hoho / fast_pointnet_v2.py
jskvrna's picture
Final submission code
9518589
# This file defines a FastPointNet model for 3D vertex prediction from point clouds.
# It is located at <YOUR_LOCAL_PATH>/fast_pointnet_v2.py and includes:
# 1. `FastPointNet`: A deep neural network with enhancements like residual connections,
# channel attention, and multi-scale pooling. It predicts 3D coordinates,
# and optionally, confidence scores and classification labels.
# 2. `PatchDataset`: A PyTorch Dataset for loading, preprocessing, and augmenting
# 11-dimensional point cloud patches.
# 3. Utility functions for:
# - Training the model (`train_pointnet`) with custom loss and optimization.
# - Loading/saving models, and performing inference (`predict_vertex_from_patch`).
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pickle
from torch.utils.data import Dataset, DataLoader
from typing import List, Dict, Tuple, Optional
import json
class FastPointNet(nn.Module):
"""
Fast PointNet implementation for 3D vertex prediction from point cloud patches.
Takes 11D point clouds and predicts 3D vertex coordinates.
Enhanced with deeper architecture, efficient attention, and accuracy improvements.
"""
def __init__(self, input_dim=11, output_dim=3, max_points=1024, predict_score=True, predict_class=True, num_classes=1):
super(FastPointNet, self).__init__()
self.max_points = max_points
self.predict_score = predict_score
self.predict_class = predict_class
self.num_classes = num_classes
# Enhanced point-wise MLPs with residual connections
self.conv1 = nn.Conv1d(input_dim, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 256, 1)
self.conv4 = nn.Conv1d(256, 512, 1)
self.conv5 = nn.Conv1d(512, 1024, 1)
self.conv6 = nn.Conv1d(1024, 1024, 1)
self.conv7 = nn.Conv1d(1024, 2048, 1)
# Lightweight channel attention mechanism
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(2048, 128, 1),
nn.ReLU(inplace=True),
nn.Conv1d(128, 2048, 1),
nn.Sigmoid()
)
# Enhanced shared features with residual connections
self.shared_fc1 = nn.Linear(2048, 1024)
self.shared_fc2 = nn.Linear(1024, 512)
self.shared_fc3 = nn.Linear(512, 512) # Additional layer
# Enhanced position prediction head with skip connections
self.pos_fc1 = nn.Linear(512, 512)
self.pos_fc2 = nn.Linear(512, 256)
self.pos_fc3 = nn.Linear(256, 128)
self.pos_fc4 = nn.Linear(128, 64)
self.pos_fc5 = nn.Linear(64, output_dim)
# Enhanced score prediction head
if self.predict_score:
self.score_fc1 = nn.Linear(512, 512)
self.score_fc2 = nn.Linear(512, 256)
self.score_fc3 = nn.Linear(256, 128)
self.score_fc4 = nn.Linear(128, 64)
self.score_fc5 = nn.Linear(64, 1)
# Classification head
if self.predict_class:
self.class_fc1 = nn.Linear(512, 512)
self.class_fc2 = nn.Linear(512, 256)
self.class_fc3 = nn.Linear(256, 128)
self.class_fc4 = nn.Linear(128, 64)
self.class_fc5 = nn.Linear(64, num_classes)
# Batch normalization layers with momentum for stability
self.bn1 = nn.BatchNorm1d(64, momentum=0.1)
self.bn2 = nn.BatchNorm1d(128, momentum=0.1)
self.bn3 = nn.BatchNorm1d(256, momentum=0.1)
self.bn4 = nn.BatchNorm1d(512, momentum=0.1)
self.bn5 = nn.BatchNorm1d(1024, momentum=0.1)
self.bn6 = nn.BatchNorm1d(1024, momentum=0.1)
self.bn7 = nn.BatchNorm1d(2048, momentum=0.1)
# Group normalization for shared layers (more stable than BatchNorm for small batches)
self.gn1 = nn.GroupNorm(32, 1024)
self.gn2 = nn.GroupNorm(16, 512)
# Dropout with different rates
self.dropout_light = nn.Dropout(0.1)
self.dropout_medium = nn.Dropout(0.2)
self.dropout_heavy = nn.Dropout(0.3)
def forward(self, x):
"""
Forward pass with residual connections and attention
Args:
x: (batch_size, input_dim, max_points) tensor
Returns:
Tuple containing predictions based on configuration
"""
batch_size = x.size(0)
