|
|
--- |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- pearson_cosine |
|
|
- spearman_cosine |
|
|
- pearson_manhattan |
|
|
- spearman_manhattan |
|
|
- pearson_euclidean |
|
|
- spearman_euclidean |
|
|
- pearson_dot |
|
|
- spearman_dot |
|
|
- pearson_max |
|
|
- spearman_max |
|
|
widget: |
|
|
- source_sentence: 백마를 이끄는 여자 |
|
|
sentences: |
|
|
- 갈색 말을 타고 있는 여자 |
|
|
- 남자와 여자가 키스하고 있다. |
|
|
- 남자가 칼로 물병을 썰고 있다 |
|
|
- source_sentence: 꽤 괜찮은데 |
|
|
sentences: |
|
|
- 아주 좋아요. |
|
|
- 개가 옷을 입고 있다. |
|
|
- 아무도 무대에 서지 않는다. |
|
|
- source_sentence: 지루하군요. |
|
|
sentences: |
|
|
- 힘드네요! 정말 힘드네요! |
|
|
- 여자는 아이를 돕는다. |
|
|
- 사람들이 손을 내밀고 있다 |
|
|
- source_sentence: 인간의 지위 |
|
|
sentences: |
|
|
- 인간의 지위. |
|
|
- 그것은 비열하지 않다. |
|
|
- 아무도 해고당하지 않는다. |
|
|
- source_sentence: 인간의 지적 |
|
|
sentences: |
|
|
- 인간 관찰 |
|
|
- 사람들이 안에 서 있다 |
|
|
- 아무도 앉아 있지 않다 |
|
|
pipeline_tag: sentence-similarity |
|
|
model-index: |
|
|
- name: SentenceTransformer based on klue/roberta-small |
|
|
results: |
|
|
- task: |
|
|
type: semantic-similarity |
|
|
name: Semantic Similarity |
|
|
dataset: |
|
|
name: sts dev |
|
|
type: sts-dev |
|
|
metrics: |
|
|
- type: pearson_cosine |
|
|
value: 0.848109514939322 |
|
|
name: Pearson Cosine |
|
|
- type: spearman_cosine |
|
|
value: 0.8469617889194193 |
|
|
name: Spearman Cosine |
|
|
- type: pearson_manhattan |
|
|
value: 0.8290541524988974 |
|
|
name: Pearson Manhattan |
|
|
- type: spearman_manhattan |
|
|
value: 0.832916353112548 |
|
|
name: Spearman Manhattan |
|
|
- type: pearson_euclidean |
|
|
value: 0.8296914939989355 |
|
|
name: Pearson Euclidean |
|
|
- type: spearman_euclidean |
|
|
value: 0.8335696459808043 |
|
|
name: Spearman Euclidean |
|
|
- type: pearson_dot |
|
|
value: 0.7961861998493428 |
|
|
name: Pearson Dot |
|
|
- type: spearman_dot |
|
|
value: 0.7996870460025013 |
|
|
name: Spearman Dot |
|
|
- type: pearson_max |
|
|
value: 0.848109514939322 |
|
|
name: Pearson Max |
|
|
- type: spearman_max |
|
|
value: 0.8469617889194193 |
|
|
name: Spearman Max |
|
|
--- |
|
|
|
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Maximum Sequence Length:** 256 tokens |
|
|
- **Output Dimensionality:** 768 tokens |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'인간의 지적', |
|
|
'인간 관찰', |
|
|
'사람들이 안에 서 있다', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Semantic Similarity |
|
|
* Dataset: `sts-dev` |
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:-------------------|:----------| |
|
|
| pearson_cosine | 0.8481 | |
|
|
| spearman_cosine | 0.847 | |
|
|
| pearson_manhattan | 0.8291 | |
|
|
| spearman_manhattan | 0.8329 | |
|
|
| pearson_euclidean | 0.8297 | |
|
|
| spearman_euclidean | 0.8336 | |
|
|
| pearson_dot | 0.7962 | |
|
|
| spearman_dot | 0.7997 | |
|
|
| pearson_max | 0.8481 | |
|
|
| **spearman_max** | **0.847** | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Datasets |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
|
* Size: 568,640 training samples |
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence_0 | sentence_1 | sentence_2 | |
|
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
|
| type | string | string | string | |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 19.02 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.36 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.31 tokens</li><li>max: 35 tokens</li></ul> | |
