Update README.md
#1
by
m1ngcheng
- opened
README.md
CHANGED
|
@@ -4,13 +4,11 @@ pipeline_tag: text-generation
|
|
| 4 |
library_name: transformers
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
<p align="center">
|
| 10 |
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
|
| 11 |
-
|
| 12 |
|
| 13 |
-
<p align="center">π€ <a href="https://huggingface.co/inclusionAI">Hugging Face</a> 
|
| 14 |
|
| 15 |
|
| 16 |
## Introduction
|
|
@@ -89,49 +87,49 @@ Ling-1T has been extensively evaluated across **knowledge**, **code**, **math**,
|
|
| 89 |
It currently stands as the **best open-source flagship non-thinking model**, rivaling closed-source APIs in complex reasoning while maintaining exceptional efficiency and interpretability.
|
| 90 |
|
| 91 |
## Evaluation
|
| 92 |
-
| Task
|
| 93 |
-
|
| 94 |
-
|
|
| 95 |
-
| **Knowledge**
|
| 96 |
-
|
|
| 97 |
-
|
|
| 98 |
-
|
|
| 99 |
-
| **Knowledge**
|
| 100 |
-
|
|
| 101 |
-
|
|
| 102 |
-
|
|
| 103 |
-
| **Coding**
|
| 104 |
-
|
|
| 105 |
-
|
|
| 106 |
-
|
|
| 107 |
-
|
|
| 108 |
-
|
|
| 109 |
-
| **Coding**
|
| 110 |
-
|
|
| 111 |
-
|
|
| 112 |
-
|
|
| 113 |
-
| **Math**
|
| 114 |
-
|
|
| 115 |
-
|
|
| 116 |
-
|
|
| 117 |
-
|
|
| 118 |
-
| **Math**
|
| 119 |
-
|
|
| 120 |
-
|
|
| 121 |
-
|
|
| 122 |
-
| **General Reasoning** |
|
| 123 |
-
|
|
| 124 |
-
|
|
| 125 |
-
|
|
| 126 |
-
|
|
| 127 |
-
| **Agent**
|
| 128 |
-
|
|
| 129 |
-
| **Alignment**
|
| 130 |
-
|
|
| 131 |
-
|
|
| 132 |
-
|
|
| 133 |
-
|
|
| 134 |
-
|
|
| 135 |
|
| 136 |
|
| 137 |
|
|
@@ -141,9 +139,9 @@ You can download Ling-1T from the following table. If you are located in mainlan
|
|
| 141 |
|
| 142 |
<center>
|
| 143 |
|
| 144 |
-
|
|
| 145 |
-
|
| 146 |
-
|
|
| 147 |
|
| 148 |
</center>
|
| 149 |
|
|
@@ -228,7 +226,7 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
| 228 |
|
| 229 |
### π€ ModelScope
|
| 230 |
|
| 231 |
-
If you're in mainland China, we strongly recommend you to use our model from π€ <a href="https://modelscope.cn/
|
| 232 |
|
| 233 |
## Deployment
|
| 234 |
|
|
@@ -322,7 +320,7 @@ BF16 and FP8 models are supported by SGLang now, it depends on the dtype of the
|
|
| 322 |
- Start server:
|
| 323 |
```bash
|
| 324 |
python -m sglang.launch_server \
|
| 325 |
-
--model-path $
|
| 326 |
--host 0.0.0.0 --port $PORT \
|
| 327 |
--trust-remote-code \
|
| 328 |
--attention-backend fa3
|
|
@@ -355,8 +353,6 @@ While **Ling-1T** has made strong progress in efficient reasoning, cross-domain
|
|
| 355 |
Ling-1T will continue to evolve in architecture, reasoning, and alignment, advancing the series toward more general intelligence.
|
| 356 |
|
| 357 |
|
| 358 |
-
|
| 359 |
## License
|
| 360 |
|
| 361 |
-
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ling-V2/blob/main/LICENSE).
