locally | 
					
						
						|  | **To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.** | 
					
						
						|  | ### Inference with Huggingface's Transformers | 
					
						
						|  | You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. | 
					
						
						|  |  | 
					
						
						|  | #### Text Completion | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | 
					
						
						|  |  | 
					
						
						|  | model_name = "deepseek-ai/DeepSeek-V2" | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | 
					
						
						|  | # `max_memory` should be set based on your devices | 
					
						
						|  | max_memory = {i: "75GB" for i in range(8)} | 
					
						
						|  | # `device_map` cannot be set to `auto` | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager") | 
					
						
						|  | model.generation_config = GenerationConfig.from_pretrained(model_name) | 
					
						
						|  | model.generation_config.pad_token_id = model.generation_config.eos_token_id | 
					
						
						|  |  | 
					
						
						|  | text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" | 
					
						
						|  | inputs = tokenizer(text, return_tensors="pt") | 
					
						
						|  | outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) | 
					
						
						|  |  | 
					
						
						|  | result = tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  | print(result) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | #### Chat Completion | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | 
					
						
						|  |  | 
					
						
						|  | model_name = "deepseek-ai/DeepSeek-V2-Chat" | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | 
					
						
						|  | # `max_memory` should be set based on your devices | 
					
						
						|  | max_memory = {i: "75GB" for i in range(8)} | 
					
						
						|  | # `device_map` cannot be set to `auto` | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager") | 
					
						
						|  | model.generation_config = GenerationConfig.from_pretrained(model_name) | 
					
						
						|  | model.generation_config.pad_token_id = model.generation_config.eos_token_id | 
					
						
						|  |  | 
					
						
						|  | messages = [ | 
					
						
						|  | {"role": "user", "content": "Write a piece of quicksort code in C++"} | 
					
						
						|  | ] | 
					
						
						|  | input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | 
					
						
						|  | outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) | 
					
						
						|  |  | 
					
						
						|  | result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) | 
					
						
						|  | print(result) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. | 
					
						
						|  |  | 
					
						
						|  | An example of chat template is as belows: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | <|begin▁of▁sentence|>User: {user_message_1} | 
					
						
						|  |  | 
					
						
						|  | Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} | 
					
						
						|  |  | 
					
						
						|  | Assistant: | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | You can also add an optional system message: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | <|begin▁of▁sentence|>{system_message} | 
					
						
						|  |  | 
					
						
						|  | User: {user_message_1} | 
					
						
						|  |  | 
					
						
						|  | Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} | 
					
						
						|  |  | 
					
						
						|  | Assistant: | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Inference with vLLM (recommended) | 
					
						
						|  | To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  | from vllm import LLM, SamplingParams | 
					
						
						|  |  | 
					
						
						|  | max_model_len, tp_size = 8192, 8 | 
					
						
						|  | model_name = "deepseek-ai/DeepSeek-V2-Chat" | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_name) | 
					
						
						|  | llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) | 
					
						
						|  | sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) | 
					
						
						|  |  | 
					
						
						|  | messages_list = [ | 
					
						
						|  | [{"role": "user", "content": "Who are you?"}], | 
					
						
						|  | [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}], | 
					
						
						|  | [{"role": "user", "content": "Write a piece of quicksort code in C++."}], | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] | 
					
						
						|  |  | 
					
						
						|  | outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) | 
					
						
						|  |  | 
					
						
						|  | generated_text = [output.outputs[0].text for output in outputs] | 
					
						
						|  | print(generated_text) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## 8. License | 
					
						
						|  | This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use. | 
					
						
						|  |  | 
					
						
						|  | ## 9. Citation | 
					
						
						|  | ``` | 
					
						
						|  | @misc{deepseekv2, | 
					
						
						|  | title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, | 
					
						
						|  | author={DeepSeek-AI}, | 
					
						
						|  | year={2024}, | 
					
						
						|  | eprint={2405.04434}, | 
					
						
						|  | archivePrefix={arXiv}, | 
					
						
						|  | primaryClass={cs.CL} | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## 10. Contact | 
					
						
						|  | If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]). | 
					
						
						|  |  |