# Enhanced point-wise feature extraction with residual-like connections
x1 = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01, inplace=True)
x2 = F.leaky_relu(self.bn2(self.conv2(x1)), negative_slope=0.01, inplace=True)
x3 = F.leaky_relu(self.bn3(self.conv3(x2)), negative_slope=0.01, inplace=True)
x4 = F.leaky_relu(self.bn4(self.conv4(x3)), negative_slope=0.01, inplace=True)
x5 = F.leaky_relu(self.bn5(self.conv5(x4)), negative_slope=0.01, inplace=True)
# Residual connection
x6 = F.leaky_relu(self.bn6(self.conv6(x5)) + x5, negative_slope=0.01, inplace=True)
x7 = F.leaky_relu(self.bn7(self.conv7(x6)), negative_slope=0.01, inplace=True)
# Apply channel attention
attention_weights = self.channel_attention(x7)
x7_attended = x7 * attention_weights
# Multi-scale global pooling for richer features
max_pool = torch.max(x7_attended, 2)[0] # (batch_size, 2048)
avg_pool = torch.mean(x7_attended, 2) # (batch_size, 2048)
# Weighted combination of pooling operations
global_features = 0.7 * max_pool + 0.3 * avg_pool # (batch_size, 2048)
# Enhanced shared features with residual connections and group norm
shared1 = F.leaky_relu(self.gn1(self.shared_fc1(global_features).unsqueeze(-1)).squeeze(-1),
negative_slope=0.01, inplace=True)
shared1 = self.dropout_light(shared1)
shared2 = F.leaky_relu(self.gn2(self.shared_fc2(shared1).unsqueeze(-1)).squeeze(-1),
negative_slope=0.01, inplace=True)
shared2 = self.dropout_medium(shared2)
# Additional shared layer with residual connection
shared3 = F.leaky_relu(self.shared_fc3(shared2), negative_slope=0.01, inplace=True)
shared_features = self.dropout_light(shared3) + shared2 # Residual connection
# Enhanced position prediction with skip connections
pos1 = F.leaky_relu(self.pos_fc1(shared_features), negative_slope=0.01, inplace=True)
pos1 = self.dropout_light(pos1)
pos2 = F.leaky_relu(self.pos_fc2(pos1), negative_slope=0.01, inplace=True)
pos2 = self.dropout_medium(pos2)
pos3 = F.leaky_relu(self.pos_fc3(pos2), negative_slope=0.01, inplace=True)
pos3 = self.dropout_light(pos3)
pos4 = F.leaky_relu(self.pos_fc4(pos3), negative_slope=0.01, inplace=True)
position = self.pos_fc5(pos4)
outputs = [position]
if self.predict_score:
# Enhanced score prediction
score1 = F.leaky_relu(self.score_fc1(shared_features), negative_slope=0.01, inplace=True)
score1 = self.dropout_light(score1)
score2 = F.leaky_relu(self.score_fc2(score1), negative_slope=0.01, inplace=True)
score2 = self.dropout_medium(score2)
score3 = F.leaky_relu(self.score_fc3(score2), negative_slope=0.01, inplace=True)
score3 = self.dropout_light(score3)
score4 = F.leaky_relu(self.score_fc4(score3), negative_slope=0.01, inplace=True)
score = F.softplus(self.score_fc5(score4)) # Ensure positive distance, smoother than ReLU
outputs.append(score)
if self.predict_class:
# Classification prediction
class1 = F.leaky_relu(self.class_fc1(shared_features), negative_slope=0.01, inplace=True)
class1 = self.dropout_light(class1)
class2 = F.leaky_relu(self.class_fc2(class1), negative_slope=0.01, inplace=True)
class2 = self.dropout_medium(class2)
class3 = F.leaky_relu(self.class_fc3(class2), negative_slope=0.01, inplace=True)
class3 = self.dropout_light(class3)
class4 = F.leaky_relu(self.class_fc4(class3), negative_slope=0.01, inplace=True)
classification = self.class_fc5(class4) # Raw logits
outputs.append(classification)
# Return outputs based on configuration
if len(outputs) == 1:
return outputs[0] # Only position
elif len(outputs) == 2:
if self.predict_score:
return outputs[0], outputs[1] # position, score
else:
return outputs[0], outputs[1] # position, classification
else:
return outputs[0], outputs[1], outputs[2] # position, score, classification
class PatchDataset(Dataset):
"""
Dataset class for loading saved patches for PointNet training.