|
| 362 |
-
|
|
|
|
| 4 |
library_name: transformers
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
| 7 |
<p align="center">
|
| 8 |
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
|
| 9 |
+
</p>
|
| 10 |
|
| 11 |
+
<p align="center">π€ <a href="https://huggingface.co/inclusionAI">Hugging Face</a> | π€ <a href="https://modelscope.cn/organization/inclusionAI">ModelScope </a> | π <a href="https://zenmux.ai/inclusionai/ling-1t?utm_source=hf_inclusionAI">Experience Now</a></p>
|
| 12 |
|
| 13 |
|
| 14 |
## Introduction
|
|
|
|
| 87 |
It currently stands as the **best open-source flagship non-thinking model**, rivaling closed-source APIs in complex reasoning while maintaining exceptional efficiency and interpretability.
|
| 88 |
|
| 89 |
## Evaluation
|
| 90 |
+
| Task | Benchmark | DeepSeek-V3.1-Terminus | Kimi-K2-Instruct-0905 | gpt-5-main | Gemini 2.5 Pro | Ling-1T |
|
| 91 |
+
| --------------------- | -------------------------- | ---------------------------------------- | ---------------------------------------- | ---------- | ---------------------------------------- | ---------------------------------------- |
|
| 92 |
+
| | | (NonThinking) | | | (thinkBudget=128) | |
|
| 93 |
+
| **Knowledge** | **Professional Knowledge** | | | | | |
|
| 94 |
+
| | C-Eval | __91.76__ | 91.12 | 83.59 | 88.77 | __<span style="color:red">92.19</span>__ |
|
| 95 |
+
| | MMLU-Redux (EM) | 92.37 | 91.58 | **92.75** | __<span style="color:red">94.67</span>__ | 92.25 |
|
| 96 |
+
| | MMLU-Pro | __<span style="color:red">83.25</span>__ | 81.03 | 81.94 | **82.13** | 82.04 |
|
| 97 |
+
| **Knowledge** | **STEM** | | | | | |
|
| 98 |
+
| | MMLU-Pro-Stem | 87.91 | 85.30 | 73.45 | __<span style="color:red">88.60</span>__ | **88.5** |
|
| 99 |
+
| | OlympiadBench-stem | 87.83 | 79.13 | 78.26 | **89.57** | __<span style="color:red">91.3</span>__ |
|
| 100 |
+
| | GPQA-Diamond | __<span style="color:red">76.23</span>__ | **73.93** | 71.31 | 71.81 | 72.98 |
|
| 101 |
+
| **Coding** | **Code Generation** | | | | | |
|
| 102 |
+
| | MultiPL-E | **77.68** | 73.76 | 76.66 | 71.48 | __<span style="color:red">77.91</span>__ |
|
| 103 |
+
| | mbpp | 90.69 | 89.96 | **91.72** | 91.01 | __<span style="color:red">96.87</span>__ |
|
| 104 |
+
| | LiveCodeBench (2408-2505) | 48.02 | 48.95 | **48.57** | 45.43 | __<span style="color:red">61.68</span>__ |
|
| 105 |
+
| | CodeForces-rating | 1582 | 1574 | 1120 | **1675** | __<span style="color:red">1901</span>__ |
|
| 106 |
+
| | BIRD_SQL | 44.88 | 46.45 | 43.97 | __<span style="color:red">54.76</span>__ | **52.38** |
|
| 107 |
+
| **Coding** | **Software Development** | | | | | |
|
| 108 |
+
| | ArtifactsBench | 43.29 | 44.87 | 41.04 | __<span style="color:red">60.28</span>__ | **59.31** |
|
| 109 |
+
| | FullStack Bench | **55.48** | 54.00 | 50.92 | 48.19 | __<span style="color:red">56.55</span>__ |
|
| 110 |
+
| | Aider | **88.16** | 85.34 | 84.40 | __<span style="color:red">89.85</span>__ | 83.65 |
|
| 111 |
+
| **Math** | **Competition Math** | | | | | |
|
| 112 |
+
| | CNMO 2024 | 73.78 | 68.92 | 63.11 | **74.65** | __<span style="color:red">79.25</span>__ |
|
| 113 |
+
| | AIME 2025 | 55.21 | 50.16 | 59.43 | **70.10** | __<span style="color:red">70.42</span>__ |
