relatives_psr-cbert_finetuned

This model is a fine-tuned version of camembert/camembert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0532
  • Precision: 0.6127
  • Recall: 0.5628
  • F1: 0.5835
  • Accuracy: 0.9789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 49 0.1420 0.9906 0.3333 0.3286 0.9718
No log 2.0 98 0.0846 0.7921 0.6010 0.5037 0.9733
No log 3.0 147 0.0590 0.6117 0.5888 0.5891 0.9782
No log 4.0 196 0.0555 0.6077 0.6158 0.5861 0.9794
No log 5.0 245 0.0532 0.6127 0.5628 0.5835 0.9789

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
0.4B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for djamina/relatives_psr-cbert_finetuned

Finetuned
(13)
this model

Dataset used to train djamina/relatives_psr-cbert_finetuned

Evaluation results