superb_ks_42

This model is a fine-tuned version of facebook/hubert-base-ls960 on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1972
  • Accuracy: 0.9801
  • Test Accuracy: 0.9801
  • Df Accuracy: 0.9761
  • Unlearn Overall Accuracy: 0.5020
  • Unlearn Time: 3290.3072

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
0.5961 1.0 1597 0.2042 0.9769 0.5018 0.5018 -1
0.3942 2.0 3194 0.1972 0.9761 0.5020 0.5020 -1
0.4031 3.0 4791 0.2011 0.9779 0.5017 0.5017 -1
0.3894 4.0 6388 0.2182 0.9793 0.5005 0.5005 -1
0.3859 5.0 7985 0.2111 0.9779 0.5014 0.5014 -1
0.3796 6.0 9582 0.1843 0.9798 0.5011 0.5011 -1
0.3758 7.0 11179 0.1780 0.9793 0.5014 0.5014 -1
0.3677 8.0 12776 0.1899 0.9806 0.5015 0.5015 -1
0.3617 9.0 14373 0.1821 0.9808 0.5003 0.5003 -1
0.357 10.0 15970 0.1885 0.9812 0.5009 0.5009 -1
0.3557 11.0 17567 0.1725 0.9793 0.5020 0.5020 -1
0.3524 12.0 19164 0.1845 0.9806 0.5011 0.5011 -1
0.3396 13.0 20761 0.1820 0.9818 0.5008 0.5008 -1
0.3484 14.0 22358 0.1846 0.9806 0.5020 0.5020 -1
0.3389 15.0 23955 0.1860 0.9810 0.5020 0.5020 -1
0.3407 16.0 25552 0.1832 0.9820 0.5011 0.5011 -1
0.3347 17.0 27149 0.1963 0.9816 0.5013 0.5013 -1
0.3321 18.0 28746 0.1940 0.9820 0.5005 0.5005 -1
0.327 19.0 30343 0.1962 0.9816 0.5010 0.5010 -1
0.3279 20.0 31940 0.1949 0.9820 0.5008 0.5008 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jialicheng/unlearn_speech_commands_hubert-base_random_label_10_42

Finetuned
(132)
this model

Dataset used to train jialicheng/unlearn_speech_commands_hubert-base_random_label_10_42

Evaluation results