Updated for 11D patches.
"""
def __init__(self, dataset_dir: str, max_points: int = 1024, augment: bool = True):
self.dataset_dir = dataset_dir
self.max_points = max_points
self.augment = augment
# Load patch files
self.patch_files = []
for file in os.listdir(dataset_dir):
if file.endswith('.pkl'):
self.patch_files.append(os.path.join(dataset_dir, file))
print(f"Found {len(self.patch_files)} patch files in {dataset_dir}")
def __len__(self):
return len(self.patch_files)
def __getitem__(self, idx):
"""
Load and process a patch for training.
Returns:
patch_data: (11, max_points) tensor of point cloud data
target: (3,) tensor of target 3D coordinates
valid_mask: (max_points,) boolean tensor indicating valid points
distance_to_gt: scalar tensor of distance from initial prediction to GT
classification: scalar tensor for binary classification (1 if GT vertex present, 0 if not)
"""
patch_file = self.patch_files[idx]
with open(patch_file, 'rb') as f:
patch_info = pickle.load(f)
patch_11d = patch_info['patch_11d'] # (N, 11) - Updated for 11D
target = patch_info.get('assigned_wf_vertex', None) # (3,) or None
initial_pred = patch_info.get('cluster_center', None) # (3,) or None
# Determine classification label based on GT vertex presence
has_gt_vertex = 1.0 if target is not None else 0.0
# Handle patches without ground truth
if target is None:
# Use a dummy target for consistency, but mark as invalid with classification
target = np.zeros(3)
else:
target = np.array(target)
# Pad or sample points to max_points
num_points = patch_11d.shape[0]
if num_points >= self.max_points:
# Randomly sample max_points
indices = np.random.choice(num_points, self.max_points, replace=False)
patch_sampled = patch_11d[indices]
valid_mask = np.ones(self.max_points, dtype=bool)
else:
# Pad with zeros
patch_sampled = np.zeros((self.max_points, 11)) # Updated for 11D
patch_sampled[:num_points] = patch_11d
valid_mask = np.zeros(self.max_points, dtype=bool)
valid_mask[:num_points] = True
# Data augmentation (only if GT vertex is present)
if self.augment and has_gt_vertex > 0:
patch_sampled, target = self._augment_patch(patch_sampled, valid_mask, target)
# Convert to tensors and transpose for conv1d (channels first)
patch_tensor = torch.from_numpy(patch_sampled.T).float() # (11, max_points)
target_tensor = torch.from_numpy(target).float() # (3,)
valid_mask_tensor = torch.from_numpy(valid_mask)
# Handle initial_pred
if initial_pred is not None:
initial_pred_tensor = torch.from_numpy(initial_pred).float()
else:
initial_pred_tensor = torch.zeros(3).float()
# Classification tensor
classification_tensor = torch.tensor(has_gt_vertex).float()
return patch_tensor, target_tensor, valid_mask_tensor, initial_pred_tensor, classification_tensor
def _augment_patch(self, patch_sampled, valid_mask, target):
"""
Apply data augmentation to patch and target.
Only augment valid points and update target accordingly.
"""
valid_points = patch_sampled[valid_mask]
if len(valid_points) > 0:
# Random rotation around Z-axis (small angle)
angle = np.random.uniform(-np.pi/12, np.pi/12) # ±15 degrees
cos_a, sin_a = np.cos(angle), np.sin(angle)
rotation_matrix = np.array([[cos_a, -sin_a, 0],
[sin_a, cos_a, 0],
[0, 0, 1]])
# Apply rotation to xyz coordinates
valid_points[:, :3] = valid_points[:, :3] @ rotation_matrix.T
target = target @ rotation_matrix.T
# Small random translation
translation = np.random.uniform(-0.05, 0.05, 3)
valid_points[:, :3] += translation
target += translation
# Random scaling (small)
scale = np.random.uniform(0.95, 1.05)
valid_points[:, :3] *= scale
target *= scale
# Add small noise to features (not coordinates)
if valid_points.shape[1] > 3:
noise = np.random.normal(0, 0.01, valid_points[:, 3:].shape)
valid_points[:, 3:] += noise
# Update patch with augmented valid points
patch_sampled[valid_mask] = valid_points
return patch_sampled, target
def save_patches_dataset(patches: List[Dict], dataset_dir: str, entry_id: str):
"""
Save patches from prediction pipeline to create a training dataset.