|
| 114 |
+
| | UGMathBench | **72.70** | 69.97 | 67.27 | 70.10 | __<span style="color:red">74.95</span>__ |
|
| 115 |
+
| | Omni-Math | 64.77 | 62.42 | 61.09 | **72.02** | __<span style="color:red">74.46</span>__ |
|
| 116 |
+
| **Math** | **Professional Math** | | | | | |
|
| 117 |
+
| | FinanceReasoning | 86.44 | 84.83 | 86.28 | **86.65** | __<span style="color:red">87.45</span>__ |
|
| 118 |
+
| | Optibench | 64.30 | 60.83 | 40.06 | **68.76** | __<span style="color:red">74.71</span>__ |
|
| 119 |
+
| | OptMATH | 35.99 | 35.84 | 39.16 | **42.77** | __<span style="color:red">57.68</span>__ |
|
| 120 |
+
| **General Reasoning** | | | | | | |
|
| 121 |
+
| | BBEH | **42.86** | 34.83 | 39.75 | 29.08 | __<span style="color:red">47.34</span>__ |
|
| 122 |
+
| | KOR-Bench | **73.76** | 73.20 | 70.56 | 59.68 | __<span style="color:red">76.00</span>__ |
|
| 123 |
+
| | ARC-AGI-1 | 14.69 | **22.19** | 14.06 | 18.94 | __<span style="color:red">43.81</span>__ |
|
| 124 |
+
| | ZebraLogic | 81.6 | **85.5** | 57.3 | 70.2 | __<span style="color:red">90.8</span>__ |
|
| 125 |
+
| **Agent** | | | | | | |
|
| 126 |
+
| | BFCL-V3 | 52.67 | __<span style="color:red">71.05</span>__ | 50.27 | 63.31 | **69.64** |
|
| 127 |
+
| **Alignment** | | | | | | |
|
| 128 |
+
| | Arena Hard V2 ELO | 54.09 | __<span style="color:red">76.95</span>__ | 68.37 | 65.37 | **76.26** |
|
| 129 |
+
| | Arena Hard V2 Win Rate | 63.24 | 69.88 | 65.06 | **74.46** | __<span style="color:red">75.83</span>__ |
|
| 130 |
+
| | writing_bench | 80.95 | **87.59** | 77.07 | 80.53 | __<span style="color:red">89.4</span>__ |
|
| 131 |
+
| | Creative Writing v3 | 85.18 | **87.01** | 80.93 | 84.99 | <span style="color:red">89.24</span> |
|
| 132 |
+
| | MultiChallenge | 42.49 | 48.72 | 48.72 | **51.28** | __<span style="color:red">58.24</span>__ |
|
| 133 |
|
| 134 |
|
| 135 |
|
|
|
|
| 139 |
|
| 140 |
<center>
|
| 141 |
|
| 142 |
+
| **Model** | **Context Length** | **Download** |
|
| 143 |
+
| :-------: | :----------------: | :-------------------------------------------------------------------------------------------------------------------------------------------: |
|
| 144 |
+
| Ling-1T | 32K -> 128K (YaRN) | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-1T) [π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-1T) |
|
| 145 |
|
| 146 |
</center>
|
| 147 |
|
|
|
|
| 226 |
|
| 227 |
### π€ ModelScope
|
| 228 |
|
| 229 |
+
If you're in mainland China, we strongly recommend you to use our model from π€ <a href="https://modelscope.cn/models/inclusionAI/Ling-1T">ModelScope</a>.
|
| 230 |
|
| 231 |
## Deployment
|
| 232 |
|
|
|
|
| 320 |
- Start server:
|
| 321 |
```bash
|
| 322 |
python -m sglang.launch_server \
|
| 323 |
+
--model-path $MODEL_PATH \
|
| 324 |
--host 0.0.0.0 --port $PORT \
|
| 325 |
--trust-remote-code \
|
| 326 |
--attention-backend fa3
|
|
|
|
| 353 |
Ling-1T will continue to evolve in architecture, reasoning, and alignment, advancing the series toward more general intelligence.
|
| 354 |
|
| 355 |
|
|
|
|
| 356 |
## License
|
| 357 |
|
| 358 |
+
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ling-V2/blob/main/LICENSE).
|
|
|