|
|
* Samples: |
|
|
| sentence_0 | sentence_1 | sentence_2 | |
|
|
|:------------------------------------------|:-----------------------------------------------------------------------|:------------------------------------------| |
|
|
| <code>악기를 연주하는 사람.</code> | <code>여자 옆에서 백파이프를 연주하는 잘 차려입은 남자</code> | <code>노숙자가 잔돈을 구걸한다.</code> | |
|
|
| <code>셔츠에 이벤트 번호를 새긴 남자들은 길을 걸어간다.</code> | <code>멘스 셔츠에 숫자가 적혀 있다.</code> | <code>남자들이 길에서 자고 있다.</code> | |
|
|
| <code>군인들은 기지에서 함께 어울린다.</code> | <code>한 무리의 군인들이 그늘을 입고 방에 함께 앉아 있었고, 벽에 있는 작은 틈으로 빛이 최고조에 달했다.</code> | <code>한 무리의 민간인들이 적의 공격으로부터 움츠러든다.</code> | |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss": "MultipleNegativesRankingLoss", |
|
|
"matryoshka_dims": [ |
|
|
768, |
|
|
256 |
|
|
], |
|
|
"matryoshka_weights": [ |
|
|
1, |
|
|
1 |
|
|
], |
|
|
"n_dims_per_step": -1 |
|
|
} |
|
|
``` |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
|
* Size: 5,749 training samples |
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence_0 | sentence_1 | label | |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 17.15 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.86 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence_0 | sentence_1 | label | |
|
|
|:-----------------------------------------|:-----------------------------------|:------------------| |
|
|
| <code>남자가 기타를 치고 있다.</code> | <code>소뇌는 기타를 치고 있다.</code> | <code>0.72</code> | |
|
|
| <code>고양이가 빨판을 핥고 있다.</code> | <code>한 여성이 오이를 자르고 있다.</code> | <code>0.0</code> | |
|
|
| <code>누군가가 파워 드릴로 나무 조각에 구멍을 뚫는다.</code> | <code>한 남자가 나무 조각에 구멍을 뚫는다.</code> | <code>0.64</code> | |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss": "CosineSimilarityLoss", |
|
|
"matryoshka_dims": [ |
|
|
768, |
|
|
256 |
|
|
], |
|
|
"matryoshka_weights": [ |
|
|
1, |
|
|
1 |
|
|
], |
|
|
"n_dims_per_step": -1 |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `num_train_epochs`: 5 |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 8 |
|
|
- `per_device_eval_batch_size`: 8 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.0 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: False |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | sts-dev_spearman_max | |
|
|
|:------:|:----:|:-------------:|:--------------------:| |
|
|
| 0.3477 | 500 | 0.931 | - | |
|
|
| 0.6954 | 1000 | 0.7062 | 0.8313 | |
|
|
| 1.0007 | 1439 | - | 0.8379 | |
|
|
| 1.0424 | 1500 | 0.5893 | - | |
|
|
| 1.3901 | 2000 | 0.3406 | 0.8343 | |
|
|
| 1.7378 | 2500 | 0.2514 | - | |
|
|
| 2.0007 | 2878 | - | 0.8450 | |
|
|
| 2.0848 | 3000 | 0.2252 | 0.8470 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.10.12 |
|
|
- Sentence Transformers: 3.0.0 |
|
|
- Transformers: 4.41.2 |
|
|
- PyTorch: 2.3.0+cu121 |
|
|
- Accelerate: 0.30.1 |
|
|
- Datasets: 2.19.2 |
|
|
- Tokenizers: 0.19.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MatryoshkaLoss |
|
|
```bibtex |
|
|
@misc{kusupati2024matryoshka, |
|
|
title={Matryoshka Representation Learning}, |
|
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
|
year={2024}, |
|
|
eprint={2205.13147}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |