SentenceTransformer based on abdoelsayed/AraDPR
This is a sentence-transformers model finetuned from abdoelsayed/AraDPR. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: abdoelsayed/AraDPR
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hatemestinbejaia/KDAraDPR2_initialversion0")
# Run inference
sentences = [
'تحديد المسح',
'المسح أو مسح الأراضي هو تقنية ومهنة وعلم تحديد المواقع الأرضية أو ثلاثية الأبعاد للنقاط والمسافات والزوايا بينها . يطلق على أخصائي مسح الأراضي اسم مساح الأراضي .',
'إجمالي المحطات . تعد المحطات الإجمالية واحدة من أكثر أدوات المسح شيوعا المستخدمة اليوم . وهي تتألف من جهاز ثيودوليت إلكتروني ومكون إلكتروني لقياس المسافة ( EDM ) . تتوفر أيضا محطات روبوتية كاملة تتيح التشغيل لشخص واحد من خلال التحكم في الجهاز باستخدام جهاز التحكم عن بعد . تاريخ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Reranking
- Evaluated with
RerankingEvaluator
| Metric | Value |
|---|---|
| map | 0.547 |
| mrr@10 | 0.5489 |
| ndcg@10 | 0.6231 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16gradient_accumulation_steps: 8learning_rate: 7e-05warmup_ratio: 0.07fp16: Truehalf_precision_backend: ampload_best_model_at_end: Truefp16_backend: amp
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 7e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.07warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: ampbf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: amppush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | map |
|---|---|---|---|---|
| 0.0512 | 2000 | 0.0019 | 0.0045 | 0.4548 |
| 0.1024 | 4000 | 0.0011 | 0.0039 | 0.4988 |
| 0.1536 | 6000 | 0.001 | 0.0034 | 0.4871 |
| 0.2048 | 8000 | 0.0009 | 0.0032 | 0.4811 |
| 0.256 | 10000 | 0.0009 | 0.0032 | 0.4641 |
| 0.3072 | 12000 | 0.0008 | 0.0028 | 0.4540 |
| 0.3584 | 14000 | 0.0007 | 0.0027 | 0.4918 |
| 0.4096 | 16000 | 0.0007 | 0.0024 | 0.5039 |
| 0.4608 | 18000 | 0.0006 | 0.0024 | 0.5051 |
| 0.512 | 20000 | 0.0006 | 0.0021 | 0.4772 |
| 0.5632 | 22000 | 0.0006 | 0.0021 | 0.5110 |
| 0.6144 | 24000 | 0.0005 | 0.0020 | 0.5286 |
| 0.6656 | 26000 | 0.0005 | 0.0020 | 0.5217 |
| 0.7168 | 28000 | 0.0005 | 0.0018 | 0.5193 |
| 0.768 | 30000 | 0.0005 | 0.0018 | 0.5152 |
| 0.8192 | 32000 | 0.0005 | 0.0017 | 0.5322 |
| 0.8704 | 34000 | 0.0004 | 0.0016 | 0.5296 |
| 0.9216 | 36000 | 0.0004 | 0.0016 | 0.5266 |
| 0.9728 | 38000 | 0.0004 | 0.0015 | 0.5244 |
| 1.024 | 40000 | 0.0004 | 0.0014 | 0.5251 |
| 1.0752 | 42000 | 0.0003 | 0.0014 | 0.5202 |
| 1.1264 | 44000 | 0.0003 | 0.0014 | 0.5089 |
| 1.1776 | 46000 | 0.0003 | 0.0013 | 0.5030 |
| 1.2288 | 48000 | 0.0003 | 0.0013 | 0.5184 |
| 1.28 | 50000 | 0.0003 | 0.0012 | 0.5267 |
| 1.3312 | 52000 | 0.0003 | 0.0012 | 0.5386 |
| 1.3824 | 54000 | 0.0003 | 0.0012 | 0.5254 |
| 1.4336 | 56000 | 0.0003 | 0.0012 | 0.5378 |
| 1.4848 | 58000 | 0.0003 | 0.0011 | 0.5324 |
| 1.536 | 60000 | 0.0003 | 0.0011 | 0.5364 |
| 1.5872 | 62000 | 0.0003 | 0.0011 | 0.5412 |
| 1.6384 | 64000 | 0.0003 | 0.0010 | 0.5339 |
| 1.6896 | 66000 | 0.0003 | 0.0010 | 0.5452 |
| 1.7408 | 68000 | 0.0003 | 0.0010 | 0.5557 |
| 1.792 | 70000 | 0.0002 | 0.001 | 0.5619 |
| 1.8432 | 72000 | 0.0002 | 0.0010 | 0.5512 |
| 1.8944 | 74000 | 0.0002 | 0.0010 | 0.5434 |
| 1.9456 | 76000 | 0.0002 | 0.0009 | 0.5367 |
| 1.9968 | 78000 | 0.0002 | 0.0009 | 0.5497 |
| 2.048 | 80000 | 0.0002 | 0.0009 | 0.5459 |
| 2.0992 | 82000 | 0.0002 | 0.0009 | 0.5616 |
| 2.1504 | 84000 | 0.0002 | 0.0009 | 0.5573 |
| 2.2016 | 86000 | 0.0002 | 0.0009 | 0.5526 |
| 2.2528 | 88000 | 0.0002 | 0.0008 | 0.5557 |
| 2.304 | 90000 | 0.0002 | 0.0008 | 0.5470 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.2.0
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
- Downloads last month
- 2
Model tree for hatemestinbejaia/mmarco-Arabic-AraDPR-bi-encoder-KD-v1
Base model
abdoelsayed/AraDPREvaluation results
- Map on Unknownself-reported0.547
- Mrr@10 on Unknownself-reported0.549
- Ndcg@10 on Unknownself-reported0.623