SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli")
# Run inference
sentences = [
'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.',
'A pilot is sitting in his plain with his hands crossed',
'The boys are playing outside on a log.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 494,430 training samples
- Columns:
premise,hypothesis, andlabel - Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 16.24 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 10.55 tokens
- max: 26 tokens
- 0: ~31.10%
- 1: ~33.40%
- 2: ~35.50%
- Samples:
premise hypothesis label Two men, one in yellow, are on a wooden boat.Two men swimming in water2Two people sleep on a couch.Two people are asleep.0a little boy is learning to swim with the help of a float board.The boy is crawling.2 - Loss:
SoftmaxLoss
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 27,468 evaluation samples
- Columns:
premise,hypothesis, andlabel - Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 16.66 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 10.48 tokens
- max: 31 tokens
- 0: ~36.10%
- 1: ~31.80%
- 2: ~32.10%
- Samples:
premise hypothesis label A taxi cab driver looks stressed out in his car.a taxi driver is stressed0Two men do trick in a park.The men only sat on the bench in the park, doing nothing.2Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face.One lady makes a shocked face at the camera as the photographer tells the women they are lost.1 - Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 4warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falsefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss |
|---|---|---|---|
| 0.1294 | 1000 | 0.9208 | 0.7448 |
| 0.2589 | 2000 | 0.7095 | 0.6462 |
| 0.3883 | 3000 | 0.6415 | 0.6199 |
| 0.5177 | 4000 | 0.6125 | 0.5940 |
| 0.6472 | 5000 | 0.5935 | 0.5672 |
| 0.7766 | 6000 | 0.5748 | 0.5550 |
| 0.9060 | 7000 | 0.5654 | 0.5506 |
| 1.0355 | 8000 | 0.5524 | 0.5376 |
| 1.1649 | 9000 | 0.5386 | 0.5319 |
| 1.2943 | 10000 | 0.5192 | 0.5361 |
| 1.4238 | 11000 | 0.4863 | 0.5304 |
| 1.5532 | 12000 | 0.4687 | 0.5278 |
| 1.6826 | 13000 | 0.4586 | 0.5305 |
| 1.8121 | 14000 | 0.4474 | 0.5222 |
| 1.9415 | 15000 | 0.4447 | 0.5237 |
| 2.0709 | 16000 | 0.434 | 0.5172 |
| 2.2004 | 17000 | 0.4243 | 0.5235 |
| 2.3298 | 18000 | 0.398 | 0.5224 |
| 2.4592 | 19000 | 0.3747 | 0.5344 |
| 2.5887 | 20000 | 0.3669 | 0.5301 |
| 2.7181 | 21000 | 0.3583 | 0.5406 |
| 2.8475 | 22000 | 0.3496 | 0.5354 |
| 2.9770 | 23000 | 0.3527 | 0.5324 |
| 3.1064 | 24000 | 0.3419 | 0.5299 |
| 3.2358 | 25000 | 0.3358 | 0.5456 |
| 3.3653 | 26000 | 0.3096 | 0.5562 |
| 3.4947 | 27000 | 0.2964 | 0.5644 |
| 3.6241 | 28000 | 0.2998 | 0.5565 |
| 3.7536 | 29000 | 0.2906 | 0.5590 |
| 3.8830 | 30000 | 0.2923 | 0.5564 |
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
Model tree for hcy5561/distilroberta-base-sentence-transformer-snli
Base model
google-bert/bert-base-uncased