Args:
patches: List of patch dictionaries from generate_patches()
dataset_dir: Directory to save the dataset
entry_id: Unique identifier for this entry/image
"""
os.makedirs(dataset_dir, exist_ok=True)
for i, patch in enumerate(patches):
# Create unique filename
filename = f"{entry_id}_patch_{i}.pkl"
filepath = os.path.join(dataset_dir, filename)
# Skip if file already exists
if os.path.exists(filepath):
continue
# Save patch data
with open(filepath, 'wb') as f:
pickle.dump(patch, f)
print(f"Saved {len(patches)} patches for entry {entry_id}")
# Create dataloader with custom collate function to filter invalid samples
def collate_fn(batch):
valid_batch = []
for patch_data, target, valid_mask, initial_pred, classification in batch:
# Filter out invalid samples (no valid points)
if valid_mask.sum() > 0:
valid_batch.append((patch_data, target, valid_mask, initial_pred, classification))
if len(valid_batch) == 0:
return None
# Stack valid samples
patch_data = torch.stack([item[0] for item in valid_batch])
targets = torch.stack([item[1] for item in valid_batch])
valid_masks = torch.stack([item[2] for item in valid_batch])
initial_preds = torch.stack([item[3] for item in valid_batch])
classifications = torch.stack([item[4] for item in valid_batch])
return patch_data, targets, valid_masks, initial_preds, classifications
# Initialize weights using Kaiming initialization for LeakyReLU
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.kaiming_uniform_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm1d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def train_pointnet(dataset_dir: str, model_save_path: str, epochs: int = 100, batch_size: int = 32, lr: float = 0.001,
score_weight: float = 0.1, class_weight: float = 0.5):
"""
Train the FastPointNet model on saved patches.
Updated for 11D input.
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Training on device: {device}")
# Create dataset and dataloader
dataset = PatchDataset(dataset_dir, max_points=1024, augment=True) # Enable augmentation
print(f"Dataset loaded with {len(dataset)} samples")
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=20,
collate_fn=collate_fn, drop_last=True)
# Initialize model with 11D input
model = FastPointNet(input_dim=11, output_dim=3, max_points=1024, predict_score=True, predict_class=True, num_classes=1)
model.apply(init_weights)
model.to(device)
# Loss functions with label smoothing for classification
position_criterion = nn.SmoothL1Loss() # More robust than MSE
score_criterion = nn.SmoothL1Loss()
classification_criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(2.0)) # Weight positive class more
# AdamW optimizer with weight decay
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4, betas=(0.9, 0.999))
# Cosine annealing scheduler for better convergence
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=20, T_mult=2)
# Training loop
model.train()
for epoch in range(epochs):
total_loss = 0.0
total_pos_loss = 0.0
total_score_loss = 0.0
total_class_loss = 0.0
num_batches = 0
for batch_idx, batch_data in enumerate(dataloader):
if batch_data is None: # Skip invalid batches
continue
patch_data, targets, valid_masks, initial_preds, classifications = batch_data
patch_data = patch_data.to(device) # (batch_size, 11, max_points)
targets = targets.to(device) # (batch_size, 3)
classifications = classifications.to(device) # (batch_size,)
# Forward pass
optimizer.zero_grad()
predictions, predicted_scores, predicted_classes = model(patch_data)
# Compute actual distance from predictions to targets
actual_distances = torch.norm(predictions - targets, dim=1, keepdim=True)
# Only compute position and score losses for samples with GT vertices
has_gt_mask = classifications > 0.5
if has_gt_mask.sum() > 0:
# Position loss only for samples with GT vertices
pos_loss = position_criterion(predictions[has_gt_mask], targets[has_gt_mask])
score_loss = score_criterion(predicted_scores[has_gt_mask], actual_distances[has_gt_mask])
