See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9b4bcc60884dcc3a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9b4bcc60884dcc3a_train_data.json
type:
field_input: tokenized_question
field_instruction: question
field_output: logical_form
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: infogep/0f87c06f-2ac4-4b41-93df-4266229b47da
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/9b4bcc60884dcc3a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 70e6cdcd-dcfb-4db9-824b-87885d7444be
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 70e6cdcd-dcfb-4db9-824b-87885d7444be
warmup_steps: 5
weight_decay: 0.0
xformers_attention: true
0f87c06f-2ac4-4b41-93df-4266229b47da
This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3807
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0002 | 1 | 10.3817 |
| 10.382 | 0.0008 | 5 | 10.3815 |
| 10.3806 | 0.0016 | 10 | 10.3812 |
| 10.3809 | 0.0024 | 15 | 10.3810 |
| 10.3804 | 0.0032 | 20 | 10.3808 |
| 10.3804 | 0.0040 | 25 | 10.3807 |
| 10.3804 | 0.0048 | 30 | 10.3807 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for infogep/0f87c06f-2ac4-4b41-93df-4266229b47da
Base model
HuggingFaceH4/tiny-random-LlamaForCausalLM