else:
pos_loss = torch.tensor(0.0, device=device)
score_loss = torch.tensor(0.0, device=device)
# Classification loss for all samples
class_loss = classification_criterion(predicted_classes.squeeze(), classifications)
# Combined loss
total_batch_loss = pos_loss + score_weight * score_loss + class_weight * class_loss
# Backward pass
total_batch_loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += total_batch_loss.item()
total_pos_loss += pos_loss.item()
total_score_loss += score_loss.item()
total_class_loss += class_loss.item()
num_batches += 1
if batch_idx % 50 == 0:
print(f"Epoch {epoch+1}/{epochs}, Batch {batch_idx}, "
f"Total Loss: {total_batch_loss.item():.6f}, "
f"Pos Loss: {pos_loss.item():.6f}, "
f"Score Loss: {score_loss.item():.6f}, "
f"Class Loss: {class_loss.item():.6f}")
avg_loss = total_loss / num_batches if num_batches > 0 else 0
avg_pos_loss = total_pos_loss / num_batches if num_batches > 0 else 0
avg_score_loss = total_score_loss / num_batches if num_batches > 0 else 0
avg_class_loss = total_class_loss / num_batches if num_batches > 0 else 0
print(f"Epoch {epoch+1}/{epochs} completed, "
f"Avg Total Loss: {avg_loss:.6f}, "
f"Avg Pos Loss: {avg_pos_loss:.6f}, "
f"Avg Score Loss: {avg_score_loss:.6f}, "
f"Avg Class Loss: {avg_class_loss:.6f}")
scheduler.step()
# Save model checkpoint every 10 epochs
if (epoch + 1) % 10 == 0:
checkpoint_path = model_save_path.replace('.pth', f'_epoch_{epoch+1}.pth')
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch + 1,
'loss': avg_loss,
}, checkpoint_path)
# Save the trained model
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epochs,
}, model_save_path)
print(f"Model saved to {model_save_path}")
return model
def load_pointnet_model(model_path: str, device: torch.device = None, predict_score: bool = True) -> FastPointNet:
"""
Load a trained FastPointNet model.
Updated for 11D input.
"""
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FastPointNet(input_dim=11, output_dim=3, max_points=1024, predict_score=predict_score)
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
return model
def predict_vertex_from_patch(model: FastPointNet, patch: np.ndarray, device: torch.device = None) -> Tuple[np.ndarray, float, float]:
"""
Predict 3D vertex coordinates, confidence score, and classification from a patch using trained PointNet.
Updated for 11D patches.
"""
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
patch_11d = patch['patch_11d'] # (N, 11) - Updated for 11D
# Prepare input
max_points = 1024
num_points = patch_11d.shape[0]
if num_points >= max_points:
# Sample points
indices = np.random.choice(num_points, max_points, replace=False)
patch_sampled = patch_11d[indices]
else:
# Pad with zeros
patch_sampled = np.zeros((max_points, 11)) # Updated for 11D
patch_sampled[:num_points] = patch_11d
# Convert to tensor
patch_tensor = torch.from_numpy(patch_sampled.T).float().unsqueeze(0) # (1, 11, max_points)
patch_tensor = patch_tensor.to(device)
# Predict
with torch.no_grad():
outputs = model(patch_tensor)
if model.predict_score and model.predict_class:
position, score, classification = outputs
position = position.cpu().numpy().squeeze()
score = score.cpu().numpy().squeeze()
classification = torch.sigmoid(classification).cpu().numpy().squeeze() # Apply sigmoid for probability
elif model.predict_score:
position, score = outputs
position = position.cpu().numpy().squeeze()
score = score.cpu().numpy().squeeze()
classification = None
elif model.predict_class:
position, classification = outputs
position = position.cpu().numpy().squeeze()
score = None
classification = torch.sigmoid(classification).cpu().numpy().squeeze() # Apply sigmoid for probability
else:
position = outputs
position = position.cpu().numpy().squeeze()
score = None
classification = None
# Apply offset correction
offset = patch['cluster_center']
position += offset
return position, score, classification